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Simple Summary: A much larger number of small nucleolar RNA (snoRNA) have been found
encoded within our genomes than we ever expected to see. The activities of the snoRNAs were
thought restricted to the nucleolus, where they were first discovered. Now, however, their significant
number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels
to associate with different stages of disease progression, including with metastasis. In addition, rela-
tionships between snoRNA levels and response to immunotherapies, have been reported. Emerging
technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this
is being explored.

Abstract: Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding
RNA, but were largely ignored by cancer investigators due to an assumption that their activities were
confined to the nucleolus. However, as full genome sequences have become available, many new
snoRNA genes have been identified, and multiple studies have shown their functions to be diverse.
The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed
between cancer types, stages and metastases, and they can actively modify disease progression. In
addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling
pathway, and they may have particular significance to immune cell function and anti-tumour immune
responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have
robust potential as drug targets, either solely or in the context of immunotherapies.
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1. Introduction

Small nucleolar RNA (snoRNA) have a fascinating history, dating back to the very first
years of RNA biology. For that same reason, they were largely ignored by cancer researchers
until genome sequencing revealed that many more exist than initially expected. In a recent
assessment, at least 2000 snoRNA were annotated within our human genomes [1].

Early work rightly determined that many snoRNAs function within the nucleolus,
where they were first found, and that they target post-transcriptional modifications into
ribosomal RNAs (rRNA). This in turn, supports the generation of robust ribosome ribonu-
cleoprotein (RNP) complexes. However, their updated number and increased appreciation
for non-coding RNA functionality has led to a reassessment of their activities. Presently,
multiple reports reveal a functional diversity amongst these molecules. It is now clear
that their influence extends well beyond the nucleolus into the wider nucleus and even
cytoplasm. Moreover, it appears that snoRNA are impactful in health and disease, and
not least in cancer biology. Recently, we have seen multiple reports that implicate these
molecules in the establishment, progression and metastasis of cancers. Perhaps more
importantly, we have seen that they are significant regulators in the immune system that
fights against them.

Biology 2021, 10, 809. https://doi.org/10.3390/biology10080809 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-4485-0878
https://doi.org/10.3390/biology10080809
https://doi.org/10.3390/biology10080809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10080809
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10080809?type=check_update&version=2


Biology 2021, 10, 809 2 of 12

2. SnoRNA: Long Known Regulators of Ribosomal RNA Maturation

The name snoRNA was coined in 1982 [2], following foundation studies by a number
of investigators, including the eminent cancer researcher Bob Weinberg [3]. Within the
nucleus, a series of small nuclear RNAs (snRNAs) were identified as being facilitators of
mRNA splicing (U1–U6), and molecules specific to nucleolus (snoRNA) were named (e.g.,
U3, 5.4, B1, B2, 7.1 and 7.2) [2,4]. Strictly speaking, the term snoRNA originally referred
only to those small nucleolus RNAs, but in subsequent years it has evolved to encompass
a small group of related RNA structures that, in many cases, operate in other nuclear
structures and even the cytoplasm. The classic snoRNA’s fall into three major groups: first,
the C/D box snoRNAs (SNORDs) are typically 60 to 90 nt long and contain C/D box motifs
(C: RUGAUGA and D: CUGA). Next, the H/ACA box snoRNAs (SNORAs) range from 120
to 140 nt and include H/ACA box motifs (H: ANANNA and ACA: ACA) [5]. Third, the
small Cajal body-specific RNAs (SCARNAs) are more variable in length and include the
C/D and H/ACA motifs in varying combinations (Figure 1). The SNORDs and SNORAs
typically reside in the nucleolus where they are incorporated into RNPs that modify rRNA,
and the SCARNAs localise to Cajal bodies where they are thought to help modify U1 to
U6 [6]. However, a growing list of variants have emerged, and currently, the snoRNA class
should be considered a spectrum of molecules incorporating these motifs [7] (Figure 1).
For example, Chen et al. recently described long non-coding RNA (lncRNA) species that
use C/D box structures as stabilisation alternatives to 5′caps and polyadenylation [8–10].
Further, a growing series of reports indicate that these molecules are subject to significant
additional processing so that multiple smaller snoRNA-derived RNAs exist (sdRNAs),
sometimes trimmed down to discrete C/D boxes [11] or instead down to sizes similar to
microRNA (miRNA) and piwi-interacting RNA (piRNA) [12,13].

Functionally, the C/D box is essential for SNORD snoRNAs to form a hairpin loop
and interact with the RNP proteins NOP58, NOP56 and SNu13, together with the RNA
methyl transferase fibrillarin (FBL), which then post-transcriptionally methylate rRNA at
sites that complement sequences within the snoRNA [14,15]. Likewise, H/ACA box struc-
tures enable SNORA molecules to form RNPs with NOP10, NHP2, GAR1 and dyskerin
pseudouridine synthase 1 (DKC1), as well as to induce pseudouridation in rRNAs us-
ing complementarity to the snoRNA [16,17] (Figure 1). In the human genome, snoRNA
genes are generally encoded within introns of larger host genes, either specifying proteins
or larger lncRNA, which in some cases appear dedicated to the purpose. Well known
examples include growth arrest-specific transcript 5 (GAS5), ZNFX1 antisense RNA 1
(ZFAS1) and a series of at least 27 genes named small nucleolar RNA host genes 1–32
(SNHG1-32). However, the most exciting aspects of the snoRNA field is that there are
many more snoRNA genes than previously thought, and the list of processes they influence
is expanding. Recent efforts to consolidate records for these (e.g., RefSeq, Ensembl, RNA-
central, Rfam, snOPY) determined that we have at least 461 identifiable unique SNORD
genes, 246 SNORAs and 21 SCARNAs within our genomes. Due to gene duplication, there
is at least 2064 separate snoRNA genes [1,7]. Significantly, there appear to be many more
snoRNA than those required to modify known nuclear targets such as rRNA, and more
than half have no elucidated function, i.e., they are “orphan snoRNA”.
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Figure 1. The snoRNAs are an interrelated family of small non-coding RNA. (A) C/D box  
snoRNAs (SNORDs) typically have two sets of C/D boxes that mediate hairpin structures. (B) 
H/ACA box snoRNAs (SNORAs) have an H box and ACA motifs. (C) Small Cajal body-specific 
RNAs (SCARNAs) have combinations of the two motif sets. Smaller snoRNA derived species in-
clude (D) C/D box-like snoRNAs and (E) snoRNA-derived RNAs (sdRNAs). Black strands: 
snoRNA; green strands: rRNA, spliceosomal snRNA and mRNA. 
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lines of study, including human developmental genetics, chromatin studies and cancer 
biology. The genetic conditions Prader–Willi syndrome (PWS) and Angelman syndrome 
(AS) have long been key topics in human genetics as they result from deletions at the same 
imprinted locus, and differentially manifest according to parent of origin [18]. However, 
it turns out that they are more remarkable still thanks to the involvement of snoRNA. As 
with most conditions caused by genomic deletions, initial attempts to define the critical 
altered region suggested that multiple genes may contribute [18], yet, as further data re-
duced the region for PWS and AS, focus shifted to a snoRNA host gene called SNHG14 
[19]. SNHG14 occupies a sub-locus called SNURF-SNURPN and encodes 47 copies of 
SNORD115, 29 copies of SNORD116 and a number of single copy SNORDs, e.g., SNORDs 
64, 108, 109A and 109B [19]. In establishing which of the SNORDs was responsible, several 
mechanistic studies first pointed to the SNORD115 family [20,21]. Then later, Sahoo et al. 
examined patients with smaller deletions and concluded that loss of SNORD116 copies 
was the critical event [22–24]. Importantly, mouse models were generated to test the ef-
fects of SNORD116 loss. Although the phenotypes were subtle, they recapitulated rele-
vant changes in diet hormones and cognitive defects [25–28], whereas a similar model for 
SNORD115 turned out to be less affected [29]. A later mouse study, specifically targeting 
deletion of SNORD116 to the hypothalamus, produced a more pronounced phenotype, 
including changes in body weight [30]. 

Despite the loss of SNORDs being firmly implicated, the mechanism for how this 
causes PWS and AS remains unclear, particularly since they lack complementarity to 

Figure 1. The snoRNAs are an interrelated family of small non-coding RNA. (A) C/D box snoRNAs
(SNORDs) typically have two sets of C/D boxes that mediate hairpin structures. (B) H/ACA box
snoRNAs (SNORAs) have an H box and ACA motifs. (C) Small Cajal body-specific RNAs (SCARNAs)
have combinations of the two motif sets. Smaller snoRNA derived species include (D) C/D box-like
snoRNAs and (E) snoRNA-derived RNAs (sdRNAs). Black strands: snoRNA; green strands: rRNA,
spliceosomal snRNA and mRNA.

3. The Wider Biological Activities of snoRNA Extend Well beyond the Ribosome

Evidence that snoRNA do more than modify nuclear RNAs comes from multiple lines
of study, including human developmental genetics, chromatin studies and cancer biology.
The genetic conditions Prader–Willi syndrome (PWS) and Angelman syndrome (AS) have
long been key topics in human genetics as they result from deletions at the same imprinted
locus, and differentially manifest according to parent of origin [18]. However, it turns
out that they are more remarkable still thanks to the involvement of snoRNA. As with
most conditions caused by genomic deletions, initial attempts to define the critical altered
region suggested that multiple genes may contribute [18], yet, as further data reduced the
region for PWS and AS, focus shifted to a snoRNA host gene called SNHG14 [19]. SNHG14
occupies a sub-locus called SNURF-SNURPN and encodes 47 copies of SNORD115, 29
copies of SNORD116 and a number of single copy SNORDs, e.g., SNORDs 64, 108, 109A
and 109B [19]. In establishing which of the SNORDs was responsible, several mechanistic
studies first pointed to the SNORD115 family [20,21]. Then later, Sahoo et al. examined
patients with smaller deletions and concluded that loss of SNORD116 copies was the critical
event [22–24]. Importantly, mouse models were generated to test the effects of SNORD116
loss. Although the phenotypes were subtle, they recapitulated relevant changes in diet
hormones and cognitive defects [25–28], whereas a similar model for SNORD115 turned out
to be less affected [29]. A later mouse study, specifically targeting deletion of SNORD116
to the hypothalamus, produced a more pronounced phenotype, including changes in body
weight [30].

Despite the loss of SNORDs being firmly implicated, the mechanism for how this
causes PWS and AS remains unclear, particularly since they lack complementarity to
rRNAs [19]. Early work on SNORD115 suggested that it may alter splicing of mRNA
encoding 5-hydroxytryptamine receptor 2C [29,31]. One of the few molecular studies in the
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SNORD116 knockout mice suggest that they have altered DNA methylation in neuronal
genes during the diurnal cycle [32]. Therefore, the emerging picture for these SNORDs is
that they are involved in functions quite distinct from the nucleolus. Similar findings are
now being reported for orphan snoRNA with relevance to cancers.

Schubert et al. used immunoprecipitation studies to identify specific RNA species that
are physically involved in chromatin compaction using drosophila cells. The molecules
that were detected included many snoRNA [33]. Falaleeva et al. reported that SNORD27
could operate within a novel complex to compete with U1 snRNA RNPs (snRNPs) in
order to alter splicing of mRNA encoding E2F Transcription Factor 7 (E2F7). E2F7 con-
tributes to both head and neck cancers and retinal cancers [34]. Another study found
the expression of SNORD88C was similarly altered mRNA splicing for fibroblast growth
factor receptor 3 (FGFR3) [35], which contributes to the progression of multiple cancer
types [36–38]. Interestingly, this mechanism appeared to involve shorter derived sdRNAs
from SNORD88C, and as it turns out, this may be a common way that snoRNA expand
their influence. Ender et al. analysed small RNAs associated with immunoprecipitated
human AGO1, which forms part of the RISC complex involved in RNA silencing. They
found that although the majority of identified species were miRNAs, a fraction were clearly
derived from snoRNAs [39]. They went on to show that for each snoRNA represented,
SCARNA15 was processed by Dicer and could regulate a reporter gene representing the
3′UTR of cyclin dependent kinase 19 (CDK19) [39]. Moreover, Kawaji et al. performed an
unbiased sequencing of human small RNAs and found multiple classes of 20–40 nt species
that originated from noncoding RNAs, including snoRNA [12]. This was later confirmed
by other studies [13]. More recently, Kalantari et al. demonstrated that RISC complexes
can operate both in the nucleus and cytoplasm, which allow sdRNAs to potentially form
complexes at either site [40]. Taken together, these various studies show that snoRNA may
be engaged in a wide range of molecular mechanisms.

4. Orphan SNORDs May Be Involved in Regulating Methylation of mRNA

Importantly, RNA methylation is now also recognised as a frequent modification
of cytoplasmic mRNAs in addition to nuclear RNA [41]. In addition, several reports
have shown this to be regulatory in nature [42–45] and significant to cancer progres-
sion and metastasis [46–50]. An important type of mRNA methylation is adenosine N6-
methylation (m6A), which is catalysed by the methyltransferase-like proteins 3 and 14
(METTL3/METTL14) [51]. In localisation studies, METTL3 was found in the nucleolus
alongside FBL, where it was demonstrated to co-modify rRNA [52]. Another type of mRNA
methylation is ribose 2′-O-methylation (2′OMe). Elliot et al. used a knockout mouse for
SNORD50A to test whether it altered 2′OMe modification of the mRNA for peroxidasin
(Pxdn). The methylation was altered and it changed mRNA stability and translation [53].
Therefore, snoRNA may potentially contribute to cancer progression by supporting the
methylation of mRNA.

5. SnoRNAs Are Important Markers of Cancer Establishment, Progression
and Metastasis

Early clues that snoRNA contribute to cancer biology came from several sources. The
condition dyskeratosis congenital carries an increased risk of cancers and is caused by
mutations in genes involved with snoRNA nucleolus and Cajal body functions, including
DKC1 that mediates pseudouridation [54]. SNHG5, a snoRNA host gene that harbours
SNORD50, was mapped to the chromosome breakpoint t(3;6)(q27;q15) involved in human
B-cell lymphomas [55]. Later, it was also found to be commonly deleted in prostate
cancers [56]. Liao et al. used GeneChipR Oligo arrays to show SNORA42 act as an
oncogene in non-small cell lung cancers (NSCLC) [57,58]. Similar work showed that
SNORD78 also contributed to this disease [59]. Valleron et al. used a RT-qPCR approach to
analyse a panel of 80 snoRNA in a subclass of T cell lymphomas. Here, they detected a
strong association between SNORD71 and disease outcome [60].
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As genome-wide expression analysis and RNA-Seq technologies have become more
readily available, a number of cancer investigators have used them to assess snoRNA.
Schulten et al. analysed gene expression in breast cancer metastases in the brain using
microarrays and compared them to non-metastatic breast cancers. In addition to 13 pro-
tein coding genes, those differentially expressed included 6 SNORDs, 13 SNORAs and 1
SCARNA, suggesting that the snoRNA supported metastatic progression [61]. Gao et al.
analysed 178 non-small cell lung cancers (NSCLC) using a combination of RNA-Seq and
RT-qPCR. In total, 458 snoRNA were detected and 29 were elevated compared to normal
tissues. In separate training and testing cohorts, they established a prognosis predictor
based on three snoRNA: SNORA47, SNORA68 and SNORA78 [62]. Crea et al. performed
RNA-Seq on xenografts generated with paired primary and metastases from prostate
cancers to identify 21 snoRNA that correlated with metastasis. Here, they highlighted
SNORA55 as a probable driver gene [63]. Then, in a landmark pan-cancer analysis, Gong
et al. employed bioinformatic mining of small RNA data from the Cancer Genome Atlas
(TCGA), representing 31 human cancers. They found approximately 400–500 snoRNA ex-
pressed in each cancer type, all of which were generally elevated in expression compared to
normal tissues. In total, 203 were associated with the clinical stage and 355 had associations
with patient survival, including 229 SNORDs, 108 SNORAs and 18 SCARNAs [64]. Then,
focusing on smaller sdRNA sequences, Chow et al. undertook a similar pan-cancer analysis
of the TCGA data and found that they too have clear relationships with clinical outcomes
across cancers [65]. Previously, Uzunova et al. employed a combination of RNA-Seq
and RT-qPCR in a cohort of 106 prostate cancers. They determined that sdRNAs arising
from SNORD44, SNORD74, SNORD78 and SNORD81 were upregulated, with SNORD78
associating with metastatic disease [66]. Taken together, these various association studies
suggest that snoRNA have significant prognostic value and are well-placed to be contribute
to cancer progression and metastasis.

6. SnoRNA Host Genes May Independently Contribute to Cancer Progression

Concurrently, there has been a strong interest in the snoRNA host genes themselves
and, in short, their expression is generally elevated in cancers and often prognostic [67].
However, it turns out that the snoRNA host gene mRNAs often retain introns and carry
snoRNA sequences into the cytoplasm. Therefore, their true mechanisms of action require
further clarification. GAS5 was cloned in 1988 from a cDNA library to represent growth-
arrested NIH/3T3 mouse fibroblasts [68]. Only later was this recognised as a snoRNA
host gene [69]. Its expression inhibits the growth of the human T lymphocyte CEM-C7
and MOLT-4 cell lines [70] and similar results have been reported for multiple other
cell types [71–75]. ZFAS1, which encodes SNORD12, SNORD12A and SNORD12B, was
also cloned early [76] and identified as being expressed in mouse mammary glands and
breast cancers [77]. The knockdown of the gene promoted proliferation in breast cancer
cells and was silenced in ductal carcinoma in situ (DCIS) [77]. However, subsequent
work has shown ZFAS1 to have differing significance in other cancer types such as liver,
lung, gastric and colorectal cancers, where it may instead promote tumour growth and
metastasis [78–81]. Importantly, multiple studies have suggested that ZFAS1 operates in
part as a decoy or “sponge” for miRNA species [78,80]. This concept has emerged as a
common theme for the snoRNA host genes as a group [67]. However, it is an open question
as to why the expression of snoRNA would be intrinsically linked with the sponging of
miRNA. The expression of SNHG1 has been associated with worse outcomes. For example,
in multiple cancers, it acts as a miRNA sponge and promotes epithelial-mesenchymal
transition (EMT) [82–85]. SNHG3 increased cell progression and sponged miRNAs in
osteosarcoma, colorectal and liver cancers [86–88]. SNHG5 promoted proliferation and
migration and acted as a miRNA sponge in breast cancers, melanomas, leukaemia and
gastric cancers [89–92]. This theme continues with similar findings reported for SNHG6,
SNHG7, SNHG12, SNHG15, SNGG16 and SNHG20 [67,93,94].



Biology 2021, 10, 809 6 of 12

Maternally expressed 8 (MEG8) resides within another imprinted locus DLK1-DIO3,
which is responsible for a muscle phenotype in sheep [95] and at least two different
conditions in humans [96,97]. MEG8 contains 9 copies of SNORD113 and 31 copies of
SNORD114, and thus is comparable to the SNURF-SNURPN locus in nature. Similar to
the other host genes, MEG8 promoted EMT in lung and pancreatic cancer cells [98,99],
and correlated with poor prognosis in liver cancers [100]. Overall therefore, there is a
clear theme that snoRNA host gene expression generally impacts cancer progression and
metastasis, perhaps even more so than the snoRNAs linked to their expression.

7. The Importance of Ribosomes in Cancer Progression and the Role of
mTOR Signalling

When considering how snoRNA may contribute to cancer progression, it is important
not to underestimate their canonical role of rRNA modification. Ribosome function is piv-
otal to cell growth and is upregulated in cancers [101]. The mechanistic target of rapamycin
(mTOR) signalling pathway functions to coordinate growth signals from activated Ras and
other pathways with ribosome control. The pathway is a principal driver of lymphocyte
expansion, and a key oncogenic pathway within cancers [102]. The activation of mTOR
leads to an altered constitution of the ribosome, increasing eukaryotic translation initiation
factor 4E (eIF4E) inclusion [103], as well as the selective translation of 5′-TOP mRNAs.
5′-TOP mRNAs get their name from an oligopyrimidine tract in their 5′UTRs that aids
their recognition by the ribosome. Further, they encode many of the ribosomal proteins
themselves [104,105]. An analysis of snoRNA host genes revealed that these too are usually
5′-TOP mRNAs, so in effect the snoRNAs are controlled by the mTOR pathway [106]. In
line with this, GAS5 expression in T lymphocyte cell lines altered their sensitivity to ra-
pamycin [107]. SNORA24 deleted liver cancer cells injected into mice, resulting in tumours
that synergised with oncogenic RasG12V and altered ribosome activity [108]. Interest-
ingly, in the clinic, the blockade of mTOR has proved particularly valuable for inhibiting
lymphocyte-mediated immune responses (e.g., to prevent organ rejection) and for treating
cancers of the kidney. Both of which, may have relevance to to anti-cancer immunity.

8. The Contribution of snoRNA to Cancer Immunity Has the Potential to Contribute
to Disease Progression

The ability of cancer cells to avoid detection and clearance by the immune system
has recently become a central topic in oncology. Cancer cells upregulate expression of
proteins (on both themselves and cells of immune system e.g. T lymphocytes) that normally
protect non-cancerous cells from cytotoxic immune responses [109]. Antibody-based drugs
targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death
protein 1 (PD-1) and programmed cell death protein-ligand 1 (PD-L1) have proven superior
to existing chemotherapy and radiation approaches for multiple cancer types [109]. In
an analysis of acute myeloid leukaemias (AML) and acute lymphoid leukemias (ALL),
together with a selection of normal white blood cell lineages, Warner et al. found significant
differential expression of snoRNAs, both in the cancers and between the lineages from
which they arose. Surprisingly, in addition to 30 SNORDs, 29 SNORAs and 4 SCARNAs
from various genomic locations, the detected signatures were dominated by snoRNAs
encoded in the SNURF-SNURPN and DLK1-DIO3 loci. Therefore, dysregulation of these
imprinted sites appears to be a major feature of blood cancers and these data reiterate that
snoRNA are important regulators of lymphocyte activity [110]. Of relevance, Zhong et al.
reported that sdRNA derived from SNORD63 may control mRNA stability for lymphocyte
regulator interleukin-4 (IL-4) [111]. In the pan-cancer sdRNA analysis conducted by Chow,
clear associations were detected with PD-L1 expression for multiple cancer types and
particularly for cancers of the kidney [65]. Finally, Motzer et al. recently defined molecular
subtypes for kidney cancers (using all genes) and included measures of their response
to anti-PD-L1 therapy. The 823 included cancers were grouped into seven subsets by
non-hierarchal clustering. One of these was defined by marked snoRNA expression; this
group was by far the most responsive to anti-PD-L1 [112]. Taken together, these findings
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suggest that snoRNA expression is of high relevance to lymphocyte function and the
immune response against cancers, as well as the oncogenic mechanisms that promote their
progression to metastatic disease (Figure 2).
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cells and T lymphocytes acting against them. SnoRNA facilitate the production of ribosomes and
protein translation. SNHGs produce snoRNA and sponge miRNA in the cytoplasm. SnoRNA derived
species may alter splicing and function of mRNAs. In some cases, snoRNA correlate with response
to therapeutic targeting of the immune checkpoint proteins.

9. SnoRNA Present Novel Therapeutic Opportunities to Combat Cancer Progression
and Metastasis

Finally, given the emerging data that snoRNA are modifiers of cancer progression and
metastasis, can they be therapeutically targeted? Several new technologies now provide
significant hope [113]. Adenovirus-mediated delivery of SNORD44 from the growth
inhibitory GAS5 gene inhibited CRC growth and synergised with rapamycin treatment in
CRC cell line xenografts [114]. Antisense oligonucleotide (ASO)-mediated downregulation
of SNORA23 reduced tumour growth, dissemination and liver metastasis in pancreatic
ductal adenocarcinoma xenografts [115]. Therefore, snoRNA may have value both as drug
targets in cancers or as therapeutics themselves.

10. Conclusions

Although snoRNA cancer research had a slow start, revelations from genome and
transcriptome sequencing has now firmly illuminated their relevance to cancer biology. The
extraordinarily large number of snoRNAs expressed in our cells, as well as the mounting
evidence that they can alter cancer progression and patient survival, suggests that they
have solid potential for therapeutic manipulation. Their control by mTOR and importance
to ribosome function is a key aspect of their contribution, but their unknown functions are
likely to be important also. Moreover, their specific contribution to lymphocyte function
means that they may have relevance to a patient’s immunotherapy response. Emerging
technologies that allow for their therapeutic manipulation makes them an important
consideration for combating cancer progression and metastasis.
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