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Abstract
Evidence accumulation models like the diffusion model are increasingly used by researchers to identify the contributions of
sensory and decisional factors to the speed and accuracy of decision-making. Drift rates, decision criteria, and nondecision
times estimated from such models provide meaningful estimates of the quality of evidence in the stimulus, the bias and
caution in the decision process, and the duration of nondecision processes. Recently, Dutilh et al. (Psychonomic Bulletin &
Review 26, 1051–1069, 2019) carried out a large-scale, blinded validation study of decision models using the random dot
motion (RDM) task. They found that the parameters of the diffusion model were generally well recovered, but there was a
pervasive failure of selective influence, such that manipulations of evidence quality, decision bias, and caution also affected
estimated nondecision times. This failure casts doubt on the psychometric validity of such estimates. Here we argue that
the RDM task has unusual perceptual characteristics that may be better described by a model in which drift and diffusion
rates increase over time rather than turn on abruptly. We reanalyze the Dutilh et al. data using models with abrupt and
continuous-onset drift and diffusion rates and find that the continuous-onset model provides a better overall fit and more
meaningful parameter estimates, which accord with the known psychophysical properties of the RDM task. We argue that
further selective influence studies that fail to take into account the visual properties of the evidence entering the decision
process are likely to be unproductive.
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The ability to make fast and accurate decisions about stimuli
in the environment is the hallmark of all cognitive sys-
tems. In humans and nonhuman animals alike, evidence
accumulation models like the diffusion model (Ratcliff,
1978; Ratcliff & McKoon, 2008) have provided insights
into the processes that determine the speed and accuracy of
decision-making (Smith & Ratcliff, 2004). The attraction of
such models, for both basic and applied researchers, is that
their parameters have meaningful psychological interpreta-
tions. When estimated from data, the model parameters can
help researchers understand which processes are affected by
experimental manipulations and, in individual differences
settings, the parameters can be interpreted psychometrically
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to help understand why one participant population differs
from another (Ratcliff et al., 2015). The availability of third-
party software packages for fitting the diffusion model to
data, such as fast-dm (Voss & Voss, 2007), HDDM (Wiecki
et al., 2013), and DMAT (Vandekerckhove & Tuerlinckx,
2008) has made the diffusion model easier to fit to data than
was formerly the case and has increased its attraction for
both basic and applied researchers as a result.

In response to the increased use of the diffusion model
in a progressively wider range of settings, an increasing
amount of attention has been paid to the validity of
its estimated parameters. This has led to a literature of
selective influence studies. Historically, the term “selective
influence” dates from Sternberg’s (1969) additive-factors
study of stage models, where it referred to the assumption
that an experimental manipulation should affect only one
of a hypothesized sequence of processing stages. In recent
model-based studies it has instead been used to express
the requirement that an experimental manipulation should
affect the model parameter it is theoretically predicted to
affect and no other (Jones & Dzhafarov, 2014). Selective
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influence can be characterized in a wholly abstract way,
as conditional independence among members of a set of
random variables, given the values of experimental factors
that affect the members of the set (Dzhafarov, 2003), but we
use the term here in Jones and Dzhafarov’s more informal,
model-based sense.

In the diffusion model, there are four parameters
that lead to clear selective influence predictions. These
are the drift rate, ν, the boundary separation, a, the
starting point for evidence accumulation, z, and the
nondecision time, Ter. The drift rate characterizes the
quality of the information in the stimulus; the boundary
separation characterizes the amount of evidence needed for
a response; the starting point characterizes the response
bias, and the nondecision time characterizes the time for
other, nondecision (“encoding and response”) processes.
Experimentally, we would expect drift rate to be affected
by stimulus discriminability, boundary separation to be
affected by speed-accuracy instructions, starting point
to be affected by prior probabilities and payoffs, and
nondecision time to be affected by any manipulation
that changes overall processing time without changing
either the quality of the evidence in the stimulus or
the amount of evidence needed for a response. Shwartz
et al. (1977) used the additive-factors method to show
that stimulus luminance affects stimulus encoding and
stimulus-response compatibility affects response selection
in two-choice response time (RT). In the diffusion model,
the times for stimulus encoding, response selection, and
response execution together comprise the nondecision
time.

Selective influence studies have produced mixed results.
While many studies have imposed a priori selective
influence constraints and obtained excellent fits to data,
there is a body of anomalous findings from studies
that have not constrained the model parameters but have
allowed them to vary freely. For example, manipulations
of speed-accuracy settings have been found to affect both
nondecision times (Arnold et al., 2015; de Hollander et al.,
2016; Donkin et al., 2011; Huang et al., 2015) and drift
rate variability (Heathcote & Love, 2012). Fontanesi et al.
(2019) reported that nondecision times in a value-based
decision task were affected by decision frames and prior
information. The most challenging of these findings is that
speed-emphasis instructions can lead to decreased estimates
of drift rates (Donkin et al., 2011; Heathcote & Love,
2012; Ho et al., 2012; Rae et al., 2014; Starns et al.,
2012; Vandekerckhove et al., 2008). That is, reducing the
amount of evidence needed for a response seems to decrease
the quality of the evidence extracted from the stimulus.
Although it is possible to rationalize these violations of
selective influence, they have no natural interpretation
within the semantics of the model.

The blinded validity study
of Dutilh et al. (2019)

In response to these validity concerns, Dutilh et al. (2019)
recently reported a large-scale, blinded parameter recovery
study, involving 17 teams of researchers, each of whom tried
to infer the manipulation(s) responsible for the experimental
effect in 14 two-condition sets of RT and accuracy data. The
decision task was the random dot motion (RDM) task, in
which the decision maker attempts to identify the direction
of coherent motion in random dot kinematograms. The
RDM task was originally developed as a pure motion task,
in which a global motion signal must be extracted from the
ensemble statistics of an array of local motion vectors in
the absence of systematic displacement cues from which
direction of motion can be inferred (Baker & Braddick,
1982; Newsome & Paré, 1988; van de Grind et al., 1983). It
was repurposed to study decision making, initially in awake,
behaving monkeys (Shadlen & Newsome, 2001) and later in
humans (Palmer, Huk, & Shadlen, 2005).

Dutilh et al. (2019) studied performance in the RDM task
in a 2× 3× 2 (Speed-Accuracy × Bias × Discriminability)
experimental design. Speed-accuracy settings were manip-
ulated by instructions; bias was manipulated by the relative
frequencies of the two stimuli within an experimental block,
and discriminability was manipulated by varying the coher-
ence of the motion. (Dutilh et al. termed the speed-accuracy
factor “caution” and the discriminability factor “ease.”)
From this design, they created 14 different two-condition
data sets in which zero, one, two, or three experimental vari-
ables differed between the two conditions. The challenge for
the participating researchers was to infer which variable or
variables differed between conditions on the basis of the RT
and accuracy data alone.

The 17 teams used a diverse range of models and
methods. They used several variants of the diffusion model,
ranging from the simple (Wagenmakers et al., 2007)
to the complex (Ratcliff & McKoon, 2008), the linear
ballistic accumulator (LBA; Brown & Heathcote, 2008),
and informal “chi by eye” inference from the qualitative
changes in the RT distributions and accuracy statistics.
They used a variety of fitting methods, both classical
and Bayesian, hierarchical and nonhierarchical, to fit the
models to data. Although there were common method
variance effects, in which teams that used similar methods
and models tended to obtain similar results (Dutilh et al.,
2019, Figure 2), the similarities greatly outweighed the
differences. Overall, the diffusion model performed slightly
better than the LBA, but both models were generally
successful in correctly identifying the manipulated variables
in each of the 14 data sets, consistent with previous reports
that the diffusion model and the LBA often make very
similar predictions (Donkin et al., 2011).
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The most striking and puzzling result was the high pro-
portion of false alarms (misidentified effects) involving
nondecision times. None of the three experimental variables
manipulated in the study were intended to affect nondeci-
sion time, but an appreciable number of the researchers, as
well as correctly identifying the variable that had changed,
incorrectly inferred that nondecision time had also changed
(Dutilh et al., 2019, Figure 3). The authors commented that
the majority of these false alarms came from the diffusion
model. For the full diffusion model, the overall accuracy
of parameter recovery was 73%, but this went up, in the
best case (Starns, minimum Chi-square, individual partici-
pant fits), to 93% once false alarms involving nondecision
time were discounted. These findings replicate those of
de Hollander et al. (2016) and Huang et al. (2015) who also
found that estimates of nondecision time in the diffusion
model were affected by speed-accuracy instructions in the
RDM task. In addition to the false alarms involving nonde-
cision times, there was also a tendency for both diffusion
and LBA models to incorrectly misattribute manipulations
of caution (speed vs. accuracy instructions) to a combina-
tion of caution and stimulus discriminability, echoing the
findings of earlier studies.

How are we to interpret these failures of selective
influence? The glass-half-full interpretation is that the
models correctly identified the variables associated with
the differences between conditions in many cases—
although this positive result is qualified by the good
performance of the “chi by eye” teams who often correctly
identified the manipulation without recourse to any kind of
model-based inference. The glass-half-empty interpretation
is that selective influence, in the strictest sense, was
comprehensively violated. One can attempt to retrieve the
situation, as the authors did, by arguing that the true
state of nature is that manipulations of speed-accuracy
settings do indeed affect nondecision times. It is certainly
plausible that people attempting to go fast maintain an
elevated level of tonic activity in their effector muscles to
facilitate recruitment of motor units and this may appear
as a nondecision time effect in model fits. In support of
this view, Dutilh et al. cited an electrophysiological study
by Rinkenauer et al. (2004) using lateralized readiness
potentials that suggested that speed-accuracy settings affect
nondecision times. However, this explanation does not
account for the finding of Dutilh et al. and earlier studies
that manipulations of speed-accuracy affect both boundaries
and drift rates.

In this article, we present evidence for a different point
of view. We argue that the RDM task has unusually
long temporal integration characteristics that may not be
well captured by models in which the onset of evidence
accumulation is abrupt. Both the diffusion model and the
LBA model assume that evidence accumulation begins

abruptly after a random onset time. In the diffusion model,
there are two parameters, the drift rate and the diffusion
rate (the so-called “diffusion coefficient”), that jointly
control evidence accumulation. The former controls the
rate of evidence accumulation; the latter controls how
noisy it is. Mathematically, the drift rate and the diffusion
coefficient are modeled as random step functions: At
some random time, typically, on average, between 300
and 600 ms after stimulus onset (Matzke & Wagenmakers,
2009, Figure A1), drift and diffusion rates go from zero
to constant, nonzero values, ν, and s2, respectively.1 If
stimulus encoding really is rapid relative to the time scale
of the decision process, then the abrupt-onset assumption
should be able to capture its dynamics fairly well—
particularly if the onset time is allowed to vary randomly
across trials. Estimates of this variability can range from
0 ms to more than 350 ms, with a mode of around 150-
250 ms (Matzke & Wagenmakers, 2009, Figure A1). If,
on the other hand, encoding is extended in time, so that
the instantaneous evidence entering the decision process
increases progressively over several hundred milliseconds,
then the abrupt-onset assumption may have difficulty in
capturing its dynamics. Our hypothesis is that this difficulty
will manifest itself as a failure of selective influence,
particularly with regard to drift rates and nondecision times.
Dutilh et al. offered no strong reasons for choosing the
RDM task other than to note “it is a popular task, and
we hope our results can be reasonably generalized to other
simple decision-making tasks” (Dutilh et al., 2019, p. 1056).
Our study was motivated by our reservations about this latter
claim.

The psychophysics of visual temporal
sensitivity

There are multiple stages of integration that may intervene
between the presentation of a stimulus and the production
of a response. Minimally, the process of forming a
perceptual representation of a stimulus involves one stage of
integration and the process of accumulating noisy samples
of that representation to make a decision involves another.
These two stages may operate sequentially in a strict,
stage-dependent way, as envisaged in the additive-factors
model of Sternberg (1969), or they may overlap in time, as
envisaged in the cascade model of McClelland (1979). The
classical literature on visual temporal sensitivity developed
methods to study perceptual integration experimentally
and to model it mathematically (Watson, 1986). The

1Because Ter comprises both predecisional and postdecisional times,
the range 300 to 600 ms in Fig. 1A of Matzke and Wagenmakers
(2009) should be viewed as an upper bound on the onset of evidence
accumulation rather than the onset time itself.
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most direct way to characterize perceptual integration is
via threshold-versus-duration (TvD) functions, which plot
discrimination “thresholds” (the level of stimulus intensity
or discriminability needed to produce a criterion level of
accuracy), as a function of stimulus duration, which is
systematically varied.

The most basic expression of temporal integration in the
early visual system is Bloch’s law (Bloch, 1885; Gorea,
2015), which says that for short stimulus durations, up to a
critical duration, dc, the visual system functions as a perfect
temporal integrator. More formally, if I denotes stimulus
intensity and d denotes duration, Bloch’s law states that
Id = c (constant) for d ≤ dc. For many stimuli, dc

is of the order of 80-100 ms. Figure 1 reproduces some
classic data from Barlow (1958) on detecting small and
large luminous disks on uniform backgrounds of varying
intensities. The data are plotted in log-log coordinates, so
Bloch’s law appears as a straight line with slope of -1, as
shown in the figure. For our purposes, the most important
feature of these data is that in most conditions there is a

Fig. 1 Threshold-versus-duration functions for detecting small
(0.118◦) and large (5.9◦) luminous disks. The individual functions in
each figure are for decreasing levels of background luminance (top to
bottom). The straight lines in each figure have slopes of -1 (Bloch’s
law) and extend to an exposure duration of 100 ms. Redrawn from
Barlow (1958). “Temporal and spatial summation in human vision
at different background intensities,” Journal of Physiology, 141, pp.
337–350. Reprinted from The Australian Journal of Psychology, 50,
P. L. Smith, “Bloch’s law predictions from diffusion process mod-
els of detection,” 139–147, 1998, Fig. 1. Copyright the Australian
Psychological Society

fairly clear transition from the Bloch’s law regime, in which
thresholds decrease linearly, to longer durations, in which
thresholds decrease more slowly, or do not decrease at all.
Similar results for detecting sinusoidal grating stimuli were
reported by Breitmeyer and Ganz (1977) (see also Gorea
& Tyler, 1986, Figure 1). Less important for us, although
fundamental to theories of visual temporal sensitivity, is
the differential breakdown of Bloch’s law at long durations
for large and small stimuli. For large disks, thresholds
show no further reduction beyond the Bloch’s law regime;
for small disks, they continue to decrease but at a slower
rate. The reduction in this part of the function can often
be described by a straight line with slope −1/2, which
represents a square-root law. The square-root law regime
has been interpreted as indicating statistical integration
of stimulus information by a decision process, as distinct
from neural integration by the perceptual system in the
Bloch’s law regime (Watson, 1979). Smith (1998, Figure 4)
showed that the contrasting patterns of threshold reduction
in Fig. 1 can be well described by the diffusion model
of Smith (1995) in which an Ornstein-Uhlenbeck diffusion
decision process is driven by linear filters, which represent
the outputs of sustained and transient perceptual channels
(Breitmeyer, 1984).

Figure 2 shows the results of a temporal integration study
of the random dot motion task by Watamaniuk and Sekuler
(1992). Three observers performed the task at two different
levels of motion coherence, which was manipulated by
varying the standard deviation of the dot motion. The data
were fit with a bilinear function whose knee identifies the
critical duration for temporal integration. Two features of
Fig. 2 are striking. First, the period of temporal integration
is much longer than in Fig. 1. Unlike Fig. 1, in which the
critical durations are 100 ms or less, the critical durations
in Fig. 2, which are fairly similar for the three observers,
have a mean of around 450ms. Second, the critical durations
are very similar for high and low coherence stimuli. In
Fig. 1, there is a natural identification of the two limbs of
the TvD function with the perceptual and decision-making
components of processing in an evidence-accumulation
model. If this identification is correct, then it implies that the
processes that give rise to drift rates for detecting spots of
light can be completed in under 100 ms. However, it is much
more difficult to know how to identify the components of
the model with the curves in Fig. 2.

Watamaniuk (1993) showed that the reduction in
thresholds over the first 400 ms in the RDM task
follows a square-root law—but how this reduction should
be interpreted is not clear. One interpretation is that it
represents evidence accumulation by a decision process
(Palmer et al., 2005). But if so, then it seems to imply that
drift rates can be computed virtually instantaneously, with
no initial Bloch’s law regime during which a perceptual
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Fig. 2 Threshold-versus-duration functions for discriminating direc-
tion of motion in random dot kinematograms. Thresholds were mea-
sured using an adaptive staircase procedure that identified the level of
motion coherence needed to produce 84% discrimination accuracy for
a given exposure duration. The circles and squares are the measured
thresholds for high (SD = 4.3◦) and low (SD = 25.5◦) coherence
stimuli, respectively. The data were fit with bilinear functions to iden-
tify the limits of temporal integration. The end points of the periods of

temporal integration for the two levels of motion coherence are marked
by arrows projecting from the knee of the function to the time axis.
The figures in parentheses are the means and standard errors of the
estimated temporal integration time. Reprinted from Vision Research,
32, S. N. J. Watamaniuk & R. Sekuler, “Temporal and spatial integra-
tion in dynamic random dot stimuli,” 2341–2347, 1992, Fig. 2, with
permission from Elsevier

representation is formed before the onset of the decision
process. The other interpretation is that the decreasing
limb of the function represents the perceptual processes
that give rise to drift rates. If drift rates depend on the
ensemble statistics of local motion vectors via some kind of
averaging process, then it is plausible that they will increase
more slowly with duration than do similar computations for
spots of light and grating patches. Under this interpretation,
the 400-450 ms critical duration represents the temporal
integration limit of the global motion system, beyond the
critical duration, the quality of the perceptual representation
of motion will show no further improvement. The strongest
argument for identifying the 400-450 ms period of threshold
reduction in Fig. 2 with perceptual rather than decisional
integration is that it is strikingly stable across observers
and coherence conditions. This kind of invariance is what
we might expect from a hard-wired, perceptual integration
process, whereas if it were decisional, and hence subject to
strategic control, then we might expect it be more variable,
both across individuals and across conditions.

The interpretation of Fig. 2 is made more difficult by
the fact that not all studies have shown such clear evidence
of a constant critical duration as that of Watamaniuk and
Sekuler (1992). Watamaniuk et al. (1989) and Williams
and Sekuler (1984) obtained similar estimates to theirs,
but Burr and Santoro (2001) obtained estimates of around
1000 ms. Gold and Shadlen (2003) reported a square-root
law reduction in thresholds out to 750 ms, although their

data show a systematic reduction in the rate of threshold
change at long exposures that does not appear well fit
by the straight line they used to characterize it (their
Figure 6C). Robertson et al. (2012) compared normal and
autistic participants in the RDM task and found a 400 ms
critical duration in normals but no evidence of a critical
duration in autistic participants. Some of the differences in
the reported critical durations may be due to differences
in the way stimuli were constructed and displayed.
Scase et al. (1996) noted that different laboratories have
used a variety of different methods for constructing RDM
stimuli, which result in stimuli with different statistical
characteristics. They found relatively small differences
in the coherence thresholds measured using different
methods, but they did not investigate whether there
were any differences in the associated critical durations.
These differences highlight the difficulty in unambiguously
distinguishing the effects of stimulus duration on perceptual
integration from its effects on decision-making.

One further piece of evidence that seems to support
the idea of a critical duration of around 400 ms in the
RDM task was provided by Holmes et al. (2016), who
carried out a study in which the direction of motion changed
unpredictably on some trials. They fit their data with a
piecewise LBA model in which the drift rates had one value
before a change and another after it. The best-fitting model
was one in which the drift rates changed around 400 ms after
the stimulus change. This is consistent with the idea that
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drift rates are the output of a perceptual integration process
with an integration time of around 400 ms.

Amodel with time-varying drift
and diffusion rates

In this article, we refit the full data set from the
Dutilh et al. (2019) study with several versions of the
standard diffusion model, in which drift and diffusion rates
are modeled as random step functions. We compare them to
a model based on the integrated system model of Smith and
Ratcliff (2009), in which drift and diffusion rates increase
progressively over time. Smith et al. (2014) showed that
a version of this latter model provided a good account
of performance in a related task, that of detecting pairs
of stimuli (letters, bars, and grating patches) embedded in
dynamic noise (Ratcliff & Smith, 2010). Like the RDM
task, the dynamic noise task involves an extended period of
perceptual integration, in which stimuli appear to emerge
progressively from the noise. The RT distributions and
choice probabilities (accuracy) from this task cannot be fit
by the standard diffusion model unless nondecision times
are allowed to vary with noise level (Ratcliff & Smith,
2010), but they are well fit by a model with constant
nondecision times and drift and diffusion rates that increase
over time. The success of the model in accounting for
performance in the dynamic noise task suggests it may be
a plausible model for the RDM task—although the tasks
are different in important ways. The dynamic noise task
requires identification of static form embedded in noise
whereas the RDM task requires extraction of a global
motion signal from noise in the absence of form.

In addition to the processes of perceptual integration
and evidence accumulation discussed above, the integrated
system model includes several component submodels.
There is a further stage of integration that characterizes the
formation of a visual short-term memory trace, a spatial
attention stage that gates the evidence accumulation by
the decision process, and a model of the time course of
visual masking. The submodels are all governed by smooth
temporal dynamics and sequentially arranged processes
(perception, memory, and decision-making) operate in
cascade. The submodels allow the model to account for
a variety of attention, memory, and masking findings and
the interactions among them (Gould et al., 2007; Ratcliff
& Rouder, 2000; Sewell & Smith, 2012; Smith et al.,
2014; Smith et al., 2010; Smith et al., 2004). However,
the design of the Dutilh et al. (2019) experiment, which
used centrally presented, response-terminated stimuli, is not
suitable for fitting the full integrated system model. Instead,

we considered a restricted form of the model that abstracts
out its essential properties, namely, that drift and diffusion
rates increase smoothly and progressively over time to an
asymptote. Our motivation for considering the restricted
model was to test the hypothesis that drift and diffusion rates
vary over time using the fewest possible parameters.

The models we consider here assume that evidence
accumulation in the decision process is governed by
some version of the time-dependent stochastic differential
equation2

dXt = μ(t) dt + σ(t) dWt . (1)

In this equation, dXt is the random change in evidence
in the decision process during a small interval of duration
dt , μ(t) is the drift rate, σ(t) is the infinitesimal standard
deviation, and dWt is the random change in a standard
Wiener, or Brownian motion, diffusion process during the
interval dt . As in the standard model, the drift rate controls
the rate at which evidence accumulates and the infinitesimal
standard deviation controls its noisiness, but here they are
both modeled as time-dependent functions. The square of
the infinitesimal standard deviation, σ 2(t), is the diffusion
coefficient. Diffusion processes like the one in Eq. 1, in
which drift rates and/or diffusion rates change over time are
referred to as time-inhomogeneous processes. This contrasts
with the standard diffusion model, in which the drift and
diffusion rates are constant within a trial: Such processes are
termed time-homogeneous. (TheWiener diffusion process is
also spatially homogeneous. This means it can be translated
in evidence space, simply by relabeling the boundaries and
starting point, without changing any of its properties.)

A model with well-behaved properties can be obtained if
μ(t) and σ 2(t) both grow in proportion to a common time
base, θ(t), where the latter is some smooth function of time,
so that

dXt = μθ(t) dt + σ
√

θ(t) dWt . (2)

Smith et al. (2014) called this model a time-changed
diffusion because it can be obtained from the standard
model by a change in its time scale.

2Readers who are unfamiliar with stochastic differential equations,
including the reason for writing them in differential form rather in
the more familiar form involving derivatives and the reason why their
behavior does not follow the normal rules of calculus, may find a
tutorial introduction aimed at the study of decision processes in Smith
(2000).
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It is of interest to consider a slightly more general model
than this, in which there are two sources of diffusion noise,
one which is dependent on the stimulus and another that
is independent of it. In this generalized form of the model,
evidence accumulation is governed by the equation,

dXt = μθ(t) dt + σ1
√

θ(t) dW
(1)
t + σ2 dW

(2)
t , (3)

where W
(1)
t and W

(2)
t are independent Brownian motions.

By the additive property of Brownian motion, this model
can equivalently be viewed as a process with a single
coactive source of noise, Wt , with infinitesimal standard

deviation σ(t) =
√

σ 2
1 θ(t) + σ 2

2 , after a suitable rescaling

of coefficients.3 The evidence accumulation equation can
therefore be written more simply as

dXt = μθ(t) dt +
√

σ 2
1 θ(t) + σ 2

2 dWt . (4)

Following the scaling assumptions commonly made in the
literature, we set σ1 = 0.1 and estimate σ2 from data.
We refer to the function θ(t) as the evidence growth
function. This terminology refers to the evidence entering
the decision process, not to the accumulating evidence
represented by the process Xt . The latter grows regardless
of whether drift and diffusion rates are constant or time-
varying.

Our reason for considering the more general model of
Eq. 4 is that it provides a plausible, alternative way to
predict fast errors. In the standard model, fast errors are
predicted by variability in the starting point for evidence
accumulation, z. In the model of Eq. 4, if the function
θ(t) grows smoothly from zero at t = 0, then evidence
accumulation early in a trial, when the drift rate is near-
zero, will be dominated by the constant noise term, which
will make early crossings of the wrong boundary more
likely, leading to fast errors. Smith and Ratcliff (2009)
showed that such a combination of constant and time-
varying noise allowed the integrated system model to
predict the fast errors in a data set reported by Gould
et al. (2007) in which low contrast grating patches were
presented on a uniform field. Smith et al. (2014) showed
the same mechanism allowed the model to predict the fast
errors in the dynamic noise task reported by Ratcliff and

3The sum of two independent standard Brownian motions, each with
unit variance, is a Brownian motion with variance 2. If σ ′

1

√
θ(t) and

σ ′
2 are the infinitesimal standard deviations of the individual processes

in Eq. 3, then the coefficients of the coactive process in Eq. 4 will be
σ1

√
θ(t) = σ ′

1

√
θ(t)/

√
2 and σ2 = σ ′

2/
√
2. In the text we use the

same notation for the coefficients of both forms of the process, without
using primes to distinguish them.

Smith (2010). The second source of diffusion noise can be
thought of as characterizing a tendency for the decision-
maker to sample noise from the display in the absence
of stimulus information, as originally proposed by Laming
(1968). Following him, we refer to this source of noise as
“premature sampling noise.”

As in the standard model, the predictions of the time-
varying model are obtained from the first-passage time
distributions of the evidence accumulation process through
the decision boundaries. When the drift and diffusion rates
are constant, these predictions can be obtained from an
infinite series representation (Cox & Miller, 1965; Ratcliff,
1978; Smith, 1990), but such representations do not exist
for processes with arbitrary time-varying drift and diffusion
rates. Instead, predictions can be obtained from integral-
equation representations that can be discretized and solved
recursively. The integral equation method was first proposed
by Durbin (1971) and later developed to study the properties
of integrate-and-fire neurons by Ricciardi and colleagues
(Buonocore, Nobile, & Ricciardi, 1987; Buonocore, Giorno,
Nobile, & Ricciardi, 1990). A pioneering study by Heath
(1992) used Durbin’s method to study the cascade model
of McClelland (1979). A detailed account of these methods
can be found in Smith (2000).

The quantities of interest for predicting RT distributions
and accuracy are the joint first-passage time densities for the
process through the upper and lower boundaries, which we
denote gA(a1, t | z, 0) and gB(a2, t | z, 0), respectively. The
conditional notation expresses the idea that these functions
are first-passage time densities for a process Xt starting at
z at time 0, X0 = z, which makes a first boundary crossing
at either a1 or a2 at time t . For a Wiener diffusion process
starting at z at time zero, with decision boundaries a1 and
a2, such that a2 < z < a1, the first-passage time densities
for responses at the upper and lower boundaries have the
integral equation representations

gA(a1, t | z, 0) = −2�(a1, t | z, 0)

+2
∫ t

0
gA(a1, τ | z, 0)�(a1, t | a1, τ ) dτ

+2
∫ t

0
gB(a2, τ | z, 0)�(a1, t | a2, τ ) dτ (5)

gB(a2, t | z, 0) = 2�(a2, t | z, 0)

−2
∫ t

0
gA(a1, τ | z, 0)�(a2, t | a1, τ ) dτ

−2
∫ t

0
gB(a2, τ | z, 0)�(a2, t | a2, τ ) dτ . (6)

The first-passage time densities in Eqs. 5 and 6 are
defined as the integrals of the products of their values at
times τ < t and of a kernel function �(ai, t | aj , τ ),

888 Psychon Bull Rev  (2020) 27:882–910



i, j = 1, 2, which depends on the boundaries a1 and a2 and
on the transition density of a time-varying Wiener process

that satisfies Eq. 4. In Appendix A it is shown that the kernel
function for Eq. 4 has the form

�(ai, t | aj , τ ) = 1
√
2π [σ 2

1

∫ t

τ
θ(s) ds + σ 2

2 (t − τ)]
exp

⎧
⎪⎨

⎪⎩
−

[
ai − aj − μ

∫ t

τ
θ(s) ds

]2

2[σ 2
1

∫ t

τ
θ(s) ds + σ 2

2 (t − τ)]

⎫
⎪⎬

⎪⎭

×1

2

{

−μθ(t) − ai − aj − μ
∫ t

τ
θ(s) ds

[σ 2
1

∫ t

τ
θ(s) ds + σ 2

2 (t − τ)] [σ
2
1 θ(t) + σ 2

2 ]
}

. (7)

The kernel function �(ai, t | aj , τ ) goes to zero as τ → t ,
which is a requirement for the representations of the first-
passage time densities in Eqs. 5 and 6 to be numerically
stable (Buonocore et al., 1987).

Equation 7 may be compared to the kernel functions for
a Wiener diffusion process with time-varying drift rate and
constant diffusion rate given by Smith (2000; Equation 57)
and for a process with time-varying drift and diffusion rates
given by Smith et al. (2014; Equations B8 and B9). The
kernel in Eq. 7 is more complex than in either of those
applications because of the presence of two diffusion terms
in Eq. 4, one of which is time-varying and one of which
is not. In applications, the solutions in Eqs. 5 and 6 are
evaluated numerically by defining the process on a discrete
time mesh, ti = i�, i = 0, 1, 2, . . ., and approximating
the integrals with discrete sums. The discretized forms of
the equations can be found in several places including
Smith (2000; Equations 47a and 47b) and Voskuilen, Smith,
and Ratcliff (2016; Appendix B), and are reproduced in
Appendix A here.

The integral equation method is sufficiently general and
flexible that it can also be used to obtain predictions
for models with time-varying boundaries, a1(t) and a2(t).
Voskuilen et al. (2016, Appendix B) give the kernel function
for a Wiener process with fixed drift and diffusion rates
and time-varying boundaries. This representation provides
an explicit mathematical method for studying the so-called
“collapsing boundary problem” (Hawkins et al., 2015), as
we discuss subsequently.

In the integrated system model of Smith and Ratcliff
(2009), the function we denote here as θ(t), which controls
the growth of the drift and diffusion rates, depends on
the output of perceptual and visual short-term memory
processes acting in cascade. The dynamics of the cascade
depend on three different rate constants that control the
rate of perceptual processing by early visual filters, the
decay of the perceptual representation after stimulus offset
or its suppression by masks, and the rate of visual short-
term memory formation. The model has similar temporal
dynamics to those in the visual short-term memory model
of Loftus and colleagues (Busey & Loftus, 1994; Loftus

& Ruthruff, 1994), but, unlike their model, the strength of
the visual short-term memory trace determines the drift and
diffusion rates of a diffusion process. Here, instead of fitting
the full model, we assumed that the growth-rate function
θ(t) had the form of an n-stage cumulative gamma function,
with rate parameter β of the form

θ(t) = 1 −
n−1∑

i=0

(βt)i

i! e−βt . (8)

When viewed as a deterministic function rather than as
a probability distribution, the cumulative gamma describes
the output of a linear system composed of a cascade of n

exponential (RC or “resistance-capacitance”) stages. There
is a long tradition in visual psychophysics, dating back to
the pioneering work of de Lange (1958), of using linear-
system theory to represent the visual temporal response
function (Smith, 1995; Sperling & Sondhi, 1968; Watson,
1986). The representation of Eq. 8 therefore connects to
this classical literature on visual temporal sensitivity. In
addition, Eq. 8 satisfies the smoothness requirements of the
integral equation method, which requires that functions in
the kernel be at least twice differentiable.

The discreteness of the parameter n in Eq. 8 is inconve-
nient when fitting models to data, so we implemented our
models using the incomplete gamma function, which is a
continuous-parameter generalization of Eq. 8. Keeping the
same notation, the incomplete gamma function has the form
(Abramowitz & Stegun, 1965; p, 260, Equation 6.5.1)

θ(t) = 1


(n)

∫ βt

0
e−ssn−1ds, (9)

where 
(n) is the gamma function, which coincides with
the factorial function, 
(n) = (n − 1)!, when n is an
integer. For integer n, Eqs. 8 and 9 are equal. The integral
in Eq. 9 does not have a closed-form solution but efficient
routines for evaluating it numerically can be found in most
libraries of special functions. Together, the first-passage
time densities of Eqs. 5 and 6, the kernel function of Eq. 7,
and the evidence growth function of Eq. 9 provide sufficient
mathematical structure to fully constrain the model. The
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important parameters in fitting the model to data are the
rate and shape parameters, β and n, which control the time
course of the evidence entering the decision process, and
the constant source of diffusion noise, σ2, which controls
the model’s propensity to predict fast errors. Although the
time-varying model has three parameters that the standard
model does not, we found it could fit the Dutilh et al. (2019)
data without across-trial variability in either starting point or
nondecision time. This resulted in models with exactly the
same number of free parameters, as we discuss below.

Method

The data from the Dutilh et al. (2019) study are publicly
available and downloadable from the Open Science
Foundation. The full data set comprises RT and accuracy
data from 20 participants, each of whom completed around
2800 trials. Because the authors manipulated bias by
varying the relative frequencies of leftward and rightward
motion, the number of trials was not fully balanced
across conditions. In order to camouflage the experimental
manipulations from the researchers in the blinded study,
the authors used a rather complex block structure, the
full details of which are described in the original article.
Unlike the researchers in the blinded study, who fit the
data from 14 different pairs of experimental conditions,
we fit the data from the full experimental design. Also,
unlike those researchers, we did so in the knowledge of the
manipulations in each of the experimental conditions and
made judicious use of selective influence assumptions in
order to constrain the models. Apart from these differences,
we attempted to follow the authors’ treatment of data as
closely as possible.

When stimulus identity (leftward or rightward motion) is
also taken into account there were a total of 24 conditions
in the Speed-Accuracy × Bias × Discriminability design
in their study. Like the authors, we pooled data from
leftward and rightward stimuli in corresponding conditions.
So, for example, under biasing manipulations, we pooled
the data from blocks in which leftward motion had low
probability with blocks in which rightward motion had low
probability. We then relabeled the stimuli and responses
as low and high probability stimuli with their associated
correct and error responses. This reduced the number of
experimental conditions to 12. In the pooled data, bias was
represented by three conditions, conditioned on stimulus
identity: low probability stimuli, equal probability stimuli,
and high probability stimuli. The authors also excluded
trials on which the RT was shorter than 200 ms as fast
guesses. They expressed reservations about the propriety of
this exclusion in their report, but, as the fastest visual simple

RTs are around 200 ms, their exclusion criterion seems not
only reasonable but conservative.

Indeed, after carrying out a preliminary analysis of the
data, we increased the fast-guess exclusion cutoff to 280
ms. When filtered at 200 ms, the original data showed
a pronounced fast-error effect under speed instructions,
which appeared as a large shift in the leading edges (the
.1 quantiles) of the error distributions. This shift proved
difficult to fit with across-trial variability in starting point
in the standard diffusion model (see Results section for
details), although the time-varying model was able to
capture it. Ratcliff and McKoon (2008) obtained excellent
fits of the standard model to data from the RDM task,
but their data showed smaller effects of speed instructions
on the 0.1 error distribution quantiles (their Figure 9).
Increasing the cutoff to 280 ms improved the fits of the
standard diffusion model.4 The effect on the time-varying
model, which has another mechanism for predicting fast
errors, was much less evident.

Contrary to the usual practice in psychophysical studies,
in which stimuli are tailored to the sensitivities of individual
participants (Smith & Little, 2018), Dutilh et al. (2019)
used two fixed levels of stimulus discriminability (easy and
hard) for all participants. As result, the performance of many
of the participants was at ceiling in some conditions. Ten
of the participants had missing error RT data in one or
more conditions and a further five had insufficient data to
compute the quantiles of some of the error RT distributions.
For these participants we followed the procedure for treating
missing data in Ratcliff and Childers (2015), described
below. To fit the data, we minimized the likelihood-ratio
Chi-square statistic (G2) for the response proportions in the
bins formed by the .1, .3, .5, .7, and .9 RT quantiles for
the distributions of correct and error responses (Ratcliff &
Smith, 2004). When bins are formed in this way, there are a
total of 12 bins (11 degrees of freedom) in each pair of joint
distributions of correct responses and errors.

The resulting G2 statistic can be written as

G2 = 2
12∑

i=1

ni

12∑

j=1

pij log

(
pij

πij

)
.

In this equation, pij and πij are, respectively, the
observed and predicted probabilities (proportions) in the
bins bounded by the quantiles, and “log” is the natural
logarithm. The inner summation over j extends over the 12

4The 280 ms fast-guess exclusion criterion was suggested to us by
Roger Ratcliff (personal communication, October 31, 2019). Although
it can be argued that responses in the range 200-280 ms are valid
and should be retained, we chose to use the higher cutoff to forestall
the criticism that the comparatively poor performance of the standard
diffusion model in our study was an artifact of inappropriate data
screening.
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bins formed by each pair of joint distributions of correct
responses and errors. The outer summation over i extends
over the two speed-accuracy conditions, the three bias
conditions, and the two discriminability conditions. The
quantity ni is the number of experimental trials in each
condition (here

∑
ini ≈ 2800). Fitting the data to joint

distributions in this way takes into account the fits to RT
and accuracy because the magnitude of G2 reflects how
closely the predicted probability masses in the distributions
of correct responses and errors agree with the corresponding
observed masses. When there were fewer than five errors in
a condition, bin boundaries based on error quantiles could
not be computed. In these cases, if there were at least
two responses, we computed medians and characterized
the associated error distribution with two bins (above and
below the median); otherwise we characterized the error
distribution with either zero or one bin, depending on the
number of error responses. All of the fits we report were
to individual subject data, but we show plots of quantile-
averaged group data and fits based on group-averaged
parameter estimates as an economical way to represent
some of the main qualitative features of the data as a whole.

There are, and will continue to be, differences in opinion
in the modeling community about the best way to fit RT
data. The variety of fitting methods used in the blinded
validity study and summarized in Table 3 of (Dutilh et al.
2019) article highlights the extent of these differences. As
noted above, the best parameter recovery, once selective
influence violations associated with nondecision times were
set aside, was obtained from minimum Chi-square fits to
the individual participants’ data, which is similar to the
method we used here. To compare models with different
numbers of parameters, we used standard model selection
methods based on the Akaike information criterion (AIC;
Akaike, 1974) and the Bayesian information criterion
(BIC; Schwarz, 1978). These fit statistics are derived
from different theoretical principles (one classical and
the other Bayesian), but we used them in the spirit in
which they are typically used in the modeling literature,
as penalized likelihood statistics that impose more or less
severe penalties on the number of free parameters in a
model (Voss et al., 2019). As is well known, the AIC tends
to gravitate towards more complex models with increasing
sample sizes more quickly than does the BIC (Kass &
Raftery, 1995).

In other work from our laboratory (Corbett & Smith,
2020; Smith & Corbett, 2019), we have used modified
versions of the AIC and BIC that correct for overdispersion,
that is, for sources of variance in the data that are not
represented in the likelihood equations of the model.
Although this approach has useful properties, in the interests
of making our methods as similar as possible to those
commonly used in the RT literature we report AICs and

BICs in their standard forms. We note, however, that the
propensity for the AIC to gravitate towards more complex
models will be increased in the presence of overdispersion.
For binned data, the AIC and BIC may be written as

AIC = G2 + 2m

BIC = G2 + m log(N),

where m is the number of free parameters in the model
and N = ∑

ini is the total number of observations on
which the fit statistic was based. To fit the models, we
obtained a minimum G2 from 10 runs of the Nelder-Mead
simplex algorithm (Nelder &Mead, 1965), using randomly-
perturbed estimates from the preceding run as the starting
point for the next run.

Results

We report fits of five versions of the standard diffusion
model and four versions of the time-varying model, together
with two extensions of the latter model. The full set of
models and the relationships among them are summarized
in Fig. 3. Some versions of the models were aimed at
determining the best way to represent bias, particularly how
best to characterize the fast errors found with speed-stress
instructions. The remainder were aimed at characterizing
violations in selective influence associated with nondecision
times. Table 1 lists the parameters that were estimated in
fitting the models to the data. The researchers in the Dutilh
et al. (2019) study were free to parameterize the models
in whichever way they thought was most appropriate and
it is not clear from their article how the teams that used
the standard diffusion model chose to parameterize it. Here
we made selective influence assumptions that are typical
of those found in the literature. The details of how we
parameterized the models may be found in Appendix B.
Although the time-varying model appears to have more free
parameters than does the standard model, we were able to
eliminate three of the standard model’s parameters when
fitting the data, which made the number of free parameters
in the two models exactly the same, as we discuss below.

Standard diffusionmodels

Table 2 summarizes the parameters of the five versions
of the standard diffusion model. Along with characterizing
the effects of the experimental manipulations on drift
rates and boundary settings, the models sought to identify
violations of selective influence on nondecision times and
drift rates. One model investigated whether the mean
nondecision, Ter, varied with boundary setting; another
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Fig. 3 Relationships among models. In the standard models, drift and
diffusion rates were constant within a trial; in the time-varying models,
they varied with time. The “SI maintained” and “SI violated” mod-
els imposed and relaxed selective influence assumptions, respectively.

The “SI violated” models are identified using an interaction nota-
tion described in the text. The sampling precision models allowed
the premature sampling noise term, σ2, to vary with experimental
instructions

investigated whether nondecision time variability, st , varied
with boundary setting, and a third model investigated
whether the mean drift rate, ν, varied with boundary setting.
The selective influence violation models are identified in
the tables using an interaction notation as a × Ter, a ×
st , and a × ν, respectively. The last model (Model 2 in
the tables) investigated whether the effects of bias were
better represented by a combination of drift rate bias, cν ,
and starting point bias, πz, than by starting point bias
alone (see Appendix B). We refer to the model with the
usual selective influence assumptions, and which had the

fewest free parameters, as the reference model. In all of our
model fits, RTs were measured in units of seconds and the
estimated parameters we report are for data scaled in this
way, but in plots of fits to data we follow the convention in
the literature of showing RTs in milliseconds.

Table 3 summarizes the fits of the standard diffusion
models. For all models, the G2, AIC, and BIC values in
the table are averages for the 20 participants, as described
in the Method section. The degrees of freedom are residual
degrees of freedom for participants with no missing error
data. The degrees of freedom for such participants are

Table 1 Parameters of the diffusion models

Parameter Symbol Level of effect

Boundary separation, speed a(s) block

Boundary separation, accuracy a(a) block

Mean drift rate, hard, speeda ν(hs) trial

Mean drift rate, easy, speeda ν(es) trial

Mean drift rate, hard, accuracya ν(ha) trial

Mean drift rate, easy, accuracya ν(ea) trial

Starting point bias πz block

Drift criterion cν block

Drift rate variability η experiment

Starting point variability, speed sz(s) block

Starting point variability, accuracy sz(a) block

Mean nondecision time, speeda Ter(s) experiment/block

Mean nondecision time, accuracya Ter(a) experiment/block

Nondecision time variability, speeda st (s) experiment/block

Nondecision time variability, accuracya st (a) experiment/block

Evidence growth θ(t) rateb β experiment

Evidence growth θ(t) shapeb n experiment

Premature sampling noiseb σ2 experiment

a= Varies with selective-influence assumptions; b = time-varying model only
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Table 2 Standard diffusion models

Model Properties m Parameters

1 Reference 10 a(s), a(a), ν(h), ν(e), πz, η, sz(s), sz(a), Ter, st
2 Drift Criterion 11 a(s), a(a), ν(h), ν(e), cν , πz, η, sz(s), sz(a), Ter, st
3 a × Ter 11 a(s), a(a), ν(h), ν(e), πz, η, sz(s), sz(a), Ter(s), Ter(a), st
4 a × st 11 a(s), a(a), ν(h), ν(e), πz, η, sz(s), sz(a), Ter, st (s), st (a)

5 a × ν 12 a(s), a(a), ν(hs), ν(ha), ν(es), ν(ea), πz, η, sz(s), sz(a), Ter, st

m = number of free parameters

df = 12 × (12 − 1) − m, that is, the number of
experimental conditions times the number of bins in each
joint distribution pair minus one, minus the number of free
parameters. For Models 2 through 5, the columns #AIC and
#BIC are the numbers of participants for whom the model
was preferred to the reference model, according to the AIC
or the BIC. Table 4 gives the parameters of the best-fitting
models, again averaged over participants.

The G2 statistics in Table 3 are comparable in magnitude
to those reported previously from fits of the diffusion model
to RDM data. The most relevant comparison study is that
of Ratcliff and McKoon (2008) who fit the diffusion model
to data from three experiments using the RDM task, each
based on 960 trials per participant. Their first experiment
varied motion coherence in six levels, their second crossed
coherence with speed-accuracy instructions, and their third
crossed coherence with the prior probability of leftward
or rightward motion. The three tasks yielded Pearson
χ2 fit statistics of 241, 421, and 723 from experimental
designs with 55, 78, and 162 residual degrees of freedom
respectively, resulting in χ2/df ratios of between 4.4
and 5.3. These ratios are several times their expected
values under a central Chi-square sampling distribution, but
graphically the fits to the three experiments appear excellent
(their Figures 7, 9, and 10). The G2/df ratios for the
models in Table 3 vary from around 3.2 to 3.5, which are
comparable to those of Ratcliff and McKoon. Nonetheless,
for reasons we discuss below, the Dutilh et al. (2019) data
were challenging for the standard diffusion model to fit. We

first discuss fits of the reference model and then consider
the selective influence violation models.

Quantile-probability plots The most compact and effective
way to represent the fit of a model to RT distributions
and choice probabilities is in a quantile-probability plot.
Figure 4 shows how such a plot is constructed from an
experiment in which there are two discriminability levels,
easy and difficult, like the Dutilh et al. (2019) study. To
construct a quantile probability plot, the quantiles of the
distribution of correct responses are plotted against the
probability of a correct response, p, and the quantiles of the
distribution of errors are plotted against the probability of an
error response, 1 − p. Each stimulus condition contributes
one pair of distributions to the plot. For an experiment
like that of Dutilh et al. (2019) with two discriminability
levels, there will be four distributions in the plot, like the
example in Fig. 4. The distributions on the right side of
the plot (light plotting symbols) are the distributions of
correct responses and the distributions on the left side of the
plot (dark plotting symbols) are distributions of errors. The
innermost pair of distributions is from the difficult condition
and the outermost pair is from the easy condition.

The plot shows how the RT distributions and choice
probabilities vary as stimulus discriminability is changed.
Most of the changes in RT with changing discriminability
are in the upper quantiles of the distributions (the .5, .7,
and .9 quantiles). The leading edge of the distribution (the
.1 quantile) shows comparatively little change. The plot in

Table 3 Fits of standard diffusion models

Model Properties G2 df AIC BIC #AIC #BIC

1 Reference 410.91 122 430.61 491.72 — —

2 Drift Criterion 405.45 121 427.45 492.78 8 1

3 a × Ter 392.84 121 414.84 480.17 12 11

4 a × st 385.47 121 407.47 472.80 10 10

5 a × ν 390.16 120 414.16 485.43 11 8

Degrees of freedom unadjusted for individual missing data
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Table 4 Parameters of standard diffusion models

Model Properties a(s) a(a) ν(hs) ν(ha) ν(es) ν(ea) πz cv

1 Reference 0.083 0.150 0.165 — 0.297 — 0.058 —

2 Drift Criterion 0.083 0.150 0.168 — 0.302 — 0.050 -0.002

3 a × Ter 0.086 0.146 0.164 — 0.296 — 0.053 —

4 a × st 0.086 0.144 0.164 — 0.296 — 0.054 —

5 a × ν 0.085 0.156 0.153 0.174 0.272 0.316 0.056 —

η sz(s) sz(a) Ter(s) Ter(a) st (s) st (a)

1 Reference 0.055 0.023 0.004 0.258 — 0.247 —

2 Drift Criterion 0.057 0.028 0.003 0.258 — 0.247 —

3 a × Ter 0.054 0.030 0.004 0.254 0.270 0.235 —

4 a × st 0.052 0.030 0.002 0.259 — 0.230 0.262

5 a × ν 0.061 0.024 0.004 0.258 — 0.233 —

For omitted entries, ν(ha) = ν(hs), ν(ea) = ν(es) Ter(a) = Ter(s) and st (a) = st (s)

Fig. 4 is canted upwards towards the upper left-hand side.
This is the typical pattern of slow errors that is found in
difficult tasks in which accuracy is stressed (e.g., Ratcliff
& Smith, 2004). When there are fast errors the plot is
canted downwards on the left-hand side. If there were no
differences between the distributions of correct responses
and errors, then the plot would be symmetrical across its
vertical midline.

Reference model When individual differences are not too
large, an effective way to represent the overall fit of a
model is to use quantile-averaged group data (Ratcliff,
1979). To construct such a plot, corresponding quantiles
of the distributions of correct responses and errors are
averaged across participants, as are the choice probabilities.
For the Dutilh et al. data, in which 15 participants were
missing error distribution data in one or more conditions,
we constructed the quantile probability plot from the data

of the five participants (Participants 1, 6, 8, 11, and 19) for
whom all distribution quantiles could be calculated. Figure 5
shows a quantile probability plot of the fit of the reference
model (Model 1) to the quantile-averaged data for these
participants. Although this plot represents only a subset
of the full data, the main qualitative properties shown in
the plot were replicated fairly consistently across the other
participants, although with individual differences in RT and
accuracy. In Fig. 5, the data are plotted conditioned on the
stimulus (see figure caption). An alternative is to plot the
data conditioned on the response (e.g., Ratcliff & McKoon,
2008).

Overall, the reference model captures the main features
of the data, with two significant points of discrepancy. First,
in the speed condition, the starting point bias parameter
does not capture the variation in choice probabilities across
high and low frequency stimuli, especially for the difficult
stimuli. Second, and most challenging for the model, there

a b c

Fig. 4 Constructing a quantile probability plot. a The RT distribu-
tions for correct responses and errors are summarized by histograms
using the .1, .3, .5, .7, and .9 quantiles as bin boundaries. The contin-
uous curve is a kernel density estimator applied to the same data. b
For each stimulus condition, the quantiles of the distribution of cor-
rect responses are plotted against the probability of a correct response,

p, and the quantiles of the distribution of error responses are plotted
against the probability of an error response, 1 − p. c Quantile proba-
bility plot from an experiment with two stimulus conditions showing a
slow-error pattern. Each condition contributes one pair of distributions
to the plot
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Fig. 5 Quantile probability plot of the fit of the standard diffusion,
reference model to participants with complete error data. The columns
are speed (Sp.) and accuracy (Ac.) conditions. The rows are the bias
conditions, conditioned on the stimulus. The top and bottom rows
are high-frequency (Hi. F.) and low-frequency (Lo. F.) stimuli from
blocks in which leftward and rightward motion was presented with
unequal frequency. The middle row is from blocks in which leftward
and rightward motion was presented with equal frequency (Eq. F.)

is a pervasive fast-error pattern, which appears in both the
speed and accuracy conditions. We discuss these effects in
turn.

The estimated parameters in Table 4 show there was
a small shift in the starting point towards the boundary
associated with the more probable stimulus. This increased
the probability that the associated response would be made,
both correctly and incorrectly (i.e., correct responses in
the top panels and error responses in the bottom panels).
Conditioned on the stimulus, this translates into a greater
difference in the choice probabilities for correct responses
and errors (the horizontal extent of the plot) for high-
frequency stimuli than for low-frequency stimuli. The
model captures this difference in range fairly well for easy
stimuli (the outermost pair of distributions in the plot) but
not for difficult stimuli (the innermost pair). In contrast,
in the accuracy condition, the model captures the choice

probabilities for both easy and difficult stimuli well—
although, as was noted by Dutilh et al. (2019) and is evident
in the plot, the effect on the bias manipulation in the
accuracy condition is comparatively small.

The joint effects of speed-accuracy instructions and
stimulus prior probabilities is a fairly challenging pattern
of data for models to explain. Ratcliff and McKoon
(2008) studied both of these variables, and showed that
the diffusion model accounted for them well, but not in
the same experiment. In view of this additional constraint
in the design, it was of interest to investigate whether
the bias effects, when simultaneously manipulated with
speed-accuracy settings, could be better accounted for
by a combination of a drift criterion (Appendix B) and
starting point changes. Model 2, which was identical to the
reference model, except for the addition of a drift criterion,
incorporated both of these effects.

The fit statistics in Table 3 show that the improvements
obtained by adding a drift criterion, although discernible,
were relatively small and inconsistent. The fits for eight of
the participants were improved by the addition of a drift
criterion according to the AIC, but for only one of them
according to the more conservative BIC. The estimated
mean value of the drift criterion, cν = −0.002, implies
that, on average, drift criterion affected drift rates only in
the third decimal place, which translates into an almost
negligible effect on choice probabilities. Because of the
comparatively weak evidence for any effect of the biasing
manipulation on the relative rates of evidence accumulation
for high and low frequency stimuli, in what follows we treat
the reference model as the baseline model for comparison
with other models.

The most challenging feature for the models to explain
was the systematic pattern of fast errors, which appears
as a downward shift in the leading edge of the error
distribution, relative to that of the distribution of correct
responses, as measured by its .1 quantile. The pattern is
apparent in Fig. 5, especially for equal-frequency and low-
frequency stimuli in the speed condition. The shift in the .1
quantile is not confined to those participants for whom there
was complete error distribution data: Averaging over all
participants, bias conditions, and easy and difficult stimuli,
the average .1 quantiles for correct and error responses in
the speed condition were 383 ms and 330 ms, respectively,
and in the accuracy condition 482 and 436 ms, respectively.
In the accuracy condition, along with the downward shift in
the .1 quantile, there is also an upward shift in the higher
error distribution quantiles, shown schematically in Fig. 4c,
which characterizes slow errors.

The combination of fast and slow errors is explained in
the standard diffusion model by a combination of across-
trial variability in drift rates and starting points (Ratcliff &
Smith, 2004). Ratcliff and McKoon (2008) found evidence
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for both fast and slow errors in their experiments (e.g.,
their Figure 9) and successfully accounted for them using
a combination of these two sources of variability. Our
reference model also had a combination of drift rate
variability and starting point variability, especially under
speed instructions, but had difficulty in accounting for the
shifts in the .1 quantiles of the error distributions. Indeed,
our primary reason for changing the fast-guess cutoff from
200 ms to 280 ms was to try to improve this aspect of
the fit. In comparison to Ratcliff and McKoon’s speed-
accuracy experiment, participants in Dutilh’s et al.’s study
were somewhat faster under speed instructions and had
smaller boundary separations, which may have affected
their propensity to make fast errors—although this was not
reflected in the starting point parameters in Table 3, which
are smaller than those reported by Ratcliff and McKoon. It
is possible that the model misfits in Fig. 5 were due to the
greater constraints imposed by Dutilh et al.’s experimental
design, in which a biasing manipulation was crossed with a
manipulation of speed versus accuracy. One consequence of
combining starting point bias and starting point variability
in the same model is that the values of the former restrict
the permissible values of the latter: The more biased the
starting point, the less it can vary and still remain within
the boundaries. The comparatively poor fit of our reference
model may reflect these constraints.

Selective influence violation models Models 3 to 5 in
Tables 3 and 4 are selective influence violation models.
These models investigated whether mean nondecision time,
Ter, nondecision time variability, st , and mean drift rate,
ν, varied with speed versus accuracy instructions. Table 3
shows that the preferred model for many of the participants
was one of the selective influence violation models.
According to the AIC, model a × Ter was preferred to
the reference model for 12 participants, model a × st
was preferred to the reference model for 10 of them, and
model a × ν was preferred to the reference model for
11. According to the more conservative BIC, a × Ter was
preferred to the reference model for 11 participants, a × st
was preferred for 10 of them, and a × ν was preferred for
8. There was little evidence of systematic effects across
individual participants: It was not the case that the same
subset of participants preferred all of the selective influence
violation models over the reference model, suggesting that
the models are reflecting different features of the individual
data. Overall, one of the selective influence violation models
was preferred to the standard model for 17 participants by
the AIC and for 14 by the BIC.

The large proportion of selective influence violations
involving nondecision times is in agreement with the
findings of Dutilh et al. (2019), but, unlike them, we

obtained these violations from the full experimental design.
Dutilh’s researchers were set the challenging task of
estimating model parameters from restricted, two-condition
designs and it was not clear to us whether the selective
influence violations they found were due to the inherent
difficulties in obtaining stable estimates from minimal
designs of this kind. The most systematic selective influence
violation we found—in the sense of the one involving the
most participants—was in Ter, but there were also violations
in st and ν. These violations are consistent with what has
been reported previously in the literature. We conclude that
the large number of selective influence violations reported
by Dutilh’s researchers was not an artifact of the minimal
designs from which they inferred the model parameters, but
was, rather, a property of the data set as a whole. In the
following section we report fits of a corresponding set of
time-varying diffusion models.

Time-varying diffusionmodels

Table 5 summarizes the time-varying models and their
associated parameters. Like the standard models in Table 2,
the set of models includes a reference model and selective
influence violation models. As discussed earlier, the
additional parameters in these models, β, n, and σ2,
characterize the growth of drift and diffusion rates and
premature sampling noise, respectively. Like Smith and
Ratcliff (2009) and Smith et al. (2014), we found that
premature sampling can predict fast errors without starting
point variability, so we omitted the sz parameters from the
models. The reference model in Table 5 also omits the
nondecision time variability parameter st . Our hypothesis
was that the comparatively large st estimates found for the
standard diffusion model (around 230-260 ms in Table 4
and 200-300 ms in Ratcliff and McKoon (2008)), may be
a reflection of the time-varying nature of the process. As
we discussed earlier, the standard diffusion model, which
represented drift and diffusion rates as random-onset step
functions, would characterize data generated by such a
process as a distribution of functions with a range of onset
times that reflect its growth rate. Although estimates of st
in the range 200-300 ms are not unusually long compared
to those from other tasks (Matzke & Wagenmakers, 2009;
Figure A1), it is conceivable that the evidence entering
the decision process in these tasks is also time-varying.
Two of the most widely studied decision tasks are lexical
decision and recognition memory (Ratcliff & Smith, 2004).
In these tasks, drift rates are assumed to arise as the result
of a matching operation between perception and memory
and it is plausible that the information resulting from this
operation becomes available gradually rather than in an
all-or-none way.
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Table 5 Time-varying diffusion models

Model Properties m Parameters

1 Reference 10 a(s), a(a), ν(h), ν(e), πz, η, Ter, σ2, β, n

2 Nonzero st 11 a(s), a(a), ν(h), ν(e), πz, η, Ter, st σ2, β, n

3 a × Ter 11 a(s), a(a), ν(h), ν(e), πz, η, Ter(s), Ter(a), σ2, β, n

4 a × ν 12 a(s), a(a), ν(hs), ν(ha), ν(es), ν(ea), πz, η, Ter, σ2, β, n

m = number of free parameters

Even in perceptual tasks, in which stimulus representa-
tions can be formed in under 100 ms, the processes that
extract the information used to make decisions may be much
slower than this. An example is the brightness discrimina-
tion task (Ratcliff, 2002; Ratcliff et al., 2003), in which
decisions are made about the relative proportions of black
and white pixels in briefly flashed, backwardly masked,
random pixel arrays. Asymptotic accuracy in this task is
attained at exposure durations of around 100 ms (Ratcliff,
2002), consistent with perceptual processing in the Bloch’s
law regime, but the estimates of st in the diffusion model
may range from 110 ms to 170 ms (Matzke & Wagen-
makers, 2009). These estimates might seem too long to be
attributable to the time course of drift rate formation, but
only if drift rate formation is rate-limited by perceptual
rather than postperceptual processing. Drift rate in this task
presumably arises from a comparison of the encoded per-
ceptual representation with the memory representation of
the stimulus attributes that map to the response alternatives.
It is unlikely that this comparison can be performed instan-
taneously, and it seems plausible that it might take several
hundred milliseconds to complete.

Reference model Table 6 summarizes the fits of the time-
varying models. The first two models in the table are the
reference model, which has only a single source of across-
trial variability, in drift rate, η, and a generalization of the
model that includes nondecision time variability, st . Two
things are striking about these fits. First, the time-varying
models fit appreciably better than the standard models. For
the reference models, the average G2 of the time-varying
model is around to 70% better than that of the standard

model. Second, the good fit of the time-varying model
was obtained without across-trial variability in nondecision
time. Table 7 summarizes the average estimated parameter
estimates for the time-varying model, and shows that the
average st was 24 ms, as compared to 247 ms for the
standard model in Table 4. The inclusion of st improved the
model fit only for a minority of participants: six by the AIC
but only one by the BIC. Because the likelihoods in our AIC
and BIC statistics have not been adjusted for overdispersion,
we regard the more conservative BIC as a more reliable
indicator of the performance of the models.

Figure 6 shows a quantile-probability plot of the fit of
the reference model to the data of the five participants
who had complete error data. Like the standard model,
the time-varying model misfits some of the accuracy data,
particularly the choice probabilities for low discriminability,
low frequency stimuli under speed stress conditions. Where
the model performs better than the standard model is in
its ability to capture the fast errors in the data, particularly
the shift in the .1 quantiles of the error distributions. The
model predicts fast errors with no variability in starting
point, via premature sampling noise, σ2. The estimated
value of 0.068 in Table 7 implies that, asymptotically,
premature sampling contributed around 30% of the noise in
the evidence accumulation process.

Selective influence violation models The other models in
Tables 5, 6 and 7 are selective influence violation models.
Because the nondecision variability effects were so small
for the time-varying model, we did not consider the a ×
st model, which allowed nondecision time variability to
depend on speed versus accuracy instructions. Model 3,

Table 6 Fits of time-varying diffusion models

Model Properties G2 df AIC BIC #AIC #BIC

1 Reference 241.94 122 261.94 321.32 — —

2 Nonzero st 240.55 121 262.55 327.88 6 1

3 a × Ter 236.59 121 25 8.59 323.92 12 6

4 a × ν 227.85 120 251.85 323.12 16 6

Degrees of freedom not adjusted for individual missing data
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Table 7 Parameters of time-varying diffusion models

Model Properties a(s) a(a) ν(hs) ν(ha) ν(es) ν(ea) πz

1 Reference 0.121 0.195 0.266 — 0.446 — 0.055

2 Nonzero st 0.122 0.195 0.262 — 0.434 — 0.056

3 a × Ter 0.122 0.196 0.268 — 0.450 — 0.055

4 a × ν 0.119 0.193 0.234 0.256 0.393 0.434 0.056

η Ter(s) Ter(a) st σ2 β n

1 Reference 0.178 0.184 — — 0.068 24.83 5.08

2 Nonzero st 0.174 0.173 — 0.024 0.068 28.25 5.75

3 a × Ter 0.181 0.183 0.180 — 0.068 25.48 5.25

4 a × ν 0.162 0.181 — — 0.066 29.46 5.86

For models with two μ parameters ν(ha) = ν(hs), ν(ea) = ν(es)

a × Ter, allowed mean nondecision times to vary with
instructions. Table 6 shows that the a × Ter model was
preferred to the reference model for 12 of the participants

Fig. 6 Quantile probability plot of the fit of the time-varying diffusion
reference model to participants with complete error data. The columns
are speed (Sp.) and accuracy (Ac.) conditions. The light plotting
symbols are distribution quantiles for correct responses and the dark
symbols are quantiles for errors

according to the AIC, but only for six of them by the BIC.
This compares with the corresponding figures of 12 and 11
for the standard diffusion model in Table 3. If we accept
that the picture provided by the BIC is likely to be the more
reliable one, then this implies that the selective influence
violations involving nondecision times were less prevalent
for the time-varying model. The averaged estimated Ter
values for the standard model in Table 4 are Ter(s) = 254
ms and Ter(a) = 270 ms. The corresponding estimates
for the time-varying model in Table 7 are Ter(s) = 183
ms and Ter(a) = 180 ms. At the group level, the first
of these differences is highly significant by a (classical)
matched-pairs t-test, D = 16 ms, t (19) = 4.33, p <

.0005, whereas the second of them is not, D = −3 ms,
t (19) = −1.73, p > 0.05. The ordering of the Ter
estimates for the time-varying model is the opposite of the
one found for the standard model here and elsewhere, and
when we refit the a × Ter model with the ordinal constraint
Ter(a) ≥ Ter(s), only one of the participants was better
fit by the model than by the reference model according
to the BIC, although a similar number were better fit by
the AIC. Taken together, the model selection statistics and
the group tests of the estimated effects show that selective
influence violations involving nondecision times, although
not completely eliminated in the time-varying model, were
smaller and less systematic.

The fourth model, a×ν, is a selective influence violation
model that tested whether mean drift rates were the same
under speed and accuracy instructions. For the standard
diffusion model, the model a × ν was preferred for 11
participants according to the AIC and for eight according
to the BIC. For the time-varying model, the corresponding
numbers were 16 and 6. (Overall, a selective influence
violation model was preferred for 18 participants by the
AIC and eight by the BIC.) For both models, the estimated
mean drift rates were larger under accuracy instructions than
under speed instructions. For the standard diffusion model,
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the drift rates were ν(hs) = 0.153, ν(ha) = 0.174, ν(es) =
0.272, and ν(ea) = 0.316; for the time-varying model they
were ν(hs) = 0.234, ν(ha) = 0.256, ν(es) = 0.393, and
ν(ea) = 0.434. At a group level, all effects for both models
were highly significant by a repeated-measures ANOVA.
For the standard model, the ANOVA yielded Fease(1, 19) =
199.9, p < 1.0 × 10−10; Fspeed(1, 19) = 20.45, p <

0.0005, and Fease×speed(1, 19) = 15.57, p < 0.001. For
the time-varying model, it yielded Fease(1, 19) = 693.9,
p < 1.0 × 10−15; Fspeed(1, 19) = 5.79, p < 0.05, and
Fease×speed(1, 19) = 6.01, p < 0.05. For both models,
mean drift rates were higher for easy than for difficult
stimuli, as expected; but, contrary to selective influence
assumptions, they were also higher under accuracy than
speed instructions and, moreover, the difference between
easy and difficult stimuli was increased under accuracy
instructions.

The model selection statistics, especially the BIC,
suggest that selective influence violations involving mean
drift rates may arise only for a subset of participants, but
when they do occur they are of sufficient magnitude to
yield highly significant group-level effects. Our hypothesis
was that these kinds of violations might reflect the time-
dependent nature of the evidence accumulation process.
If evidence accumulation is described by Eq. 4, in which

the signal-to-noise ratio, μθ(t)/

√
σ 2
1 θ(t) + σ 2

2 , increases
over the course of trial, then the effective signal-to-noise
ratio will be lower under speed instructions when decision
boundaries are narrower, because decisions will be more
dependent on evidence sampled early in a trial. Our
hypothesis was that, if these effects are characterized using
the standard diffusion model, in which the signal-to-noise
ratio is constant, then the estimated drift rates in the model
would be lower under speed instructions. Although this
dependence of drift rates on instructions is a mathematical
consequence of Eq. 8, the magnitude of the effect in
fitting the data was not sufficient to eliminate the selective
influence violations represented by model a × ν.

Sampling precision models Our finding that mean drift
rates in the time-varying model were higher under accuracy
than under speed instructions, even after the changes in
stimulus signal-to-noise ratios during the course of a trial
were taken into account, led us to look for ways to
modify the model that might explain these effects in a
principled way. This led to a class of models we call
sampling precision models. The idea behind them is that
the imperative to go fast may cause people to form less
precise cognitive representations of the stimuli about which
they are making decisions. This kind of variation may
be attentional in origin: Attempting to go fast makes
people attend less to the fine detail of stimuli. One way

to formalize this idea in a time-varying framework is to
assume that the stimulus-independent diffusion noise, σ2,
varies with speed-versus-accuracy instructions. The most
parsimonious way to formalize this idea is to assume that
the total diffusion rate remains constant across instructions,
but that the relative proportions of stimulus-dependent and
stimulus-independent diffusion change. This constraint can
be realized by imposing appropriate restrictions on the
diffusion terms in the evidence accumulation equation,
Eq. 4,

σ 2
1 (s) + σ 2

2 (s) = σ 2
1 (a) + σ 2

2 (a); σ1(a) = 0.1, (10)

with σ2(s) and σ2(a) free parameters to be estimated from
the data. The condition σ1(a) = 0.1 sets the overall scale
of the model, which is required to make it identifiable, like
the other models we have considered. When the diffusion
rates are restricted in this way, the model has one more free
parameter than the reference model in Tables 5, 6 and 7.

Table 8 shows the fit of the sampling precision model
a × σ2 and Table 9 shows the estimated parameters. The
tables reproduce the fit statistics and parameters for the
reference model for comparison purposes. The inclusion of
sampling precision effects led to a substantial improvement
in model fit: Nineteen participants were better fit by a
model with sampling precision effects according to the
AIC and 14 were better fit according to the BIC. The
parameter estimates in Table 9 showed that, on average,
σ2(s) was larger than σ2(a). Averaged over all participants,
the stimulus-independent diffusion terms for the speed and
accuracy conditions were σ2(s) = 0.064 and σ2(a) =
0.062, and for the 14 participants who were better fit by
the sampling precision model according to the BIC, the
corresponding estimates were σ2(s) = 0.069 and σ2(a) =
0.064. Although the σ2 estimates for both the full sample
and the subsample appear fairly similar numerically, small
changes in diffusion rate can have substantial effects on
predicted RT distributions, including on the location of the
.1 quantile (Donkin et al., 2009; Smith et al., 2014).

Our main interest in sampling precision models was
in whether allowing σ2 to vary with instructions would
eliminate their effect on mean drift rates. To this end, we
also looked at the model a×σ2+a×ν, which allowed both
diffusion noise and mean drift rate to vary with instructions.
Unlike the corresponding entries in Tables 4 and 6, the
figures in the columns #AIC and #BIC in Table 8 are
the numbers of participants who were better characterized
by model a × σ2 + a × ν than by model a × σ2, that
is, by a model in which instructions affected both mean
drift rate and diffusion noise rather than noise alone. By
the AIC and BIC, there were 11 and 6 such participants,
respectively, as compared to the 16 and 6 for model a × ν

in Table 6. Inclusion of sampling precision in the model
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Table 8 Fits of sampling precision models

Model Properties G2 df AIC BIC #AIC #BIC

1 Reference 241.94 122 261.94 321.32 — —

2 a × σ2 225.67 121 247.67 313.00 19 14

3 a × σ2 + a × ν 214.34 119 240.34 317.59 11 6

therefore appears to reduce selective influence violations
involving mean drift rates, but does not eliminate them.

At a group level, the effects involving differences in
mean drift rates among conditions were substantial. In a
repeated measures ANOVA on the mean drift rates for
model a × σ2 + a × ν, both the main effects of ease and
speed and their interaction were significant: Fease(1, 19) =
612.3, p < 1.0 × 10−10; Fspeed(1, 19) = 7.72, p < 0.05,
and Fease×speed(1, 19) = 6.44, p < 0.05. The effect of
speed on mean drift rates remained significant when the
analysis was restricted to the subsample of 14 participants
for whom the BIC-preferred model did not include the a×ν

interaction term: Fease(1, 13) = 347.6, p < 1.0 × 10−10;
Fspeed(1, 13) = 4.77, p < 0.05, and Fease×speed(1, 13) =
4.27, p > 0.05. The effect size for speed is almost the same
for the subsample, η2p = 0.268, as for the whole sample,

η2p = 0.289. The group results therefore suggest that, in
addition to affecting diffusion noise, speed instructions also
have a direct effect on mean drift rates.

Evidence growth functions The fits of the time-varying
models yield estimates of the function θ(t) in Eq. 9,
which, when used in Eq. 4, describe the growth in drift
and diffusion rates over time. Figure 7 shows estimates
of θ(t) for the individual participants, together with a
group function based on averages of the parameters of the
individual participants, β̄ = ∑

j βj /20 and n̄ = ∑
j nj /20.

The estimates of evidence growth are in remarkably good
agreement with the temporal integration times for the
RDM task found by Watamaniuk and Sekuler (1992) and
reproduced in Fig. 2. Notably, Fig. 7 shows that θ(t)

attains its maximum at around 400 ms or a little later. At

400 ms, the function has attained 97% of its asymptotic
value. Watamaniuk and Sekuler showed that discrimination
accuracy improved with increasing stimulus duration up
to around 400-450 ms. The functions in Fig. 7 show
that, for the response-terminated stimuli used in the Dutilh
et al. (2019) study, the signal-to-noise ratio of the evidence
entering the decision process, as expressed by the ratio of
the drift and diffusion rates, progressively increases during
the first 400 ms or so, but is constant thereafter. The fact
that two quite different experimental paradigms using the
RDM task should have yielded such consistent estimates of
the underlying temporal integration processes is striking and
is evidence of the convergent validity of the time-varying
diffusion model.

Correlations among parameters Like the standard model,
the relationships among the parameters of the time-varying
model are of theoretical interest. Table 10 shows the
correlations among the main parameters of the reference
model. To summarize the growth rate function θ(t), we used
the ratio of the shape and rate parameters, θν = n/β, in
Eq. 9. When Eq. 9 is interpreted as a probability distribution,
θν is the mean of the distribution. When n is an integer,
the mean is equal to the number of exponential stages
in cascade, multiplied by the stage mean 1/β. When the
incomplete gamma is interpreted as the output of a linear
system, as here, the ratio can be interpreted as a system
rate constant, which characterizes how rapidly the output
changes over time.

The most important result in Table 10 is that the growth of
drift and diffusion rates, θν , is not significantly correlated with
either boundary separation or mean drift rate. This is consistent
with the picture from the Watamaniuk and Sekuler (1992)

Table 9 Parameters of sampling precision models

Model Properties a(s) a(a) ν(hs) ν(ha) ν(es) ν(ea) πz

1 Reference 0.121 0.195 0.266 — 0.446 — 0.055

2 a × σ2 0.120 0.191 0.252 — 0.420 — 0.054

3 a × σ2 + a × ν 0.120 0.193 0.229 0.253 0.382 0.426 0.054

η Ter σ2(s) σ2(a) β n

1 Reference 0.178 0.184 0.068 — 24.83 5.08

2 a × σ2 0.163 0.162 0.064 0.062 28.81 6.42

3 a × σ2 + a × ν 0.158 0.162 0.064 0.062 30.58 6.70
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Fig. 7 Evidence growth function, θ(t), for drift and diffusion rates
in the time-varying reference model. The light lines are the estimated
functions for the individual participants and the dark line is the
function for the parameters β̄, and n̄, averaged across participants

study, in which the critical durations were the same for high
and low coherence stimuli. Complementing their findings,
our results show that asymptotic stimulus discriminability,
which depends on the drift rate parameters ν(s) and ν(a),
and the amount of evidence used to make a decision,
a(s) and a(a), are unrelated to the rate at which stimulus
information becomes available. Unsurprisingly, Ter and θν

were significantly negatively correlated: The value of Ter
is the point at which the drift and diffusion terms change
from zero to small, nonzero values, and we would expect
this point to be difficult to identify empirically and to lead
to trade-offs in estimation. The negative correlation is a
reflection of this difficulty.

The estimates of mean drift rates in the easy and difficult
condition were highly correlated with one another, indicat-
ing that stimulus discriminability is a significant individual
differences variable, as we would expect in a near-threshold
perceptual task. Surprisingly, boundary separations in the
speed and accuracy settings were uncorrelated, suggesting

that there is no corresponding individual differences vari-
able of response caution governing decision strategies in
the two instruction conditions. The mean drift rates, ν(h)

and ν(e), were significantly correlated with boundary sep-
aration in the speed condition only, but were uncorrelated
with boundary separation in the accuracy condition. These
correlations appear to be another expression of the a × ν

selective influence violation, in which estimates of drift rate
are higher in participants with wider boundaries, at least
under speed-stress conditions. There were similar correla-
tions for the standard diffusion model: For the reference
model in Tables 2 and 4, the correlations of ν(h) and ν(e)

with a(s) were r = .634, p < 0.001 and r = 0.698,
p < 0.001, respectively, but the correlations in the accuracy
condition were nonsignificant.

Table 11 provides a summary of all of the models
we compared, rank-ordered by average BIC. The models
fall into three clear, nonoverlapping groups. On average,
the best models were the sampling-precision models;
the next best were the time-varying models with no
sampling precision effects, and the poorest were the
standard diffusion models. The best model overall was
the time-varying sampling precision model, a × σ2, in
which premature-sampling noise varied with experimental
instructions.

Discussion

Our study was motivated by the Dutilh et al. (2019) finding
of a pervasive failure of selective influence on nondecision
times in the standard diffusion model. They argued that
these failures may be real effects and that nondecision
times may be affected by instructions to be either fast
or accurate. Our interpretation of these failures was that
they may be an artifact of fitting data from a time-varying
process with a time-homogeneous model. We based our
argument on the TvD curves for the RDM task, which
show atypically long critical durations. One interpretation
of the critical duration is that it characterizes the time during

Table 10 Time-varying model parameter correlation matrix

a(s) a(a) ν(h) ν(e) θν Ter

a(s) 0.071 0.538 * 0.616 ** -0.198 -0.223

a(a) -0.074 -0.018 0.346 -0.063

ν(h) 0.946 *** -0.076 -0.310

ν(e) -0.143 -0.215

θν -0.473 *

Ter

∗ = p < .05; ∗∗ = p < .01; ∗ ∗ ∗ = p < .001
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Table 11 Rank-ordering of models by BIC

Rank Model G2 df BIC

1 Sampling Precision a × σ2 225.67 121 313.00

2 Sampling Precision a × σ2 + a × ν 214.34 119 317.59

3 Time-Varying Reference 241.94 122 321.32

4 Time-Varying a × ν 227.85 120 323.12

5 Time-Varying a × Ter 236.59 121 323.92

6 Time-Varying Nonzero st 240.55 121 327.88

7 Standard Diffusion a × st 385.47 121 472.80

8 Standard Diffusion a × Ter 392.84 121 480.17

9 Standard Diffusion a × ν 390.16 120 485.43

10 Standard Diffusion Reference 410.91 122 491.72

11 Standard Diffusion Drift Criterion 405.45 121 492.78

which the perceptual system forms a global representation
of motion from the local motion vectors of the individual
dots. If this interpretation is correct—and to us it is the
most plausible one—then it suggests that the formation of
drift rates may take several hundred milliseconds. If so, then
decisions in the RDM task may be better characterized by
a time-inhomogeneous model, in which drift and diffusion
rates progressively increase over time, than by a time-
homogeneous one in which they are represented as random
step functions. The aim of our study was to investigate a
model of this kind.

The researchers in the Dutilh et al. (2019) study were
set the challenging task of inferring experimental manipu-
lations from blinded, two-condition, experimental designs,
and we wondered whether there was enough structure in
such minimal designs to allow model parameters to be reco-
vered reliably. We therefore fit the data from the full exper-
imental design using the standard diffusion model, making
judicious use of selective influence assumptions to con-
strain the space of models to something manageable. Like
Dutilh’s researchers, we found violations of selective influ-
ence involving both mean nondecision time, Ter, and nonde-
cision time variability, st , as well as mean drift rates, ν. We
concluded that the violations of selective influence found by
Dutilh et al. were not artifacts of inference from minimal
designs, but were instead a property of the RDM task itself.

In the second part of our study, we compared the standard
diffusion model to a time-varying model based on the
integrated system model of Smith and Ratcliff (2009), in
which the evidence entering the decision process depends
on the output of time-varying visual filters. First, the fits of
the time-varying model were appreciably better than those
of the standard diffusion model. Second, we were able to fit
the time-varying model using only one source of across-trial
variability in the model rather than three.

The better fit of the time-varying model does not appear
to be simply a matter of relative model flexibility, but,

rather, seems to be a reflection of how evidence enters the
decision process, which the model captures better than does
the standard model. If the onset of evidence accumulation
were abrupt, as the standard model assumes, then this
could be represented in the time-varying model by choosing
the parameters β and n so that θ(t) approximates a step
function.5 However, this representation would require two
more parameters than the standard model to represent the
same properties. In addition, the effects of the two diffusion
terms, σ1 and σ2, would then be indistinguishable, so the
model could not predict fast errors. Under these conditions,
the three unique parameters of the time-varying model
become redundant, so we would expect its performance as
assessed by the AIC or BIC to be worse than that of the
standard model. That this was not the case implies these
parameters of the time-varying model are capturing features
of the data that the standard model does not.

Theoretical questions are rarely resolved on the basis
of goodness-of-fit alone, and other researchers, notably
Ratcliff and McKoon (2008), have obtained excellent fits
of the standard diffusion model to data from the RDM
task. Nevertheless, the quality of the fits we obtained for
the time-varying model to the Dutilh et al. (2019) data
is encouraging. The only source of across-trial variability
in our model was in drift rate, η, which accounted
for the differences in the upper quantiles of the RT
distributions for correct responses and errors under accuracy
instructions. The fast errors under speed instructions and
the shift in the .1 error distribution quantiles under both
forms of instruction were accounted for by stimulus-
independent diffusion noise, of the kind that Laming (1968)
attributed to premature sampling. Premature sampling in

5We used the property that θ(t) approaches a step function when β/n

becomes large to validate the code for the time-varying model. With
model parameters chosen in this way, the G2 values for the standard
and time-varying models become progressively more similar to each
other and indistinguishable in the limit.
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the RDM task, as in other dynamic noise tasks, is
a plausible psychological consequence of a process in
which discriminative information only becomes available
progressively, some time after stimulus onset.

Another way to predict fast errors was recently proposed
by Voss et al. (2019), who assumed that, rather than
evidence being accumulated by a diffusion process, it
is accumulated by a Lévy process. A Lévy process is
a stochastic process composed of a superposition of a
continuous, diffusion-like process and a jump process, like
a Poisson process, in which the jumps are of varying
magnitudes (Bertoin, 1996). The presence of jumps in
the process increases the likelihood of random boundary
crossings early in evidence accumulation and allows the
model to predict fast errors. However, Voss et al. provided
no strong arguments for why evidence accumulation should
be represented cognitively by the more complex Lévy
process, apart from fact that it can predict fast errors.
In contrast, the model proposed here requires no change
in the standard assumption that evidence accumulation is
represented by a diffusion process. Also, unlike the model of
Voss et al., whose predictions have no explicit mathematical
form and must be obtained by Monte Carlo simulation,
the predictions for the time-varying diffusion model are
mathematically explicit and computationally tractable.

Unlike the standard diffusion model, we were able to
characterize the RT distributions in the Dutilh et al. (2019)
data using a time-varying model without variability in
nondecision time, st . For a number of well-studied decision
tasks, the fit of the standard model is appreciably improved
if the nondecision time, Ter, is assumed to be random rather
than fixed (Matzke & Wagenmakers, 2009). The leading
edges of the RT distributions predicted by the standard
model are often sharper than those in empirical distributions
and fits are improved by treating Ter as a random variable
rather than as fixed. Estimates of Ter variability in the
RDM task are usually fairly large, but we showed that, for
most participants, the st component of variability could be
omitted from the model without worsening the fit. Although
the time-varying model is more complex than the standard
model in its assumptions about drift and diffusion rates,
this complexity is offset by gains in parsimony elsewhere—
specifically, the fact that we were able to fit the model using
only a single source of across-trial trial variability.

Our working hypothesis was that the violations of
selective influence in the standard model found by Dutilh
et al. (2019) may be artifacts of the time-varying nature
of the decision process. If so, then we expected that these
effects would be eliminated by using a model that takes
the time course of stimulus processing into account. This
hypothesis was partially, but not completely, supported.
For the standard model, we found a substantial number
of selective influence violations involving both mean

nondecision time, Ter, and nondecision time variability,
st . For the time-varying model, we found the number
of violations of selective influence involving Ter was
reduced—at least according to the BIC—and they were
greatly reduced in magnitude, and we were able to
fit the model with no st variability. However, the
violations involving mean drift rate, ν, were more persistent.
According to the BIC, these violations were present for
less than half the participants, but they were large enough
to produce highly significant group-level differences. Our
hypothesis was these violations may be due to the time-
varying nature of the decision process interacting with
differences in the total amount of information sampled
under speed and accuracy instructions. Contrary to our
hypothesis, however, these violations of selective influence
were also found for the time-varying model.

To explain them, we proposed an elaboration of the
time-varying model that assumed that the instruction to
go fast leads to a loss in sampling precision in the
perceptual encoding of stimuli, which we suggested may
be attentional in origin. Reduced sampling precision under
speed instructions is represented in the model by a change in
the relative proportions of stimulus-dependent and stimulus-
independent diffusion noise. The consequence of a loss of
sampling precision is to make participants more prone to
premature sampling under speed instructions. The inclusion
of instruction-dependent sampling noise, a × σ2, in the
model improved the fit for the majority of participants, but
there was a minority for whom it was further improved
by inclusion of the a × ν interaction. These effects were
found only for some participants, but, as they also have
been reported by previous authors, we think they are likely
to be real ones. For those participants for whom model
a × σ2 + a × ν was the preferred model, the fits imply that
instructions affected both the mean and the noisiness of the
stimulus information entering the decision process.

Apart from the overall quality of the fit, one of the
most persuasive pieces of the evidence for the time-varying
model is the estimated evidence growth function, θ(t), in
Fig. 7. The figure shows that the evidence entering the
decision process grows during the first 400 ms after stimulus
onset and then reaches an asymptote. This estimate agrees
nicely with the temporal integration time for the RDM task
reported byWatamaniuk and Sekuler (1992) and reproduced
in Fig. 2. Although there have been other estimates of the
critical duration in the RDM task, and some authors have
found no evidence for a critical duration, several studies
have corroborated Watamaniuk and Sekuler’s estimate and,
qualitatively, their data appear particularly regular and
compelling. The 400 ms critical duration also agrees with
the piecewise LBA fits of Holmes et al. (2016), who found
the change in drift rates estimated from the model lagged
the change in the stimulus by around 400 ms.
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The finding that the reduction in coherence thresholds
in the RDM follows a square-root law (Watamaniuk, 1993)
suggests that the computation of drift rate may involve some
form of averaging or weighted averaging of local motion
vectors up to the critical duration. Evidence for such an
averaging process was recently provided by Ratcliff and
Smith (2020) who studied performance in the RDM task
at a range of different stimulus exposure durations. They
reported the counterintuitive finding that accuracy increased
with exposure duration, as expected, but that RTs, instead
of becoming shorter, became longer. This pattern of RT
and accuracy could be captured in the standard diffusion
model by assuming that mean drift rates were constant, or
relatively constant, after the first 100 ms of exposure, but
that drift rate standard deviation, η, progressively decreased
throughout the first 400 ms. A decrease in η would be
predicted if drift rates depend on the average of noisy
motion vectors within a fixed temporal window, because η

would then be proportional to the standard error of the mean.
These RT and accuracy properties can also be captured by a
version of the dynamic noise model of Smith et al. (2014),
but at the cost of making more complex representational
assumptions than the ones we have made here. Our goal
here was not to provide a process model of drift rates in the
RDM task, but to compare constant and time-varying drift
rate models using the fewest assumptions.

A larger aim of our study was to serve as a piece of
advocacy for time-varying models. Despite the widespread
use of visual tasks in the study of evidence accumulation
models, the field as a whole has shown little interest in the
temporal properties of the evidence entering the decision
process. This is despite the existence of an established
literature on visual temporal sensitivity that has developed
methods for characterizing it in detail (Gorea & Tyler,
1986; Watson, 1986). The consistent message to have come
out of this literature is that there are no step functions
in vision. This message is at odds with the majority of
evidence accumulation decision models that assume time-
homogeneous evidence accumulation.

There are two likely reasons for the lack of inter-
est in fine-grained temporal dynamics among deci-
sion researchers. One is the notable success of time-
homogeneous decision models in accounting for a large
body of experimental data, to a degree that has few paral-
lels elsewhere in psychology. The other is an understandable
wish not to further complicate what are already complex
models. However, failures of selective influence like those
reported by Dutilh et al. (2019) call this pragmatic stance
into question. There has been an increasing tendency in
the field to equate violations of selective influence—or vio-
lations of particular authors’ interpretations of what the
selective influence assumptions should be (Jones & Dzha-
farov, 2014; Sun & Landy, 2016)—with a failure of the

model as a whole. This, to us, is the wrong interpretation
of such failures. We believe the correct interpretation is to
acknowledge that the standard diffusion model (or the stan-
dard LBA) is likely to be at best an approximation that
will work well when the temporal dynamics of the task
are fast, but that will break down when they are slow. We
have argued that the psychophysical evidence suggests that
the dynamics of the RDM task are slow. To go beyond the
simple empirical finding of a violation of selective influ-
ence to an understanding of its cause requires us to enlarge
the model space. The most productive way to do this, we
believe, is to develop submodels of the processes that com-
pute the evidence entering the decision process. In such an
enriched framework, models can act as lenses that allow
us to ask and answer very focused questions about under-
lying processes. Our sampling precision model embodies
the kind of focused, theory-driven question that can be for-
mulated in this way. Further selective-influence studies that
provide more examples of violations of assumptions in an
atheoretical way are likely to be unproductive.

There are, potentially, further benefits to thinking about
the decision process in the RDM task as time-varying
rather than time-homogeneous. An issue that cuts across
the issue of selective influence violations considered in
this article is the issue of “collapsing decision bounds.”
A question that has occasioned lively debate in the recent
literature is whether decision boundaries remain constant
or decrease (i.e., converge) during the course of a trial.
The debate, and the evidence that has been marshalled on
both sides of it, takes in neuroscience (Gold & Shadlen,
2003), mathematical optimality theory (Drugowitsch et al.,
2012; Malhotra et al., 2018), and computational modeling
(Hawkins et al., 2015; Palestro et al., 2018; Voskuilen et al.,
2016; Voss et al., 2019). The relevance of this debate to our
current study is that many of the studies that have yielded
evidence for collapsing decision bounds have used the RDM
task (Hawkins et al., 2015; Palestro et al., 2018). Model
comparison studies have compared fixed and collapsing-
bounds versions of the diffusion model in which the drift
and diffusion rates are constant within a trial, but our
analysis suggests that these models may be too limited to be
truly diagnostic of the underlying processes.

We have carried out simulations of a time-varying
diffusion model described by Eq. 2 and the growth rate
function of Eq. 8 and fit the simulated data with fixed-bound
and collapsing-bound decision models. We used the integral
equations of Voskuilen et al. (2016, Appendix B) to generate
predictions and hyperbolic decision boundaries similar to
those typically used to characterize neural data (Churchland
et al., 2008; Hanks et al., 2011; Voskuilen et al., 2016). We
found that a process with time-varying drift rates and fixed
bounds was better fit in all cases by a model with collapsing
bounds if there was no across-trial variability in the model.
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However, if there was across-trial variability in nondecision
time with st of around 200 ms, then a fixed-bound model
tended to be preferred. In either instance, the resulting fits
are a reflection of the time-varying nature of drift and
diffusion rates. When there is no st term in the model,
time-varying drift and diffusion rates are misidentified as
collapsing boundary effects, but if st is included, then these
changes can be compensated for, at least in part, by allowing
the onset time of the decision process to be random. We
think that the selective influence violations involving st in
the standard diffusion model we found here are a product of
the same kind of compensation process.

The issue of collapsing versus fixed decision bounds
raises several theoretical issues that are beyond the scope
of this article, and which we take up elsewhere, such
as whether, and under what circumstances, a model with
collapsing bounds is equivalent to one with a time-varying
“urgency signal” (Churchland et al., 2008), possibly acting
in concert with novelty-based stimulus encoding (Cisek
et al., 2009). Our point here is simply that we believe
the collapsing-bounds debate, like the selective influence
debate, has been less illuminating than it might have been
otherwise because it has restricted itself to a limited set of
theoretical alternatives.

Conclusions

In this article we re-examined the pervasive evidence of
selective influence violations found in the Dutilh et al.
(2019) blinded model validation study. We hypothesized
that the violations may be a reflection of the psychophysical
properties of the RDM task itself, which has slow temporal
dynamics, and refitted the full set of data using a model
in which drift and diffusion rates increased progressively
over time. The time-varying model yielded a better fit to the
data than did the standard diffusion model, and was able to
account for the data using only a single source of across-
trial variability rather than three. Estimates of the time
course of the evidence entering the decision process yielded
an integration time of around 400 ms, in good agreement
with estimates of the critical duration in the RDM task
in the visual psychophysics literature. Although violations
of selective influence in the time-varying model were not
eliminated, they were reduced relative to the standard
model. Our study suggests that the standard diffusion
model, which assumes abrupt-onset drift and diffusion rates,
may provide a good description of performance in tasks
in which the time course of stimulus processing is fast,
but may have difficulty with tasks like the RDM task,
in which the time course of stimulus processing is slow.
These difficulties may manifest themselves as violations of
selective influence. Instead of further atheoretical selective

influence studies, we argue that the field would most benefit
by considering an enlarged model space, in which the time
course of the evidence entering the decision process is
characterized theoretically and modeled in an explicit way.
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Appendix A: Integral-equation
representations of first-passage time
densities for time-varying diffusionmodels

In this appendix we outline the derivation of the kernel
of the integral equation, �(ai, t | aj , τ ), in Eq. 7 and
give the discretized forms of Eqs. 5 and 6 that we used
to generate predictions for our time-varying model. A
comprehensive tutorial introduction to the integral equation
method providing full mathematical details may be found in
Smith (2000).

The most general diffusion process, Xt , is governed by a
stochastic differential equation of the form

dXt = μ(x, t) dt + σ(x, t) dWt , (A1)

in which the drift rate and diffusion coefficient depend both
on time, t , and on the position of the process in the evidence
space, x. Buonocore et al. (1990) showed that for a large
class of diffusions the kernel of the integral equations has
a particular form, given in Eq. A7 below, which depends
on the existence of a coordinate mapping that transforms
the process Xt into a standard Wiener, or Brownian motion,
process, with zero drift rate and unit variance. The state and
time coordinates, x∗ and t∗, of the transformed process are
related to the coordinates of the original process, x and t , by
a pair of functions

x∗ = �̄(x, t) (A2)

t∗ = 
(t). (A3)
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The new state coordinate is a function jointly of the old state
and time coordinates, while the new time coordinate is a
function of the old time coordinate alone. (Note carefully
the overbar notation in Eq. A2, which distinguishes the state
mapping variable function from the kernel function itself.)

The existence of the coordinate transformation in
Eqs. A2 and A3 depends on the existence of a pair of
functions c1(t) and c2(t) of time only, which relate the
drift and diffusion coefficients of the process described by
Eq. A1 in a prescribed way. For the general equation A1,
the expression relating the drift and diffusion coefficients
is somewhat complicated (Ricciardi and Sato, 1983, Smith,
2000, Equation 48), but for the special case in which the
drift rate is μ(x, t) and the diffusion coefficient is σ 2(t),
that is, in which the drift rate may depend on both state
and time but the diffusion coefficient depends only on time,
the relation is simpler (Smith et al., 2014; Appendix B).
Specifically, it is

μ(x, t) = σ(t)

2
c1(t) + x

2

[
c2(t) + σ 2′(t)

σ 2(t)

]
. (A4)

In this equation, σ 2′(t) is the derivative of the diffusion
coefficient with respect to time. If functions c1(t) and c2(t)

can be found that satisfy this equation, then the functions
transforming the process Xt into a zero-drift, unit variance,
Wiener process have the form

x∗ = �̄(x, t) = exp

[
−1

2

∫ t

c2(s) ds

] ∫ x dy

σ(t)

−1

2

∫ t

c1(s) exp

[
−1

2

∫ s

c2(z) dz

]
ds (A5)

t∗ = 
(t) =
∫ t

exp

[
−

∫ s

c2(z) dz

]
ds. (A6)

For a diffusion process with fixed boundaries, ai , i = 1, 2,
the kernel of the integral equation �(ai, t | aj , τ ) in Eq. 7
can be written in terms of the coordinate transformation
functions (Gutiérrez Jáimez et al., 1995; Smith, 2000,
Equation 56) as

�(ai, t | aj , τ ) = f (ai, t | aj , τ )

2

×
{

�̄ ′
t (ai , t)

�̄ ′
x(ai , t)

−
[
�̄(ai , t)−�̄(aj , τ )

]


(t)−
(τ)


′(t)
�̄ ′

x(ai , t)

}

.

(A7)

In this equation, �̄ ′
x(ai, t) and �̄ ′

t (ai, t) are the partial
derivatives of �̄(·) with respect to state and time,
respectively, and 
′(t) is the derivative of 
(·) with respect

to time. The function f (ai, t | aj , τ ) is the transition density
of the process Xt , unconstrained by boundaries, expressed
in terms of the functions that transform the process from the
old to the new coordinates (Smith, 2000, Equation 51),

f (ai, t | aj , τ ) = 1√
2π[
(t) − 
(τ)]

exp

{

−[�̄(ai , t) − �̄(aj , τ )]2
2[
(t) − 
(τ)]

}

�̄ ′
x(ai , t).

(A8)

In Eqs. A7 and A8, the notation �̄ ′
x(ai, t) should be

interpreted to mean �̄ ′
x(x, t)

∣∣
x=ai

. Together, Eqs. A7 and
A8 give the kernel function of the integral equations that
allow the first-passage time densities to be computed.

For the time-varying model of Eq. 4, the drift rate is
μ(x, t) = μθ(t), which depends on time but not state, and
the diffusion coefficient is σ 2(t) = σ 2

1 θ(t) + σ 2
2 . For this

process, Eq. A4 takes the form

μθ(t) =
√

σ 2
1 θ(t) + σ 2

2

2
c1(t)+ x

2

[

c2(t) + σ 2
1 θ ′(t)

σ 2
1 θ(t) + σ 2

2

]

.

(A9)

Because the left-hand side of Eq. A9 does not depend on x,
the term in square brackets on the right-hand side must be
zero to make it an identity. We therefore obtain

c1(t) = 2μθ(t)
√

σ 2
1 θ(t) + σ 2

and

c2(t) = − σ 2
1 θ ′(t)

σ 2
1 θ(t) + σ 2

.

To evaluate Eqs. A5 and A6, we need the integral of c2(t),
which is -log[σ 2

1 θ(t) + σ 2
1 ]. (We omit the constant of

integration because the expression for the kernel involves
differences of functions evaluated at two different points
in time from which constants of integration drop out.)
Substituting this expression into Eqs. A5 and A6 and
simplifying yields

�̄(x, t) = x − μ

∫ t

θ(s) ds (A10)

and


(t) = σ 2
1

∫ t

θ(s) ds + σ 2
2 t . (A11)
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Substituting these expressions into Eq. A8 and evaluating
�̄(x, t) at x = ai and x = aj yields the kernel of the
integral equation

�(ai , t | aj , τ ) = 1
√
2π[σ 2

1

∫ t

τ
θ(s) ds + σ 2

2 (t − τ )]

exp

⎧
⎪⎨

⎪⎩
−

[
ai − aj − μ

∫ t

τ
θ(s) ds

]2

2[σ 2
1

∫ t

τ
θ(s) ds + σ 2

2 (t − τ )]

⎫
⎪⎬

⎪⎭

× 1

2

{

−μθ(t) − ai − aj − μ
∫ t

τ
θ(s) ds

[σ 2
1

∫ t

τ
θ(s) ds + σ 2

2 (t − τ )] [σ 2
1 θ(t) + σ 2

2 ]
}

,

(A12)

which is Eq. 7 in the text. Equation A12 used in Eqs. 5
and 6 gives the first-passage time probability densities
gA(a1, t | z, 0) and gB(a1, t | z, 0), which are the predicted
joint decision-time densities in the model.

To evaluate Eqs. 5 and 6 numerically, we discretize them
and evaluate them on the mesh k�, k = 1, 2, . . .. The
discretized forms of the equations (Buonocore et al., 1990,
Smith, 2000, Equations 47a and 47b) are

gA(a1, k� | z, 0) = −2�(a1, k� | z, 0)

+2�
k−1∑

j=1

gA(a1, j� | z, 0)�(a1, k� | a1, j�)

+2�
k−1∑

j=1

gB(a2, j� | z, 0)�(a1, k� | a2, j�),

(A13)

and

gB(a2, k� | z, 0) = 2�(a2, k� | z, 0)

−2�
k−1∑

j=1

gA(a1, j� | z, 0)�(a2, k� | a1, j�)

−2�
k−1∑

j=1

gB(a2, j� | z, 0)�(a2, k� | a2, j�),

(A14)

for k = 2, 3, . . .. For k = 1, the equations reduce to

gA(a1, � | z, 0) = −2�(a1, � | z, 0) (A15)

and

gB(a2, � | z, 0) = 2�(a2, � | z, 0). (A16)

Equations A13 and A14 represent the first-passage time
densities at time k� as functions of their values at preceding
times j�, j < k, and of the kernel function Eq. A8.
Buonocore et al. (1987) proved that if the kernel is chosen

according to Eq. A8, then the discrete approximations
converge to the true first-passage densities as � → 0.
Equations A13 to A16 provide a computationally efficient
and numerically stable way to obtain predictions for a model
with time-varying drift and diffusion rates. Voskuilen et al.
(2016, Appendix B) gave complementary expressions for
obtaining first-passage time densities for a Wiener diffusion
process with constant drift and diffusion rates through time-
varying boundaries, which they used to evaluate collapsing-
bounds models.

Appendix B: Parameterization of themodels

In this appendix we describe the way in which we
parameterized the standard and time-varying diffusion
models in fitting them to data. The effects of bias in the
collapsed Dutilh et al. (2019) data set were represented
by a three-level factor that describes whether stimuli were
presented with low, equal, or high frequency. Response bias
in the standard diffusion model is represented by the starting
point for evidence accumulation, z. An unbiased decision-
maker will set the starting point equidistantly between
the decision boundaries, z = a/2, whereas a decision-
maker who is biased towards one of the responses will
set the starting point closer to the associated boundary so
that the response is made with less evidence. Collapsing
the data over left and right responses as was done in the
Dutilh et al. (2019) study implies a symmetry constraint
on response bias: If the bias towards the correct response
for high-frequency stimuli is z, then the bias towards the
correct response for low-frequency stimuli must be −z. To
further reduce the number of bias parameters, we expressed
starting point as a proportion of the distance between the
two boundaries, a. To do so, we defined a relative starting
point parameter, πz, by the relation z = (1 + πz) a/2. The
parameter πz varies between −1 and +1, with πz = 0
corresponding to z = a/2, which represents the absence of
bias. The advantage of parameterizing bias in relative rather
than absolute terms is that a single parameter can be used to
represent response bias with different boundary separations.

In addition to response bias, many studies have found
evidence for stimulus bias, in which evidence for the two
responses accumulates at unequal rates, as first proposed
by Ashby (1983). Stimulus biases are often found in
tasks like recognition memory, in which evidence for old
and new items accumulate at different rates (Ratcliff &
Smith, 2004; Starns et al., 2012). In its most general
form, stimulus bias requires two drift rate parameters per
discriminability condition to represent it, but it can often be
modeled with fewer parameters by using a drift criterion,
cν , which assumes that unequal drift rates are the result of
a stimulus bias process whose effects are constant across
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discriminability levels. Specifically, if νA and νB are the
drift rates for the two stimuli, then the drift criterion
model assumes that νA = ν − cν and νB = −ν +
cν . When there is only one discriminability level in the
experiment this representation does not result in any net
savings in the number of free parameters, but when there
are k conditions in the experiment, it allows drift rate to
be parameterized with k + 1 rather than 2k parameters.
Along with response bias, we investigated whether varying
the relative frequencies of two stimuli within a block
affected the rates at which evidence accumulated for the
two responses. To do so, we assumed that there were two
mean drift rates parameters, ν(h) and ν(e), for hard and easy
stimuli. With the addition of a drift criterion, the drift rates
for hard and easy, high, equal, and low frequency stimuli
were ν(h)−cν , ν(e)−cν , ν(h), ν(e), ν(h)+cν , and ν(e)+cν ,
respectively. Of the teams who fit the full diffusion model in
the Dutilh et al. (2019) study, only one of them (Trueblood,
Holmes, & Visser) appears to have considered models with
drift rate bias.

To complete the models, we assumed that there were
two boundary separation parameters, a(s) and a(a), for
speed and accuracy conditions, a single drift rate variability
parameter, η, two starting point variability parameters for
speed and accuracy conditions, sz(s) and sz(a), a mean
nondecision time, Ter, and a nondecision time variability
parameter, st . We made the usual assumptions that drift
rates were normally distributed and starting points and
nondecision times were uniformly distributed. For these
latter sources of variability, sz and st denote the ranges of the
uniform distributions. To facilitate investigation of selective
influence, we parameterized the distribution of nondecision
times by its leading edge rather than by its midpoint. Under
this parameterization the average nondecision time for
models in which nondecision time variability was nonzero
was Ter + st /2. For the time-varying models, there were
three additional parameters: the rate and shape parameters,
β and n, of the growth rate function θ(t) in Eq. 9 and the
premature sampling noise parameter, σ 2, in Eq. 4.

To fit the models to data we assumed that RT was
the sum of independent decision time and nondecision
time random variables and that drift rate, μ, was normally
distributed across trials with mean ν and standard deviation
η. We obtained predictions for models with drift rate
and nondecision time variability by numerically integrating
Eqs. A13 and A14 across the distribution of μ and then
numerically convolving the marginal joint distributions
with the discretized distribution of nondecision times.
Because mixing (numerical integration) and convolution
are commutative, the order in which they are performed is
immaterial, so we only needed to compute the convolution
once for each marginal distribution rather than for each
value of the integrand.
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