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ABSTRACT
Background Wolf–Hirschhorn syndrome (WHS) is a
contiguous gene deletion syndrome involving variable
size deletions of the 4p16.3 region. Seizures are
frequently, but not always, associated with WHS. We
hypothesised that the size and location of the deleted
region may correlate with seizure presentation.
Methods Using chromosomal microarray analysis, we
finely mapped the breakpoints of copy number variants
(CNVs) in 48 individuals with WHS. Seizure phenotype
data were collected through parent-reported answers to
a comprehensive questionnaire and supplemented with
available medical records.
Results We observed a significant correlation between
the presence of an interstitial 4p deletion and lack of a
seizure phenotype (Fisher’s exact test p=3.59e-6). In our
cohort, there were five individuals with interstitial
deletions with a distal breakpoint at least 751 kbp
proximal to the 4p terminus. Four of these individuals
have never had an observable seizure, and the fifth
individual had a single febrile seizure at the age of
1.5 years. All other individuals in our cohort whose
deletions encompass the terminal 751 kbp region report
having seizures typical of WHS. Additional examples
from the literature corroborate these observations and
further refine the candidate seizure susceptibility region
to a region 197 kbp in size, starting 368 kbp from the
terminus of chromosome 4.
Conclusions We identify a small terminal region of
chromosome 4p that represents a seizure susceptibility
region. Deletion of this region in the context of WHS is
sufficient for seizure occurrence.

INTRODUCTION
Wolf–Hirschhorn syndrome (WHS; OMIM
#194190) is a genetic disorder occurring in
1:20 000 to 1:50 000 births.1 Females are approxi-
mately twice as likely as males to be affected.2 The
syndrome was first described by Hirschhorn and
Cooper in a preliminary report in 1961 and later
formalised with back-to-back publications by
Wolf et al and Hirschhorn et al in Humangenetik
in 1965.3 WHS is characterised by a specific
pattern of craniofacial features including a wide
nasal bridge that extends to the forehead, widely
spaced eyes, distinct mouth, short philtrum, micro-
gnathia, prenatal and postnatal growth delay, intel-
lectual disability (ID) and seizures.2–12 Following
identification of these features, WHS has historic-
ally been diagnosed by karyotype and/or FISH.

Submicroscopic deletions associated with this dis-
order have more recently been identified by
chromosomal microarray analysis (CMA).
In addition to the core features of WHS listed

above, additional highly variable clinical features of
WHS include, but are not limited to, feeding diffi-
culties, congenital heart defects, hearing loss, skel-
etal anomalies, kidney and urinary tract
malformations, and ophthalmological and dental
abnormalities.2 Terminal deletion resulting in
partial monosomy of chromosome 4p is the most
common cause of WHS. Interstitial deletions,
unbalanced translocations, ring chromosomes and
other complex genetic rearrangements can also give
rise to WHS.2 4 5 As a result, deletions associated
with WHS are highly variable in size and genetic
content, potentially causing or contributing to the
variability in presentation of this disorder.
Two adjacent regions, located approximately

1.8–2.0 Mbp from the 4p terminus, are each pro-
posed to be the minimal region of deletion neces-
sary to observe the core WHS features. These
regions were identified based on determination of
the smallest region of overlap (SRO) of individuals
with WHS. The first critical region described was a
165 kbp interval encompassing part of the WHSC1
gene and all of the WHSC2 (NELFA) gene.6 These
genes play a role in the regulation of key bone dif-
ferentiation genes7 and regulation of DNA replica-
tion and cell-cycle progression.8 The identification
of two patients with the WHS phenotype who have
more distal deletions led to the proposal that the
critical region (designated WHSCR2) lies in an
adjacent, 300–600 kbp interval that includes the 50

end of WHSC1 and the entirety of LETM1, a can-
didate seizure gene9–11 (figures 1 and 2).
Epilepsy represents a major clinical challenge

during early years, with significant impact on
quality of life. Seizures occur in over 90% of indivi-
duals with WHS with onset typically within the
first 3 years of life and are often induced by low-
degree fever.12 The most frequently occurring
seizure types are generalised tonic–clonic seizures,
tonic spasms, complex partial seizures and clonic
seizures. Unilateral/generalised clonic or tonic–
clonic status epilepticus occurs in 50% of indivi-
duals with WHS.12

A significant challenge to understanding the gen-
etics of WHS is the identification of a gene or
genes that, when in hemizygous state, give rise to
the core features and variable co-morbidities of
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WHS. Because WHS is a contiguous gene deletion syndrome,
loss of one copy of a single gene or the synergistic effects of loss
of two or more genes could give rise to the features of WHS.
One such gene, LETM1, falls within WHSCR2 and has been
proposed as a candidate seizure gene,9 13–15 due to the sug-
gested pathogenic link between mitochondrial dysfunction and
epilepsy.16 The protein encoded by LETM1 localises to mito-
chondria and functions in Ca2+ homeostasis, oxidative stress
prevention and ATP generation.17–19 Consistent with the
hypothesis that LETM1 is a seizure susceptibility gene, heterozy-
gous Letm1± mice, as well as rats with a lentiviral-mediated
Letm1 knockdown, demonstrate increased seizure susceptibility
in response to kainic acid or pilocarpine seizure induction.15 19

Despite this evidence, LETM1 is not likely to be the sole
seizure susceptibility gene in the 4p region. In recent years,
increased awareness of the diagnostic features of WHS within
the medical community, coupled with the advent of high-
resolution cytogenetic methods, has led to the identification and
characterisation of submicroscopic 4p deletions. Some of these
deletions suggest that LETM1 deletion is neither necessary nor
sufficient for the expression of a seizure phenotype in indivi-
duals with WHS4 5 20–26 and have led to the proposal of alter-
native candidate seizure genes.27

Here, we present the identification of a seizure-susceptibility
region by the use of high-density microarray analysis combined
with parent-reported seizure phenotypes. A relatively large,
48-individual cohort was recruited through partnership with the
4p- Support Group.28 Evaluation of deletion coordinates and
seizure phenotypes in this cohort identified a likely seizure sus-
ceptibility region within the 751 kbp terminal region of
chromosome 4p. Combining these data with cases described in
the literature, we narrowed this seizure susceptibility region to a

region 197 kbp in size that includes two genes and one pseudo-
gene. We also describe the types of seizures associated with
WHS observed in our cohort and the response to antiepileptic
medications reported by our cohort. Our study demonstrates
the potential value of using high-resolution CMA for the diag-
nosis and medical management of seizures associated with
WHS.

METHODS
This retrospective study correlated clinical genetic testing
results from high-resolution CMA with clinical traits related to
WHS. Clinical feature data were collected using a comprehen-
sive parent-completed questionnaire (provided in online sup-
plementary materials), coupled with a review of available
medical records. This study was approved by the University of
Utah Institutional Review Board. Informed consent and/or
parental authorisation, as appropriate, was obtained for each
patient.

Patient cohort
Forty-eight individuals with a diagnosis of WHS, along with
their parents, consented to this study during one of two national
meetings of the 4p- Support Group held in July 2012 in
Indianapolis, Indiana, and July 2014 in Harrisburg,
Pennsylvania.28 In total, 28 females and 20 males with WHS,
with an average age of 11.2 years, were recruited into this study
(table 1).

Clinical and molecular cytogenetic studies
All cytogenetic analyses were performed through regular clin-
ical services in clinical laboratory improvement amendments
(CLIA)-certified laboratories. All genomic coordinates for

Figure 1 Size and relative locations of 4p deletions of 34 patients with no other clinically reportable CNV findings (henceforth designated as
‘individuals with only 4p deletions’). The deletions of individuals with seizures are shown in red. Deletions of individuals without seizures are shown
in blue. The Wolf–Hirschhorn syndrome (WHS) critical regions 1 and 2 (WHSCR1 and WHSCR2) are shown in black; all patients with the exception of
patient 33 have deletion encompassing both critical regions. Patient 33’s deletion partially overlaps with WHSCR2 only and excludes LETM1. Patient
34’s deletion starts 751 kbp from the 4p terminus and is the patient deletion that lies closest to the 4p terminus. All chromosome coordinates for
this patient group are given in online supplementary table S1.
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CNVs are reported herein using human reference sequence
hg19/GRCh37. All patients (exceptions noted below) were
physician referred for clinical microarray testing to Lineagen
(Salt Lake City, Utah, USA). Testing for these patients was done
using Lineagen’s custom 2.8M probe SNP-based microarray.

The Affymetrix Chromosome Analysis Suite (ChAS) software
was used for CNV detection (Affymetrix, Santa Clara,
California, USA). Exceptions to the above were as follows: a
2.7M probe Cytogenetics Array (Affymetrix) was performed by
Lineagen on patients 35 and 40. Patients 12, 17 and 45 obtained
prior clinical CMA from other CLIA laboratories, and these
patients provided a copy of their laboratory reports for analysis.

Phenotype analysis
Phenotype data were collected through parent-reported answers
to a comprehensive questionnaire developed by Battaglia et al29

(see online supplementary materials). This questionnaire cap-
tures the health, medical profile, developmental history, and
treatment responses of individuals with WHS. For the present
study, we focused our attention on the presence or absence of
seizures, age of seizure onset, types of seizures, antiepileptic
drugs (AEDs) used and responses to these AEDs, as well as
responses to the ketogenic diet. For cases with incomplete,
contradictory or unclear parental responses, medical records of
patients were consulted. When available medical records were
also incomplete, ‘no answer’ is indicated in the relevant text
and tables.

Figure 2 Mapping a candidate
seizure propensity region on
chromosome 4. Bars show deletion
sizes and locations of small 4p
terminal or interstitial deletions in the
4p region that help define a 197 kbp
seizure susceptibility region. The
smallest region of overlap between
three patients with seizures is shown
as a green bar, ‘SEIZURE REGION’.
This region is supported by patients
from our cohort (patient numbers
labelled on Y-axis) as well as from the
literature who have deletions excluding
the seizure region and lack seizures
(blue indicates no seizures) and
patients who have deletions including
the seizure region who have seizures
(red indicates a seizure phenotype).
Patient data from the literature are
indicated along the Y-axis by citation
followed by the number of the patient
as assigned in the citation in
parentheses. Correspondingly, ‘Zollino
2014 (3 and 4)’ labels the size and
location of the deletion shared by
siblings, patients 3 and 4, in Zollino
et al 27. Landmarks such as the Wolf–
Hirschhorn syndrome (WHS) critical
regions 1 and 2 (WHSCR1 and
WHSCR2) are shown (black), as well as
the location of the LETM1 gene
(black). Coordinates are given in base
pairs (bps) along the X-axis. Ellipses
(…) indicate that the deletion extends
further than shown. Chromosome
coordinates for all deletions and
regions shown in this figure are given
in online supplementary table S4.

Table 1 Clinical and molecular cytogenetic findings of the study
cohort

Total participants 48 Female:male 28:20

Average age 11.2 years Range 0.9–38 years
Initial diagnosis by
karyotype/FISH

88% (30/34) Initial diagnosis
by CMA

12% (4/34)

Size range of 4p deletion 1.7–33.9 Mbp Number of
genes deleted

28–207

Individuals with a second
CNV

29% (14/48) Average size of
second CNV

3.2 Mbp (range
51.3 kbp to
8.3 Mbp)

Individuals with only a 4p
deletion by deletion type

Interstitial: 5 Terminal: 29

CMA, chromosomal microarray analysis.
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Statistical methods
Two-tailed Fisher’s exact test was used for comparing the group
of individuals with interstitial 4p deletions to the group with
terminal deletions and their seizure phenotypes. Significance
was defined as p<0.01.

RESULTS
Table 1 shows the age and gender characteristics of this study
cohort. Prior to this study, the initial diagnosis of WHS was
made by individuals’ physicians using clinical assessment and a
combination of G-banded karyotyping and FISH, or CMA
(table 1). Fourteen individuals did not indicate which method(s)
were used in their initial diagnosis.

Physician-ordered CMA was performed on the 44 individuals
comprising the cohort who had not already had chromosomal
microarray testing done as part of their diagnostic work up. The
array used was a custom 2 784 985-probe chromosomal micro-
array to achieve high-resolution mapping of the 4p deletion
breakpoints, as well as to define the breakpoints of any other
clinically reportable CNVs that could be detected (see online
supplementary table S1).

Twenty-nine per cent of our cohort had a second deletion or
duplication involving either chromosome 4 or another chromo-
some. This percentage is in keeping with previous studies of
chromosomal rearrangements associated with WHS4 (table 1).

Some of the second CNVs in our cohort are pathogenic,
while others are of unknown clinical significance. The patho-
genic CNVs are associated with developmental delay, ID, autism
spectrum disorder, dysmorphic features and seizures. The break-
points of all patients’ 4p deletions, as well as the breakpoints of
the second CNV if present, and the association of this second
CNV to any clinical features are shown in online supplementary
tables S1 and S2.

Consistent with previous studies,30–33 we found that 90%
(43/48) of our cohort had seizures, which were of early onset
(see online supplementary tables S1 and S2), were often brought
on by fever (25/41 individuals reported having febrile seizures)
and tended to wane in frequency during the preteen years. All
seizure types surveyed (tonic–clonic, tonic, clonic, myoclonic,
absence, atonic, complex partial, simple partial, atypical and
status epilepticus) were detected in this cohort. The seizure
types most commonly reported in our WHS cohort are shown
in table 2.

Mapping a seizure susceptibility candidate region
To identify a region conferring a genetic susceptibility to sei-
zures, we evaluated the 34 patients in our cohort with only 4p
deletions. Figure 1 shows the deletions of this group aligned by

size and location. All individuals in this group have deletions
that encompass both critical regions WHSCR1 and WHSCR2
except for patient 33, whose deletion only overlaps WHSCR2
but not WHSCR1.

We asked whether 4p deletion size and genetic content correl-
ate with seizure severity by first examining the records of the
five individuals with the smallest terminal deletions in our
cohort, patients 29–33 (figures 1 and 2). Their deletions range
in size from 1.7 to 2.2 Mbp. Typically, individuals with small 4p
terminal deletions less than 3.5–6 Mbp in size exhibit the
mildest phenotypes, including seizure phenotypes.1 34–36

Notably, four of these five individuals (patients 29, 31, 32 and
33) reported having severe seizure phenotypes, indistinguishable
in terms of seizure types, frequency or response to AEDs (see
online supplementary table S1) from the rest of the cohort with
larger deletion sizes. Patient 33 is noteworthy because her dele-
tion does not remove LETM1, the purported candidate seizure
gene, yet her seizures are consistent with WHS. We thus observe
that in our cohort, small terminal 4p deletions including one
that does not include LETM1 can result in severe seizure
phenotypes.

In contrast, we identified four individuals, patients 18, 21, 24
and 34, who did not have seizures as well as one additional indi-
vidual, patient 10, who is considered as not having seizures, as
explained below. All of these individuals have interstitial dele-
tions that leave, minimally, the terminal 751 kbp of chromo-
some 4p intact (blue bars, figure 1). Patient 10 had the largest
interstitial 4p deletion, 14.6 Mb in size, who had one febrile
seizure at age 1.5 years associated with a kidney infection.
Having an isolated febrile seizure is an unusual presentation for
WHS-associated epilepsy; in accordance with his medical
records and parent answers on our survey, we scored him as not
having WHS-related seizures. Taken together, these data show
that deletion of the terminal 751 kbp of chromosome 4p, not
monosomy of LETM1, correlates with an epileptic phenotype
(p=3.59e-6) using a two-tailed Fisher’s exact test (see online
supplementary table S3).

We turned to the literature to determine if other rare intersti-
tial deletions or small terminal deletions would support or
refute the hypothesis that the deletion of the terminal region of
4p correlates with a seizure phenotype. Nine additional cases of
non-related individuals with WHS and without seizures have
been previously described in the literature.1 22 27 34 37 38 Their
reported deletion sizes and locations are shown in figure 2,
along with the deletions of patients from our cohort who lack
seizures (blue bars). Also included in figure 2 are three small
interstitial deletions described by Andersen et al,20 all of which
encompass at least portions of the WHSC1 and LETM1 genes.
The three individuals with these deletions show features of
WHS but do not meet the minimal diagnostic criteria for the
syndrome and do not have seizures.20 Strikingly, 16 out of 17
individuals without seizures have interstitial deletions, most of
which result in monosomy of LETM1 while leaving the terminal
751 kbp intact. The exception to this observed correlation was
an 11-year-old girl without seizures who had a ∼3.7 Mbp ter-
minal deletion that also removes LETM1 (Van Buggenhout
2004, patient 1) (figure 2). The corresponding chromosome
coordinates for all these patients are given in online supplemen-
tary table S4.

One individual described by Van Buggenhout et al22 was a
clinically normal patient with a history of multiple miscarriages
and no seizures. This patient was found to have a 0.3 Mbp ter-
minal deletion (Van Buggenhout 2004 patient 6, figure 2) using
a BAC array. While the lower resolution of BAC arrays must be

Table 2 Most frequently reported seizure types

Type
Individuals with
only 4p deletion

Individuals with 4p deletion
and an additional CNV

Tonic–clonic 19/24 (79%) 9/13 (69%)
Absence 12/24 (50%) 8/13 (62%)

Status epilepticus 10/24 (42%) 7/13 (54%)
Complex partial 8/24 (33%) 3/13 (23%)
Myoclonic 5/24 (21%) 5/13 (38%)

Note that data from the following are not included in the table: five individuals who
have only 4p deletions do not have seizures. An additional five individuals in the
cohort with only 4p deletions do have seizures but did not specify the type of
seizures they had, and so could not be included in this table. One individual with
multiple CNVs had seizures but also did not specify kind.
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taken into account, the deletion in this individual nevertheless
suggests that a deletion encompassing approximately 0.3 Mbp
of the 4p terminus does not contribute to the seizure phenotype
or any other characteristic traits of WHS.

Next, we searched the literature for examples of individuals
with seizures who had the smallest described terminal and inter-
stitial deletions of chromosome 4p. The deletions of 12 such
individuals, including five from our cohort, are shown (figure 2,
red bars). Eight individuals in this group have terminal deletions
and four have interstitial deletions, all of which affect at least
the distal-most 500 kbp of chromosome 4p. Most notably,
Zollino et al27 have recently described two siblings, with a
paternally inherited 564 kbp terminal deletion (figure 2, Zollino
2014, patients 3 and 4). Both siblings, as well as their father,
have a history of seizures.

A 1.58 Mbp interstitial deletion of a 33-month-old girl over-
laps with the deletions of patients 3 and 4 from Zollino et al.27

This patient, described by Izumi et al,25 presented with a typical
WHS seizure phenotype. The SRO shared by the deletions of
these three patients can therefore be used to define a seizure sus-
ceptibility region 197 kbp in length, starting with the distal
coordinate defined by the Izumi patient and the proximal coord-
inate defined by the two Zollino siblings (figures 2 and 3).
There are two genes and one pseudogene in this region:
ZNF721, encoding a zinc-finger containing protein of unknown
function, PIGG, a member of the phosphatidylinositol glycan
anchor biosynthetic pathway, and ABCA11P, a pseudogene with
sequence similarity to ATP-binding cassette, subfamily A genes
(figure 3).

As our cohort and cases described in the literature have
shown, individuals with interstitial 4p deletions that leave this
candidate region intact (with the exception of patient 1 from
Van Buggenhout et al22) do not have seizures. Conversely, dele-
tion of this region gives rise to seizures. These observations
suggest that deletion of this region is both necessary and suffi-
cient for the seizure phenotype in individuals with WHS.

Treatment responses
Study participants reported 19 different AEDs, as well as the keto-
genic diet and homeopathic approaches, to control seizures, with
varying degrees of success (table 3, see online supplementary
tables S1 and S2). The responses of the four most commonly used
seizure medications in this cohort are shown in table 3, with leve-
tiracetam and valproic acid showing the most positive responses
within this group. These observations are consistent with previous

studies reporting that valproic acid, used alone or in combination
with ethosuximide, is the effective treatment for atypical absences
common to individuals with WHS.32 39

In table 3, we summarise the reported responses. AEDs were
scored as positive if the patient’s parents reported without
prompting that the drug gave a significant and observable
increase in control over seizures. AED responses were scored as
negative if the patients’ parents reported a negative reaction
(allergic reaction or other) without prompting that caused them
to stop using that drug, or if the drug conferred no control over
seizures.

DISCUSSION
Genotype–phenotype correlation studies of patients with WHS
have met with limited success primarily because (1) the preva-
lence of the disorder is low and therefore assembling a study
cohort large enough to achieve statistical power to find signifi-
cant correlations is difficult; (2) the phenotypic presentation of
WHS is highly variable and likely influenced by a number of
both genetic and environmental factors and (3) accurate break-
point mapping has only become possible within the last decade,
and the majority of individuals with a diagnosis of WHS avail-
able for such studies have not had CMA as part of their diag-
nostic workup. In this study, we have attempted to address these
challenges by (1) partnering with the world’s largest support
group for WHS, the 4p- Support Group, in order to assemble a
relatively large cohort; (2) collecting phenotypic information
from parents using a highly detailed questionnaire and (3)
employing high-resolution clinical CMA to map deletion break-
points as well as identify any additional CNVs that could con-
tribute to phenotype.

Because seizures affect approximately 90% of all individuals
with WHS and can greatly influence the quality of life for these
individuals, we focused our analysis on seizures. By fine

Figure 3 Two genes and a
pseudogene lie within the 197 kbp
seizure candidate region, PIGG,
ZNF721, and pseudogene ABCA11P.
The location of this region on
Chromosome 4 is shown with the
green bracket. hg19/GRCh37
coordinates for this region:
chr4:367691–564593. (Screenshot is
from Golden Helix GenomeBrowse
visualisation tool V.2.1.0 by
GoldenHelix, Inc.46)

Table 3 Responses to the four most commonly reported seizure
medications

Phenobarbital
(n=13)

Levetiracetam
(n=13)

Topiramate
(n=11)

Valproic
acid (n=11)

Negative
reports

5 1 4 2

Positive
reports

0 4 1 2
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mapping the 4p deletion breakpoints of our cohort, we describe
a 751 kbp terminal 4p candidate seizure region. The deletion of
this region correlates strongly with the presence of seizures, and
its preservation, as in cases of the interstitial WHS deletions we
described, correlates with the absence of seizures. Rare intersti-
tial and submicroscopic terminal deletions described in the lit-
erature not only support the idea that deletion of this region is
necessary for seizure phenotype but also support the idea that
its deletion is sufficient for predisposition to seizures. In particu-
lar, three individuals described in the literature, two of whom
are siblings, allowed us to further refine the boundaries of the
candidate seizure susceptibility region to a locus 197 kbp in size,
starting 368 kbp from the terminal end of chromosome 4.

This 197 kbp region encompasses two genes and one pseudo-
gene. ZNF721 encodes a zinc-finger-containing protein of
unknown function, PIGG encodes a member of the phosphati-
dylinositol glycan anchor biosynthetic pathway and ABCA11P is
a pseudogene with sequence similarity to ATP-binding cassette,
subfamily A. While not much is known about the biological
function of ZNF721, several intriguing lines of evidence indi-
cate PIGG as an excellent candidate seizure susceptibility gene.

PIGG encodes one of 26 members of a biosynthetic pathway
involved in assembling and attaching the phosphatidylinositol
glycan (GPI) anchor to a group of over 150 proteins.40 The GPI
anchor serves to attach these proteins to the outer leaflet of the
plasma membrane where they carry out various signalling and
extracellular functions. Deficiencies in GPI anchor synthesis
have been linked to disorders of congenital glycosylation, all of
which are autosomal recessive and are associated with infantile
encephalopathy, ID, and/or seizures.40–42 Further work is neces-
sary to characterise PIGG’s role as a candidate seizure suscepti-
bility gene. We note that if its deletion alone is sufficient to
cause seizures, it would be the first description of haploinsuffi-
ciency for a GPI anchor biosynthetic gene. This may be consist-
ent with the proposed importance of stoichiometry in the PIGG
protein’s role in the biosynthetic pathway, in which it functions as
a catalytic component and competes with phosphatidylinositol
glycan anchor biosynthesis protein, class O (PIGO) for binding
to phosphatidylinositol glycan anchor biosynthesis protein, class
F (PIGF) in order to add an ethanolamine-phosphate side chain
to a mannose moiety.40 Alternatively, deletion of one copy of
PIGG always occurs in the context of the deletion of other 4p
terminal genes in cases of WHS; it may be that the deletion of a
combination of genes in the WHS region acts synergistically to
predispose individuals to seizures.

There are significant similarities shared between the two con-
ditions, WHS and Dravet syndrome. Dravet syndrome is charac-
terised by early-onset seizures including febrile, afebrile,
generalised/unilateral clonic, myoclonic, focal, and atypical
absence seizures. These seizures can be prolonged and often are
intractable to pharmacotherapies, leading to cognitive, motor
and behavioural impairment.43 Individuals with WHS display a
distinctive electroclinical pattern resembling the severe myo-
clonic epilepsy of infancy or Dravet syndrome.30 In addition,
some patients with a milder presentation of WHS-related dys-
morphologies are sometimes first suspected of having Dravet
syndrome, as attested by published studies in which SCN1A
sequencing was conducted and found to be negative in at least
two cases21 27 until the true cause, a deletion of the 4p ter-
minus, was identified. Furthermore, carbamazepine and lamotri-
gine have been shown to exacerbate seizures in both individuals
with WHS as well as individuals with Dravet syndrome.2 44

In zebrafish, there is an ortholog of SCN1A that corresponds to
human SCN1B that has also been linked to Dravet syndrome,

designated scn1bb. The Rohon–Beard neurons of zebrafish
require functional Scn1bb protein, as well as the phosphatidylino-
sitol biosynthetic pathway, for touch sensitivity. Nakano et al45

showed that zebrafish mutants that lack functional members of
the phosphatidylinositol biosynthetic pathway, or morpholino
knockdown of members of this pathway, result in the failure of
the sodium channel Scn1bb to localise correctly to the plasma
membrane. This observation could provide an intriguing mechan-
istic link between seizures in WHS and Dravet syndrome.43

Our study includes some limitations. To assess seizure pheno-
types, we relied almost solely on parental answers to our ques-
tionnaire, with limited contribution from medical records. A
follow-up study in which EEG recordings are analysed and cor-
related with genetic findings would be a valuable extension of
the observations we present here. Our data on AED responses
suggest that certain AEDs may be more effective than others at
achieving early seizure control and warrants further study. Our
interpretation of the seizure susceptibility region is based on
five individuals whose lack of a seizure phenotype can change
with time. Despite this fact, now that the average age of these
five individuals (6.8 years) is well beyond the typical average
age of seizure onset, we remain optimistic that seizure presenta-
tion in this group has already distinguished itself from typical
WHS seizure presentation. Patient 1 described in Van
Buggenhout et al22 who lacks both the candidate seizure sus-
ceptibility terminal region described here as well as LETM1
and yet who does not have seizures, highlights the complexity
of this region and emphasises that the knowledge of genetic
contributions to seizures is incomplete. It is highly likely that
there are multiple seizure susceptibility genes in the 4p region,
and that final seizure presentation is a result of the lack or pres-
ence of the unique genetic and environmental combinations
that can result.

We find that the use of whole genome CMA for the genetic
characterisation of individuals with WHS is valuable, since it
provides a significantly higher resolution of breakpoint coordi-
nates than does karyotyping. Additional CNVs frequently occur
in this population,4 yet on average are smaller than would be
detectable even by high-resolution karyotyping (see online sup-
plementary table S2), and can therefore be easily missed. In add-
ition, the presence or absence of a terminal 197 kbp deletion is
most effectively detected using CMA. Further investigation of
the relationship of genetics to the clinical manifestations of
WHS using high-resolution mapping techniques as well as
whole-genome sequencing will lead to a deeper understanding
of the molecular underpinnings of this complex disorder as well
as an improvement of medical treatments for these individuals.

On a final note, the identification of a relatively small candi-
date seizure region now affords the opportunity to create
loss-of-function knockouts of candidate genes in model organ-
isms to confirm that haploinsufficiency of such genes is sufficient
to increase seizure susceptibility and also to perform functional
studies that will further elucidate the mechanism of these genes’
functions in health and disease. Using such an approach, preci-
sion medicine for complex genetic disorders such as contiguous
gene disorders becomes possible.
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