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Abstract
Purpose: The purpose of this prospective study was to evaluate radiation-induced myocardial damage after mediastinal radiation
therapy (RT) using late gadolinium-enhancement (LGE) magnetic resonance imaging (MRI).
Methods and Materials: We enrolled 19 patients with esophageal cancer who were expected to have long-term survival by definitive
treatment. They underwent delayed contrast-enhanced MRI (19 patients before treatment, 19 patients 6 months after treatment, and 12
patients 1.5 years after treatment). Dose distribution of the left ventricle was made using computed tomography, and the dose volume
histogram of the left ventricle was calculated. Myocardial signal intensities in individual MRIs were normalized by the mean values in
regions receiving low doses (<5 Gy). Changes in the normalized signal intensities after mediastinal radiation therapy were compared
among regions where irradiation doses were 0 to 10 Gy, 10 to 20 Gy, 20 to 30 Gy, 30 to 40 Gy, 40 to 50 Gy, and 50 to 60 Gy, and we
investigated whether intensity change was detected in a dose-dependent manner.
Results: The registered patients were treated with concurrent chemoradiotherapy with a median total dose of 60 Gy (50.4-66 Gy).
Chemotherapy consisting of cisplatin and 5-fluorouracil was administered. In the population-based dose-response curve, dose-dependent
intensity changes progressively increased in regions receiving more than 30 Gy. The averages of relative intensity change at 6 months
and 1.5 years after treatment were 1.1% and �1.9% at 20 to 30 Gy and 37.5% and 17.5% at 40 to 50 Gy, respectively. LGE in regions
receiving more than 30 Gy was detected in 68% (13/19) of the patients.
Conclusions: A dose-dependent relationship for myocardial signal intensity change was found by using LGE MRI. It may be necessary
to reduce the volume of the myocardium receiving more than 30 Gy.
� 2020 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Mediastinal radiation therapy (RT) for thoracic ma-
lignancies has frequently included a part of the heart, and
many studies have shown RT-induced heart disease
(RIHD) from previous treatment.1-4 RIHD has become an
important concern in radiation oncology. There have been
several reports of correlations between the frequency of
RIHD and RT total dose.5-7

It is assumed that a part of the heart is subject to high-
dose irradiation in patients with esophageal cancer. Some
recent studies have demonstrated that the use of RT was
associated with heart disease-related death in patients with
esophageal cancer.8,9 Some studies have shown that
outcomes of chemoradiotherapy (CRT) were comparable
to those of surgery in patients with esophageal cancer10,11

and that outcomes of CRT for early stage esophageal
cancer were favorable.12 Therefore, we should consider
additional care for long-term survivors who have received
mediastinal RT for esophageal cancer.

Past studies showed that nuclear medicine imaging
such as I-123b-methyl iodophenyl pentadecanoic acid
(BMIPP) was useful for detecting RT-induced myocardial
damage.13-18 Late gadolinium enhancement (LGE) mag-
netic resonance imaging (MRI) enables visualization of
the myocardial scar in patients with ischemic and non-
ischemic myocardial diseases,19,20 and it has higher
spatial resolution than that of scintigraphy.21 A previous
study showed that positive LGE was correlated with the
RT field for esophageal cancer. However, serial MR ex-
aminations to evaluate changes in MR findings before and
after RT were not conducted in that study.22 A study on
quantification of fibrosis in infarcted swine hearts by LGE
MRI showed that the signal intensity of LGE was strong
in the myocardium with a high density of fibrosis.23

Hardenberg et al reported dose-effect regional cardiac
perfusion abnormalities in patients with left-sided breast
cancer treated with RT who underwent cardiac perfusion
imaging.24 Based on these results, we hypothesized that it
would be possible to evaluate the RT dose dependency of
myocardial damage by quantitative analysis of LGE
before and after treatment. The purpose of this prospec-
tive study was to evaluate whether RT-induced myocar-
dial damage depending on RT dose can be detected by
using LGE MRI in patients with esophageal cancer.
Methods and Materials

Patients

This study was approved by a local institutional review
board (2010-59), and all of the patients gave written
informed consent before enrollment. The study was regis-
tered on UMIN Clinical Trials Registry (UMIN000032551,
https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?
recptnoZ R000037126) and accepted by the International
Committee of Medical Journal Editors. Between 2013 and
2015, we enrolled 19 patients with esophageal cancer who
received curative-intended mediastinal RT. The eligibility
criteria were as follows: age, 20 to 75 years; Eastern Coop-
erative Oncology Group performance status, 0 to 1; normal
kidney function (estimated glomerular filtration rate <30
mL/min/1.73 m2); no history of cardiac disease excluding
hypertension. Four patients had a history of hypertensionand
took an angiotensin-converting enzyme inhibitor or an
angiotensin II receptor blocker; cases in which the myocar-
dium was expected to be included in the RT field; cases in
which long-term survival could be expected by definitive
treatment; no other active malignancy at the start of our
study; and no history of mediastinal radiation therapy and
chemotherapy.
Chemoradiotherapy

The CRT regimen and RT technique were described in
our previous report.25 Generally, 2 cycles of concurrent
chemotherapy (2-hour infusion of cisplatin at 70 mg/m2

on day 1 and continuous infusion of 5-fluorouracil at 700
mg/m2 during a 24-hour period on days 1-4) with a 4-
week interval was performed during RT.

Three-dimensional conformal RT was delivered to all
patients. The initial clinical target volume (CTV) was
defined as the region from the supraclavicular to celiac
lymph nodes. Boost CTV was defined as the primary
tumor with a 20- to 30-mm craniocaudal margin and an
approximately 5-mm radial margin and nodal metastasis.
The planning target volume was defined as CTV plus a 5-
to 15-mm margin. The left ventricle (LV) was contoured
by one radiation oncologist by referring to Feng et al.26

The inner cavity of the LV was excluded. The whole
heart (WH), left main artery, left anterior descending ar-
tery (LAD), left circumflex artery (LCX), and right cor-
onary artery were also contoured.

The initial CTV dose was approximately 40 Gy using
parallel-opposed anterior or posterior fields. The boost
CTV received 20 Gy using parallel-oblique fields to avoid
the spinal cord. We allowed the radiation oncologist to
adjust the RT total dose and the range of the RT field
according to the patient’s condition and clinical stage. A
median total dose was 60 Gy (range, 50.4-66 Gy). The
dose distribution was determined by ECLIPSE Varian
Medical Systems (Palo Alto, CA) with the analytical
anisotropic algorithm. V10 Gy (the percentage of the
volume receiving 10 Gy in the left ventricle), V20 Gy,
V30 Gy, V40 Gy, V50 Gy, V60 Gy, mean dose of LV
and WH were calculated using the dose volume histogram
(DVH) of the LV. Only mean dose of the left main artery,
LAD, LCX, and right coronary artery were calculated
because of the small volume sizes.

https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno%20=%20R000037126
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MRI protocol

The MRIs were performed using a 3-T whole body
scanner (MAGNETOM Trio A Tim System; Siemens
Health care, Erlangen, Germany). LGE imaging was per-
formed 10 minutes after injection of 0.15 mmol/kg (0.30
mL/kg) of Gd-DTPA (gadopentetate dimeglumine, Mag-
nevist; Bayer, Osaka, Japan) contrast. Generally, LGE
imaging of the left ventricle was acquired in 15 short axial
sections in the diastolic phase. LGE imagingwas performed
using a phase-sensitive inversion recovery gradient echo
sequence (repetition time/echo time/flip time, 750 ms/1.95
ms/20 degrees and voxel size, 1.4 � 1.8 � 8 mm).

To investigate the correlation between LGE and cardiac
function, LV ejection fraction (LVEF) and cardiac index
were measured by the Simpson technique using a
commercially available workstation (ZIOSTATION2,
Ziosoft, Tokyo, Japan). Cine images were acquired using a
breath-hold electrocardiogram (ECG) gating a balanced
steady-state free precession sequence (repetition time/echo
time/flip time, 60.75ms/1.08ms/43 degrees and voxel size,
1.3 � 1.3 � 8 mm).

Other cardiac examinations

Changes in brain natriuretic peptide (BNP) value,
ECG, and pericardial effusion were evaluated before and
after RT in all patients. The presence of pericardial
effusion was observed on CT scans or MRIs.

Evaluation of the dose-dependent response in
intensity change of LGE after treatment

A flow chart illustrating the calculation of the dose-
response curve after treatment is shown in Figure 1. First,
Figure 1 Flow chart illustrating the method of calculation of the dos
tomography; MR Z magnetic resonance.
we performed the rigid registration between the pretreat-
ment MRI and the planning CT to create the rigidly
aligned dose distribution using Mirada RTx (Mirada
Medical, Oxford, UK). Second, we used the multimodel
deformable image registration technique implemented in
Mirada RTx to match posttreatment MRIs to pretreatment
MRIs. In terms of deformable image registration accu-
racy, we confirmed that there were no large registration
errors in all cases by visual inspection. At checking these
registrations, a side-by-side reading was performed by 2
medical physicists. Third, the degree of signal intensity of
LGE was normalized by the mean value in segments
receiving low doses (<5 Gy); this was the method used to
examine changes in pre-RT and post-RT MRI images
because we assumed that radiation-induced damage was
not present at this low dose. This method was conducted
with reference to a previous report.17 The relative values
of signal intensity of LGE to the normalized reference
value in each dose region (0-10 Gy, 10-20 Gy, 20-30 Gy,
30-40 Gy, 40-50 Gy, and 50-60 Gy) were determined
before and after treatment, and the change of relative
values in each dose region was calculated for each patient.
Finally, we calculated the population-based dose-response
curve after treatment by aggregating those data.
Evaluation of factors associated with RT-induced
myocardial damage

We investigated which factors were related to RT-
induced myocardial change as follows. As described
above, we examined the signal intensity change in each
dose region and set the dose threshold at which signal
intensity changes became obvious. After that, cases in
which signal change corresponding to the threshold dose
was detected were defined as RT-induced signal intensity
e-response curve after treatment. Abbreviations: CT Z computed



Table 1 Patient and radiation therapy characteristics

Characteristic Mean � SD No. of
Patient

Age at RT 62.2 � 5.6 y
Primary site
Cervical: lower thoracic 1
Middle thoracic 11
Lower thoracic 7

Stage (UICC 7th ed)
IA 14
IB 3
IIA 1
IV 1

Pathologic diagnosis
Squamous cell carcinoma 19
Treatment before

chemoradiotherapy
None 15
Surgery 1

Endoscopic submucosal
dissection

3

ECOG performance status
0 15
1 4

Hypertension
Yes 4
No 15
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change (RT-induced signal intensive change [SIC]). If
LGE outside the threshold region was observed, we
examined whether the cause of LGE was an infarction
caused by coronary artery stenosis due to irradiation. The
dose distribution was confirmed by one radiation oncol-
ogist, and 2 radiologists evaluated the presence or absence
of LGE. We examined the differences between patients
with and without RT-induced SIC in RT-related and
patient-related factors.

We also investigated whether cardiac abnormalities
were more frequently observed in patients with RT-
induced SIC than in patients without RT-induced SIC
according to BNP level, ECG changes, and pericardial
effusion. In evaluation of the ECG, the changes requiring
treatment were defined as positive. In the evaluation of
pericardial effusion, asymptomatic small to moderate
effusion of G2 was regarded as positive according to
Common Terminology Criteria for Adverse Events,
version 4.0.

To assess the differences between patients with posi-
tive findings and those with negative findings, continuous
and dichotomous variables were analyzed using the
Mann-Whitney U test and Fisher’s test, respectively.

All statistical tests were 2-sided, and statistical signif-
icance was defined as a P value < .05. Statistical analysis
was performed using JMP 10 (SAS Institute, Cary, NC).
Hyperlipidemia
Yes 6
No 13

Habit of smoking
Yes 12
No 7

Body mass index 21.0 � 3.0 kg/m2

eGFR 77.6 � 11.9
mL/min/1.73m2

Coronary artery
calcification

Yes 11
No 8

LV Dmean 17.0 � 6.1 Gy
LV V10 Gy 41.0% � 15.1%
LV V20 Gy 34.6% � 14.3%
LV V30 Gy 29.9% � 13.7%
LV V40 Gy 17.8% � 13.9%
LV V50 Gy 4.0% � 5.9%
LV V60 Gy 1.2% � 2.8%

Abbreviations: ECOG Z Eastern Cooperative Oncology Group;
eGFRZ estimated glomerular filtration rate; LV10GyZ percentage
of the volume receiving 10 Gy in the left ventricle; LV Dmean Z
mean dose in the left ventricle; RT Z radiation therapy; SD Z
standard deviation; UICC Z Union for International Cancer Control.
Results

The registered patients underwent delayed contrast-
enhanced MRI (19 patients before treatment, 19 patients
at 6 months after treatment, and 12 patients at 1.5 years
after treatment). The mean � standard deviation (SD) of
intervals between the completion of CRT and the acqui-
sition of MRIs at the 6 month and 1.5-year follow-up
were 191.3 � 22.8 days and 559.6 � 14.6 days, respec-
tively. The patient characteristics are shown in Table 1
and in supplementary Table E1. Positron emission to-
mography or CT was performed to determine the stage in
17 patients. All patients received concurrent CRT. Only
one patient underwent additional CRT after surgery
owing to positive surgical margin. Three patients under-
went CRT after endoscopic submucosal dissection owing
to positive margin or recurrence. The range of the planned
initial CTV was reduced in 5 patients. The scheduled
CRT was completed in all patients, although only one
cycle of concurrent chemotherapy was performed in 3
patients for various reasons such as myelosuppression.
Adjuvant chemotherapy after CRT was not performed in
any patients. Seven patients could not undergo MRI 1.5
years after treatment because of patient refusal of exam-
ination (2 patients), recurrence requiring cisplatin-based
chemotherapy after CRT (1 patient), and lack of funds
for research expenses (4 patients).
Population-based dose-response curves are shown in
Figure 2. The average values of relative increase in in-
tensity change at 6 months were �0.2%, 0.4%, 1.1%,
5.7%, 35.7%, and 38.1% at 0 to 10 Gy, 10 to 20 Gy, 20 to
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30 Gy, 30 to 40 Gy, 40 to 50 Gy, and 50 to 60 Gy,
respectively. The average values of relative increase in
intensity change at 1.5 years were �0.8%, �3.2%,
�1.9%, �4.4%, 17.5%, and 20.1%, respectively. An
example case is shown in Figure 3. In the population-
based dose-response curve, the dose-dependent signal
progressively increased in regions receiving more than 30
Gy. Therefore, we determined that the threshold dose for
the signal change was 30 Gy and defined a case in which
LGE was observed in this region as positive. As a result,
13 of the 19 patients had RT-induced SIC. There were no
patients in which LGE outside the 30 Gy dose line was
detected.

The results of analysis of radiation-related and patient-
related factors for patients with and without RT-induced
SIC are shown in Table 2 and Table E2. Although there
were no significant differences in the DVH parameters of
the LV between patients with and without RT-induced
SIC, LV V10 Gy, LV V20 Gy, and LV V30 Gy tended
to be higher in positive patients (P Z .066, .053, and
.066, respectively). There were significant differences in
the DVH parameters of WH V10 Gy, WH V20 Gy, WH
V30 Gy, LDA, and LCX (P Z .020, .010, .049, .049, and
.032). Although there were no significant differences in
patient-related factors between patients with and without
RT-induced SIC, sex, performance status, and hyperten-
sion tended to be significant factors (P Z .059, .061, and
.061, respectively).

The results of cardiac examinations after CRT are
shown in Table 3. Although no patients had cardiac
symptoms before and at 6 months after treatment, mild
palpitation was observed in one patient with positive
findings at 1.5 years after treatment. The mean � SD of
Figure 2 Population-based dose-response curves for signal intensit
years after treatment.
LVEF at pretreatment and 6 months and 1.5 years post-
treatment in all patients was 60.4 � 8.9, 62.8 � 12.7 and
62.0 � 10.4%, respectively. The mean � SD deviation of
cardiac index at pretreatment and 6 months and 1.5 years
posttreatment in all patients were 2.7 � 0.6, 2.9 � 0.8,
and 2.8 � 0.9 L/min/m2, respectively. The mean � SD of
BNP value at pretreatment and 6 months and 1.5 years
posttreatment in all patients were 25.9 � 32.5, 40.3 �
28.3, and 45.6 � 28.9 pg/mL, respectively. There were no
significant differences in LVEF, CI, and BNP between
patients with and without RT-induced SIC. There were no
positive findings in ECGs at pretreatment, at 6 months
posttreatment and at 1.5 years posttreatment. pericardial
effusion before RT was observed, but mild pericardial
effusion was seen in some patients at 6 months and 1.5
years after treatment. There was no significant difference
in the frequency of pericardial effusion between patients
with and without RT-induced SIC.
Discussion

As expected, the signal intensity changes became
stronger when the dose of radiation to the myocardium
was increased. In a study by Hardenberg et al and our
previous pilot study using BMIPP, dose-effect relation-
ships for abnormal uptake similar to those found in the
present study also tended to be observed at 6 months after
RT.17,24 The signal intensity change was conspicuous in
regions receiving 30 Gy or more. One of the risk factors
of RIHD has been reported to be a high cumulative dose
of RT (>30 Gy),27 and an autopsy study of patients
irradiated with at least 35 Gy (mean dose of 56 Gy to the
y change of late gadolinium enhancement at 6 months and 1.5



Figure 3 Example case of magnetic resonance imaging after chemoradiotherapy for esophageal cancer. Dose-effect signal intensity
changes of late gadolinium enhancement within the radiation field were clearly detected at 6 months and 1.5 years after treatment in this
case. Abbreviations: CT Z computed tomography; MRI Z magnetic resonance image; Tx Z treatment.
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anterior heart surface) showed that 50% of the patients
had myocardial fibrosis.28 The results of our study sup-
port those findings. Although there was no significant
difference, LV V30 Gy tended to be higher in patients
with RT-induced SIC in the present study. WH V10 Gy,
V20 Gy, and V30 Gy were also significantly higher in
patients with RT-induced SIC. Konski et al reported that
the mean heart V20 (79.7% vs 67.2%), V30 (75.8% vs
61.9%), and V40 (69.2% vs 53.8%) were significantly
higher in patients with symptomatic cardiac toxicity than
those without.29 The results for WH parameters in their
report are similar to our results. Therefore, it may be
necessary to reduce the volume of the myocardium or
heart receiving more than 30 Gy as much as possible.
However, patients with RT-induced SIC had lower LV
V50 and V60 than patients without RT-induced SIC. The
reason for this is thought to be that the volume of high-
dose irradiation in parallel-oblique fields for the boost
CTV is small and it is affected by the regions receiving 30
Gy. In the present study, sex, PS, and hypertension were
factors that tended to be related to RT-induced SIC. Some
studies have shown that pre-existing cardiac disease, age,
and sex were related to cardiac events after RT.4,8,29

Therefore, it might be better to decide the RT dose and
the irradiation range with consideration of the patient’s
background.

In the present study, the evaluation of dose dependence
was performed based on regions receiving less than 5 Gy.
However, recent studies have shown that even low-dose
irradiation affects the heart. Darby et al reported that the rate
of major coronary events increased by 7.4% for every 1 Gy
increase in mean dose to the heart in patients with breast
cancer inwhich themeandose to thewhole heartwas4.9Gy.5

RTOG 0617 also showed that heart V5 was a significant
prognostic factor for overall survival.30 Thus, thewhole heart
is usually evaluated at the time of RT planning. However, we
consider that it is not valid to simply evaluate the whole heart
because the heart contains various structures, such as the
myocardium, coronary arteries, valves, and pericardium.
Contouring of each structure at the time of RT planning using



Table 2 Analysis of radiation-related and patient-related
factors in patients with and without RT-induced SIC after
treatment

Factor RT-induced
SIC (þ)

RT-induced
SIC (�)

LV V10 Gy (%) 45.6 � 13.6 30.9 � 14.1
LV V20 Gy (%) 39.0 � 12.9 24.9 � 12.9
LV V30 Gy (%) 34.2 � 12.6 20.6 � 11.9
LV V40 Gy (%) 20.1 � 14.4 12.9 � 7.9
LV V50 Gy (%) 3.5 � 4.7 5.3 � 8.3
LV V60 Gy (%) 0.7 � 1.6 2.3 � 4.5
LV mean dose (Gy) 18.6 � 5.5 13.5 � 6.4
Age at RT (r) 63.8 � 4.1 58.5 � 6.9
Sex (n)
Male 5 5
Female 8 1

ECOG performance
status (n)

0 9 6
1 4 0

Hypertension (n)
Yes 4 0
No 9 6

Hyperlipidemia (n)
Yes 3 3
No 10 3

Habit of smoking (n)
Yes 7 5
No 6 1

Body mass index
(kg/m2)

21.0 � 3.4 20.9 � 2.4

eGFR
(mL/min/1.73 m2)

74.9�12.1 83.6�9.7

Coronary artery
calcification (n)

Yes 8 3
No 5 3

Abbreviations: ECOG Z Eastern Cooperative Oncology Group;
eGFR Z estimated glomerular filtration rate; LV V10 Gy Z per-
centage of the volume receiving 10 Gy in the left ventricle; RT Z
radiation therapy; SIC Z signal intensity change.
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CT seems to be difficult because of the small volume of each
structure.We considered that themyocardium ismore clearly
visualized and easier to evaluate than other structures for
detecting dose-dependent myocardial change. Furthermore,
because we evaluated the dose-dependent relationship based
on themethodused in a past SPECT (SinglePhotonEmission
Computed Tomography) study,31 we considered that our
evaluation method was valid. We are currently conducting
clinical trial in patientswith esophageal cancer using intensity
modulated radiation therapy to reduce the dose to the
myocardium (UMIN000038147, https://upload.umin.ac.jp/
cgi-open-bin/ctr_e/ctr_view.cgi?recptnoZR000043481).
We expect that regions of a low dose in the myocardiumwill
increase, andwewill reportwhetherLGE in those regions can
be detected by MRI.
In the present study, the dose to coronary arteries was
also examined. Although the doses of the LAD and LCX
were significantly higher in patients with RT-induced
SIC, regions of LGE corresponding to RT field were
detected in all of the patients with RT-induced SIC.
Therefore, those findings might indicate a direct effect of
RT on the myocardium. The signal intensity changes at
1.5 years after treatment were smaller than those at 6
months after treatment in the present study, although a
temporal decrease of myocardial metabolism was
observed after CRT in our previous study using BMIPP.18

Because a pathologic examination of the myocardium was
not performed in the present study, it is difficult to explain
determine the reason for that phenomenon in the present
study. RT-induced myocardial damage has been reported
to be associated with microvascular injury leading to in-
flammatory and thrombotic changes, capillary loss, focal
ischemia, and interstitial fibrosis several months after
RT.32,33 Based on this process, we suggest that the sub-
acute myocardial inflammatory reaction caused by RT
might be prolonged to 6 months after treatment and might
be diminished at 1.5 years after treatment, leading to
fibrosis due to focal ischemia.

In the present study, there was no significant difference
in cardiac function between patients with and without RT-
induced SIC. A difference in cardiac function might not
be apparent because the doses delivered to the heart were
relatively high in most patients. It has been reported that a
decrease in local wall motion in the RT field was detected
relatively early by echocardiography,34,35 although it was
not performed in the present study. Therefore, there is a
possibility that a decrease in wall motion corresponding to
the LGE region was also observed in this study. We are
therefore going to examine the effects of myocardial
changes using various modalities in ongoing clinical tri-
als. Thus, although there was no difference in the wall
motion of the whole heart in the present study, BNP was
relatively high and pericardial effusion was frequent in
patients with RT-induced SIC. We previously reported
that there was a significant increase of BNP values in
patients with abnormal 18F-fluorodeoxyglucose accumu-
lation in the irradiated myocardium after RT for esopha-
geal cancer.36 Moreover, decreased myocardial
metabolism was detected gradually from the start of RT
even in our previous study using BMIPP.18 Although the
effect of current practice by the results of our study has
been limited at the moment, the effects of RT on the heart
might appear gradually and eventually lead to a cardiac
event. Therefore, we are going to carefully follow-up
those patients.

There were some limitations in the present study.
First, the number of enrolled patients in the present
study was small. However, we think that we have pro-
vided sufficient information to support the results of
previous study. Second, some patients took angiotensin-
converting enzyme inhibitors or angiotensin II receptor

https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000043481
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Table 3 Results of cardiac examinations in patients with and without RT-induced SIC at 6 months and 1.5 years after treatment

Factor 6 mo after treatment (n Z 19) 1.5 y after treatment (n Z 12)

RT-induced SIC (þ) RT-induced SIC (�) RT-induced SIC (þ) RT-induced SIC (�)

LVEF (%) 66.9 � 11.3 53.9 � 11.6 61.9 � 8.2 62.5 � 15.6
CI (L/min/m2) 2.9 � 0.9 3.1 � 0.4 2.7 � 0.8 3.2 � 1.0
BNP (pg/mL) 46.6 � 31.1 27.7 � 17.6 48.1 � 31.4 40.6 � 26.8
ECG change (n)
Yes 0 0 0 0
No 11 4 8 4

Pericardial effusion (n)
Yes 9 2 5 2
No 4 4 3 2

Abbreviations: BNP Z brain natriuretic peptide; CI Z cardiac index; ECG Z electrocardiogram; LVEF Z left ventricle ejection fraction;
RT-induced SIC Z radiation therapy-induced signal intensity change.
Continuous variables are presented as mean values � standard deviation.
Four patients did not undergo ECG at 6 months after treatment.
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blockers, which might have affected the results of our
study because those drugs might attenuate RT-induced
cardiac damage.37 Third, there were some difficulties in
registering MRIs with the RT dose distribution because
of the difference in modalities between MRIs and CT
images at RT planning. Fourth, the regions receiving 50
Gy or more existed mainly at the base of the myocar-
dium, and the base of the myocardium was susceptible
to respiration in the present study. Fifth, there was no
comparison with a nonirradiated control group. We are
planning to conduct a clinical trial to reduce the dose to
the myocardium using IMRT, and we will compare
those results with the results of the present study. Sixth,
there was no histologic validation of the LGE in the
present study. Therefore, LGE in this study may not
necessarily reflect myocardial fibrosis. However, an
invasive procedure with possible significant complica-
tions should be avoided for asymptomatic patients.
Conclusions

A dose-effect relationship for myocardial signal in-
tensity change using LGE MRI was observed, especially
in regions receiving more than 30 Gy. We recommend
careful consideration of high-dose irradiation to the
myocardium.
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