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Background: Multidrug resistant (MDR) Acinetobacter baumannii causes

serious infections in intensive care units and is hard to be eradicated by

antibiotics. Many A. baumannii isolates are identified as the mucoid type

recently, but the biological characteristics of mucoid A. baumannii and their

interactions with host cells remains unclear.

Methods: The mucoid phenotype, antimicrobial susceptibility, biofilm-

forming ability, acid resistance ability, peroxide tolerance, and in vivo toxicity

of clinical ICUs derived A. baumannii isolates were first investigated. Secondly,

the phagocytic resistance and invasive capacity of A. baumannii isolates to

macrophages (MH-S, RAW264.7) and epithelial cells (A549) were analyzed.

Furthermore, the abundance of C3b (complement factor C3 degradation

product) deposition on the surface of A. baumannii was investigated. Last,

the relationship between C3b deposition and the abundance of capsule in

A. baumannii isolates were analyzed.

Results: These A. baumannii strains showed different mucoid phenotypes

including hyper mucoid (HM), medium mucoid (MM), and low mucoid

(LM). All tested strains were MDR with high tolerance to either acid or

hydrogen peroxide exposure. Notably, these mucoid strains showed the

increase of mortality in the Galleria mellonella infection models. Besides,

the HM strain exhibited less biofilm abundance, higher molecular weight

(MW) of capsule, and greater anti-phagocytic activity to macrophages than

the LM strain. Together with the increased abundance of capsule, high

expression of tuf gene (associated with the hydrolysis of C3b), the HM

strain effectively inhibits C3b deposition on bacterial surface, resulting in the

low-opsonization phenotype.
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Conclusion: Capsular characteristics facilitate the anti-phagocytic activity in

hyper mucoid A. baumannii through the reduction of C3b deposition. Mucoid

A. baumannii exhibits high phagocytosis resistance to both macrophages and

epithelial cells.

KEYWORDS

A. baumannii, anti-phagocytosis, C3b deposition, capsule, mucoidity

Introduction

The increasing prevalence of pan drug-resistant Gram-
negative bacteria, especially the carbapenem resistant
Acinetobacter spp., constitutes a great threat to public health and
food safety (1). Carbapenem resistant Acinetobacter baumannii
(CRAB) accounts for 53.7% among the A. baumannii isolates in
2020, China (2). About 78.2% of CRAB are isolated from ICUs,
both adults and the elderly are more susceptible to A. baumannii
(2). Environmental persistence and drug resistance enable the
nosocomial thriving of A. baumannii (3). Due to the frequent
acquisition of external genes related to antibiotic resistance and
virulence, A. baumannii showed extensive stress tolerance to
desiccation, antibiotics, and disinfectants (4). It is estimated
that there are more than 45,000 infections in the United States,
and one million cases globally per year caused by such pathogen
(5). Recently, mucoid A. baumannii isolates, often associated
with chronic infections, are multidrug resistant (MDR) with
altered bacterial virulence (6). Besides, the increased blood
derived isolates suggest the occurrence of phagocytic resistance
in A. baumannii (7). Due to the elevated persistence, mucoid
bacterial pathogens could not be eliminated by host immune
systems, posing a threat to public health worldwide (8).

Due to the overproduction of capsular polysaccharide,
mucoidity phenotype is an important adaptive defense response
to the external pressure in pathogens (6, 9). Previous works
have showed that matt (not glossy) A. baumannii strains
evolve to the mucoid phenotype in vivo, and antibiotics
such as chloramphenicol and erythromycin could promote the
bacterial hypermucoid state (10, 11). Meanwhile, alterations
between non-mucoid and mucoid phenotypes have also
been reported in other pathogens such as Pseudomonas
aeruginosa and Klebsiella pneumoniae under external stresses
of antibiotics, oxygen deficiency, and immune response
(12, 13). Moreover, mucoidity usually aggravates infections
through regulating the increased expression of bacterial virulent
factors. For example, hypermucoviscosity is a major phenotype
associated with hypervirulence in K. pneumoniae, leading to
invasive infections (metastatic dissemination) in adults (9, 14).
Therefore, mucoidity promotes the survival of pathogens under
harsh niches. Although certain mucoid related phenotypic
characteristics have been elucidated, the relationship among

mucoidity, virulence, and phagocytosis in A. baumannii
remains unclear.

Macrophages play a pivotal role in exterminating bacterial
pathogens, while many bacteria evolve adaptive strategies
to circumvent the clearance of macrophages such as anti-
phagocytosis (15, 16). For example, the negatively charged
capsule is resistant to phagocytosis through the charge
repulsion, resulting in the inhibition of alternative complement
(17). These mucoid pathogens covered with capsule are anti-
phagocytic, subsequently promoting the dissemination with
increased mortality (8, 10). However, the underlying mechanism
of mucoidity in anti-phagocytosis are poorly elucidated. A better
understanding of the mucoidity in A. baumannii may shed light
on the development of alternative interventions to minimize the
potential impact of such pathogens.

In this study, we found mucoid A. baumannii strains
were MDR and showed resistance to acid and peroxide
exposure. Then we observed the hypermucoid strain resistance
to the phagocytosis. The anti-phagocytic phenotype was
associated with the high MW capsule through reducing the
deposition of C3b.

Results

Mucoid phenotype, biofilm-forming
ability, and toxicity of Acinetobacter
baumannii isolates

We analyzed the general biological characteristics of
A. baumannii strains 119, 108, and 176 isolated from
ICUs. These strains show perceptible differences in mucoid
abundance by viscous string analysis (Figure 1A), classifying
as hypermucoid (HM) (A. baumannii 119), medium mucoid
(MM) (A. baumannii 108), and low mucoid (LM) (A. baumannii
176). The mucoviscosity were further confirmed based on the
low-speed centrifugation method (Figure 1B). Besides, all three
isolates were subject to the whole genome sequencing (WGS).
Virulence factors of pathogenic bacteria (VFDB) analysis of
the WGS data reveled the absence of csuA/BABCDE locus
[relating to the capability of biofilm formation and immune
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evasion (18)] in the HM strain, which was consistent with the
phenotype of poor biofilm-forming ability and high mortality
to Galleria mellonella (Figures 1C,D and Supplementary
Figure 1). However, although there is no resistance genes
including aac(6’)-lb-cr, msr(E), mph(E), and sul1/sul2, the
HM strain shows resistance to ciprofloxacin, clindamycin,
erythromycin, and trimethoprim/sulfamethoxazole (Table 1,
Supplementary Table 4, and Supplementary Figure 1A). It
consists with the previous observation that decreased drug
penetration contributes to antibiotic resistance in mucoid
A. baumannii isolates (6). Taken together, the HM strain is MDR
with poor biofilm-forming ability and high toxicity.

Mucoid Acinetobacter baumannii is
resistant to acid and hydrogen
peroxide

We evaluated the growth rate of LM, MM, and HM isolates
under either acid or hydrogen peroxide (H2O2) conditions,
respectively. Both the LM and the MM strains enter into the
stationary phase after 20 h, whereas the LM strain shows a
sharp logarithmic phase (Figure 2A). In contrast, the HM
strain remains at the logarithmic growth phase at 24 h, which
may be due to high metabolic cost of mucus production.
Moreover, the LM strain is more sensitive to H2O2 than the
MM strain (Figure 2B), consisting with the lower transcript
levels of catalase associated genes katE and katG in LM than MM
(Figure 2C). Meanwhile, the expression level of katE and katG
are highly associated with the mucoid phenotype (Figure 2C).
These results demonstrate that the mucoid A. baumannii
isolates are tolerance to the exposure of either acid or hydrogen
peroxide.

Mucoid Acinetobacter baumannii
shows anti-phagocytic phenotype

To compare the invasion of these A. baumannii isolates,
we co-cultured the strains with mouse lung macrophages
(MH-S), mouse monocyte macrophages (RAW 264.7), and
human alveolar basal epithelial cells (A549), respectively. Given
that the growth of these strains shows no difference in
cell culture media (Supplementary Figure 2), the LM, MM,
and HM strains were first incubated with MH-S and RAW
264.7, respectively. Colistin (100 µg/mL) was used to eradicate
the extracellular bacteria without causing cytotoxicity to
mammalian cells (Supplementary Figure 3). The intracellular
bacteria always appeared early in the macrophages infected with
LM (Figures 3A–C), suggesting a positive relevance between
mucoid phenotype and anti-phagocytic ability. The viable
counts of internalized LM is higher than the others. Meanwhile,
we excluded the explanation that the cytotoxicity of LM, MM,

and HM to cells is response for such difference (Supplementary
Figure 4). Moreover, we found that there is less intracellular HM
in epithelial cells as well (Figure 3D). To further explore whether
mucoid bacteria are resistance to phagocytosis, we examined the
anti-phagocytic ability of K. pneumoniae. Compared to the low
mucoid K. pneumoniae WNX-2, high mucoid K. pneumoniae
ATCC 43816 hardly invade macrophages (Supplementary
Figure 5), indicating a general behavior of anti-phagocytosis in
pathogens with the mucoid phenotype. Altogether, we find that
the mucoid A.baumannii shows anti-phagocytic activity to both
macrophages and epithelial cells.

Mucoid Acinetobacter baumannii
reduces C3b deposition

The increased C3b deposition on bacterial surface facilities
phagocytosis through enhancing opsonization (19). We
evaluated the relative abundance of C3b deposition on mucoid
bacteria using flow cytometry. Results show that the strain
with lower mucus has a higher abundance of C3b deposition
among the LM, MM, and HM strains. C3b on LM was nearly
three-time higher than the others (Figure 4A). Given that
the HM and MM strains show no difference in C3b positive
signals, we hypothesized that the consumption of C3b could
also reduce its deposition on bacteria. Compared to the MM
strain, the transcriptional level of translation elongation factor
(tuf ) (relating to C3b hydrolysis) is relatively high in the HM
isolate (Figure 4B), indicating the greater consumption of C3b
in HM (20). Besides, the similar content of lipooligosaccharide
(LOS) in the LM, MM, and HM isolates, implied that the release
of LOS is not a major cause of the different anti-phagocytic
activities (21, 22). These results suggest that the HM strain
shows potent anti-phagocytic activity through the reduction of
C3b deposition and high potential of C3b hydrolysis.

Capsule reduces the deposition of C3b

Capsular polysaccharide mediates anti-phagocytic activities
by reducing the C3b deposition on bacterial surface (23,
24). Therefore, we investigated the capsular difference in LM,
MM, and HM using the zwitterionic TPE-Pn++ (with strong
membrane-penetrating capability) and monocharged TPE-N+

(unable to stain bacteria with capsular) (25). Results indicate
that the HM strain carries a thick capsule (Figure 5A and
Supplementary Figure 7). The capsular differences are further
evaluated using the alcian staining. The MM strain produces the
highest amount of capsule, and the HM strain shows the highest
molecular weight of the produced capsule (Supplementary
Figure 11), indicating that the yield and composition of capsule
varies in mucoid isolates.

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.879361
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-879361 September 10, 2022 Time: 20:36 # 4

Gong et al. 10.3389/fmed.2022.879361

FIGURE 1

Mucoid phenotype, biofilm production and toxicity of mucoid A. baumannii strains. (A) Stretching of the colonies on an agar plate. Inserted
table showed the length of viscous string and phenotype of isolates (bottom). K. pneumoniae ATCC 43816 was used for hypermucoviscous
control. Scale bar = 1 cm. (B) Measurement of mucoviscosity of different strains. (C) Quantitative analysis of biofilm abundance in A. baumannii
isolates at 24 h. Experiments in panels (A–C) were performed as three biologically independent experiments, and the mean ± SD was shown. P
values were determined using an unpaired, two-tailed Student’s t-test. (D) Survival rates of G. mellonella larvae. Infected larvae (n = 7) with
A. baumannii (1.0 × 106CFU) at the right posterior gastropod. P values were determined using the two-sided, log[rank] (Mantel–Cox) test.

TABLE 1 Minimal inhibit concentration (MIC) values (µg/mL) of A. baumannii isolates.

Strains β -Lactam Aminoglycoside Tetracycline Fluoroquinolone Polypeptide

CAR MER CAZ GEN TET CIP COL

119 >128 128 128 4 >128 128 0.125

108 >128 128 128 >128 128 32 0.125

176 >128 >128 128 >128 >128 64 0.25

ATCC 17978 >128 128 128 >128 4 128 0.25

ATCC 19606 >128 64 128 >128 4 128 0.25

ATCC 25922 4 <0.03 0.25 1 2 <0.008 0.125

CAR, carbenicillin; MER, meropenem; CAZ, ceftazidime; GEN, gentamycin; TET, tetracycline; CIP, ciprofloxacin; COL, colistin. ATCC 17978, ATCC 19606, and ATCC 25922 were
obtained from American Type Culture Collection, and the other bacteria tested are clinical isolates from a hospital in Zhejiang, China. E. coli ATCC 25922 was the standard quality
control strains for AST tests. Additionally, A. baumannii ATCC 17978 and ATCC 19606 are reference strains.

The MM isolate has less C3b deposition with high capsular
production, consisting with the decreased C3b deposition
potential in high capsular strains (Figure 4). To further
decipher the correlation between C3b deposition and capsular

production, we introduced a capsular reversible and hyper-
production A. baumannii model (Figure 5B). The inducing
agent (chloramphenicol) has no cytotoxicity to macrophages
(Supplementary Figures 8B, 9). We observed that the decreased
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FIGURE 2

Mucoid A. baumannii shows tolerance to acid and hydrogen peroxide. (A) Growth dynamics of A. baumannii LM, MM, and HM strains under
different pH conditions for 24 h. (B) H2O2 tolerance of A. baumannii LM, MM, and HM strains. A. baumannii strains were treated with 50 mmol/L
H2O2 for 30 min. WT: A. baumannii ATCC 19606. (C) The mRNA expression of catalase genes katE and katG in WT and mucoid A. baumannii
isolates. All experiments were performed as three biologically independent experiments, and the mean ± SD was shown. P values were
determined using an unpaired, two-tailed Student’s t-test.

C3b deposition potentiated the anti-phagocytic activity in
capsular hyper-produced A.baumannii (Figures 5C,D).

The efficiency of C3b depositionis modulated by the
capsular structure including the hydroxyl group and the
backbone length of polysaccharide chain (26–28). According
to the capsular classification database (27–29), the HM, MM,
and LM isolates are classified as types of K2, K82, and K14
(Figure 5E), respectively. Compared to K82, K2 has shorter
backbone while longer length of polysaccharide (10), resulting
in a better anti-phagocytic activity through effectively inhibiting
the deposition of C3b (Figure 3). Altogether, the abundance and
composition of capsule reduces the deposition of C3b, resulting
an anti-phagocytic activity in the hyper mucoid A. baumannii.

Discussion

In the present study, we explored the biological
characteristics of clinical ICUs derived A. baumannii strains.
Results show that the hyper mucoid isolate is MDR with high
tolerance to the exposure of either acid or hydrogen peroxide.
Besides, the HM strain exhibits greater anti-phagocytic to both
macrophages and epithelial cells than the LM strain. Further
analysis reveals that the enhanced anti-phagocytosis is related
to the reduction of C3b deposition in mucoid A. baumannii.

Due to the lack of csuA/BABCDE locus (relating to
biofilm formation) (30), the HM strain exhibits poor biofilm-
forming ability in vitro. However, the phenotype of MDR
and virulence are inconsistent with the genotypes in mucoid
A. baumannii. Though no relevant drug-resistance genes are
sequenced, the HM strain shows MDR due to the poor
penetration of antibiotics on the mucoid bacterial surface (10).
Such phenotype has been reported in H. pylori, P. aeruginosa,
and A. baumannii (31–35). Furthermore, compared to the
same virulence-associated genes in LM strain, the HM strain
shows high mortality in the G. mellonella infection model.
Last, the hyper mucoid A. baumannii shows the elevated
molecular weight in capsular polysaccharide, reduced C3b
deposition, and enhanced anti-phagocytic activities. Previous
works demonstrate that the capsular polysaccharide prevents
the C3b mediated phagocytosis in mammal cells (26, 28, 36). It
suggests a potential relationship between capsule and mucus in
A. baumannii (9, 37–39), however, the underlying mechanism
remains unclear.

Mucoid phenotype is a crucial defense response under
external stresses for bacterial pathogens (6, 8, 10, 40). Generally,
hyper mucoid isolates with enhanced anti-phagocytic activity
often cause persistent blood infections (8, 10, 35). Capsular
polysaccharide targeted therapeutic approaches might facilitate
bacterial clearance by elevating the opsonic activity of host cells,
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FIGURE 3

Hypermucoviscous A. baumannii shows anti-phagocytic phenotype. (A) Internalized A. baumannii in macrophages. MH-S cells are infected with
A. baumannii (MOI = 10) for 4 h. Bacteria were labeled with pHrodo (green). F-actin and nuclei were labeled with rhodamine phalloidin (red) and
DAPI (blue), respectively. Scale bar = 20 µm. (B–D) Viable counts of the internalized A. baumannii in MH-S cells (B), RAW 264.7 (C), and A549
cells (D), infected with mucoid A. baumannii at MOI of 10 for 2–12 h. All experiments were performed as three biologically independent
experiments, and the mean ± SD was shown.

providing a novel insight to the treatment of mucoid pathogens
associated infections.

Materials and methods

Bacterial strains and mammalian cells

All bacterial strains used in this study were listed in
Supplementary Table 1. Routinely, bacteria were cultured
at 37◦C in brain heart infusion (BHI) (Beijing Land Bridge
Technology, Shanghai, China) medium with shaking at
200 rpm (revolution per minute). A549 and RAW 264.7
cells (Supplementary Table 2) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Thermo Fisher Scientific,
Waltham, MA, United States). MH-S cells (Supplementary

Table 2) were cultured in Roswell Park Memorial Institute
(RPMI)-1640 medium (Thermo Fisher Scientific, Waltham,
MA, United States). All the media were supplemented with
10% heat inactivated fetal bovine serum (FBS) (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, United States)
and 1% (w/v) penicillin-streptomycin (Solarbio Life Science,
Shanghai, China).

String test and mucoviscosity assay

The A. baumannii isolates were evaluated by string test as
described previously (41). All tested strains were cultured on
sheep blood agar plate (5%) overnight at 37◦C, then a single
bacterial colony was stretched with an inoculation loop. The
mucoviscosity assay was performed by low-speed centrifugation
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FIGURE 4

Hypermucoviscous A. baumannii reduces C3b deposition. (A) Representative histograms of anti-C3b fluorescence in A. baumannii (left).
Quantitative analysis of C3b-positive bacteria (right). PE-A as the anti-C3b fluorophore. 10,000 events were collected per condition for flow
cytometry, gated for singlets via FSC/SSC, fluorescence gate set to exclude 99% of isotype control and copied across samples ran in parallel.
(B) The mRNA expression of translation elongation factor tuf in WT and mucoid A. baumannii. All experiments were performed as three
biologically independent experiments, and the mean ± SD was shown. P values were determined using an unpaired, two-tailed Student’s t-test.

(39). Briefly, the tested strains were incubated in Luria-Bertani
broth (LB) (Beijing Land Bridge Technology, Shanghai, China)
at 37◦C with shaking overnight. Then cultures were centrifuged
at 1,000 g for 5 min. The absorption of supernatant was
measured under the wavelength of 600 nm using an Infinite
M200 Microplate reader (Tecan).

Biofilm-forming assay

The biofilm abundance was detected following a previously
described method with some modifications (42). Briefly, 100 µL
of 1 × 106 CFUs/mL A. baumannii strains was cultured
in Mueller–Hinton broth (MHB) (Land Bridge Technology,
Beijing, China) at 37◦C for 24 h. The densities of bacteria
transferred to new wells were measured under the wavelength of
600 nm by Infinite M200 Microplate reader. Then the original
wells were washed three times with sterile phosphate buffered
saline (PBS), following the air-drying, and 1% crystal violet
stanning. The bound dye was resolubilized in 95% ethanol and
the absorption of the dye solution was measured under the
wavelength of 600 nm by Infinite M200 Microplate reader.

In vivo toxicity test

The virulence of A. baumannii isolates were evaluated
in vivo using the G. mellonella larvae infection model as
previously described (43). The healthy larvae (0.25–0.35 g)
of G. mellonella (purchased from Huiyude Biotech Company,
Tianjin, China) were randomly divided into four groups (n = 7
per group) and infected with 10 µL of A. baumannii strains
suspension (1.0 × 106CFUs) at the right pleopod and the other
groups were injected with an equal volume of PBS. Survival rates
of G. mellonella were recorded for 2 days.

Antibacterial susceptibility test, acid
resistance, and H2O2 tolerance

The antibacterial susceptibility test was performed by
broth microdilution according to the Clinical and Laboratory
Standards Institute (CLSI) guideline (44). Briefly, antibiotics
were two-fold diluted in MHB and mixed with an equal volume
of bacterial suspensions in MHB containing approximately
1.5× 106 CFUs/mL in a clear, UV-sterilized, 96-well plate. After
16–20 h incubation at 37◦C, minimal inhibit concentration
(MIC) were defined as the lowest concentrations of antibiotics
with no visible growth of bacteria.

For acid tolerance assay, fresh prepared bacteria were
dilution by 1:100 in LB broth (pH 7.0), mixed with an equal
volume of pH 4.0 medium in a 96-well microplate. The growth
dynamics were recorded under the wavelength of 600 nm
with an interval of 1h at 37◦C measured by Infinite M200
Microplate reader.

Fresh prepared cultures were adjusted to McFarland
turbidity of 0.5 and diluted in 4 mL BHI broth. The bacterial
suspensions were treatment with 50 mmol/L H2O2 (Sinopharm
Chemical Reagent Co., Shanghai, China) for 30 min, following
by plating serial dilution on BHI agar plates. Then the CFUs
were counted after incubating at 37◦C for 24 h.

Confocal laser scanning microscopy
analysis

MH-S cells were plated on glass coverslips (14 mm,
NEST Life and Science Technology Co., Wuxi, China)
in 24-well culture plates to form monolayers. Then the
cells were infected with pHrodo Green-labeled (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, United States)
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FIGURE 5

Capsular changes decreases the C3b deposition. (A) Confocal images of single charged probe TPE-N+ (20 µM) and zwitterionic probe
TPE-Pn++ (20 µM). Scale bar = 5 µm. (B) Scheme of the introduction of hyper-production of capsule in A. baumannii. (C) CFUs of internalized
bacteria in MH-S cells. Cells are infected with chloramphenicol-treated (10 µg/mL) A. baumannii ATCC 17978 at MOI of 10 for 4 h.
(D) Quantitative analysis of C3b-positive bacteria by flow cytometry. Experiments in panels (C,D) were performed as three biologically
independent experiments, and the mean ± s.d. was shown. P values were determined using an unpaired, two-tailed Student’s t-test.
(E) Structural prediction of the repeating unit in capsule from mucoid A. baumannii.

A. baumannii strains [multiplicity of infection (MOI) = 10]
for 4 h, following fixating in 4% paraformaldehyde for
20 min. F-actin and nuclei were labeled with ActinRed555

ReadyProbes (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, United States) and DAPI (Beyotime Biotechnology,
Shanghai, China), respectively. Images were captured using a
Leica SP8 confocal microscope, and Z-axis sections were cut

every 3 µm to analyze the location of internalized bacteria.
Images were analyzed and merged by LAS AF Lite software
(Leica Biosystems, Germany).

Bacterial imaging assay was performed as described
previously (25). Specifically, fresh prepared bacterial
cultures were washed and resuspended with 200 µL
PBS. Then the bacterial solutions were transferred into
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a sterilized EP tube with probe solutions (20 µmol/L)
and incubated at room temperature for 30 min. After
that, 10 µL of the stained bacteria was transferred to a
piece of clean glass slide and then covered by a coverslip
for fixation. Images were collected and analyzed by LAS
AF Lite software.

Cell infection

The cell infection assay was performed as described
previously, with some modifications (45). Mammalian cells with
4 × 105 were seeded at 24-well plates to form monolayers.
Then, bacterial resuspensions were diluted in DMEM or RPMI-
1640 medium supplemented with 1% FBS and cocultured
with cells at an MOI of 10. At the end of the trials, cells
were incubated for an additional 30 min with 100 µg/mL
colistin to remove the extracellular bacteria. After washing
with PBS, the cells were lysed by DMEM or RPMI-1640
medium supplemented with 0.1% Triton-X 100 (Beyotime
Biotechnology Co., Shanghai, China). The harvested bacteria
were plating on BHI agar plates with different dilutions for the
Colony-count technique to quantify the number of internalized
bacteria. In the capsule-induced model, chloramphenicol
(10 µg/mL) was added to the bacterial suspensions for the
stress maintenance.

Capsule extracting and staining

Extraction of A. baumannii capsule was performed as
described previously with some modifications (46). Briefly,
cultures were resuspended with 200 µL lysis buffer (60 mmol/L
Tris, pH8; 10 mmol/L MgCl2; 50 µml/L CaCl2; 20 µg/mL
DNase and RNase; and 3 mg/mL lysozyme), then incubated
at 37◦C for 1 h. Following vortex and three repeated
liquid nitrogen/37◦C freeze-thaw cycles, additional DNase
and RNase were added and incubated at 37◦C for 30 min.
About 10 µL 10% SDS was then added and incubated
at 37◦C for another 30 min. The suspensions were boiled
at 100◦C for 10 min and then incubated at 60◦C with
protease K for 1 h. After centrifugation, the supernatants
were retained and precipitated overnight in pre-cooling 75%
ethanol, followed by pelleting, air-drying, resuspending with
SDS sample buffer at a volume normalized based on OD600 and
boiling for 5 min.

Samples were separated on 4–20% BioRad TGX Tris-
glycine gels (Bio-RAD, Hercules, CA, United States). After
electrophoresis, the gel was washed with deionized water and
stained with a solution of 0.1% (w/v) of Alcian Blue 8GX (Sigma-
Aldrich, Merck, Germany) for 1 h. Gels were decolorized by
placing in a pH 4.75 solution containing 40% ethanal and 60%
20 mmol/L sodium acetate for overnight.

Capsule-induced model

Method of capsule induction was performed as described
previously, with some modifications (10). About 10 µg/mL
chloramphenicol was added to logarithmic phase bacteria. After
overnight incubation, the capsule of A. baumannii strains was
extracted and analyzed with alcian blue staining.

C3b deposition assay

For quantifying the C3b deposition, previously described
method was used with some modification (47). Briefly,
A. baumannii isolates were cultured overnight and adjusted
to McFarland turbidity 0.5, then 100 µL bacterial suspension
was mixed with 100 µL mouse serum and incubated at 37◦C
for 30 min. After PBS washing, samples were incubated with
antibodies against mouse complement factor C3b (Thermo
Fisher Scientific, United States) and incubated with a secondary
fluorescent antibody for another 30 min subsequently. Samples
were then resuspended with PBS and analyzed using Becton-
Dickinson FACS Canto II flow cytometer. The gating on single
cells with positive gates established at a fluorescence excluding
99% of the isotype control samples.

RT-qPCR analysis

Bacterial total RNA was extracted and examined using M5
EASYspin Plus kit (Mei5bio, Beijing, China) and Nanodrop
spectrophotometer (Thermo Scientific, MA, United States),
respectively. Reverse transcription was performed using a
PrimeScript RT reagent Kit with gDNA Eraser (Takara, Beijing,
China) with the manufacturer’s protocol. The messenger RNA
levels relative to those of the control genes 16S were determined
by real-time PCR tests with PowerUp SYBR Green Master Mix
(Applied Biosystems, Thermo Fisher Scientific, Carlsbad, CA,
United States). RT-PCR tests were performed using the ABI
Quantstudio 7 detection system (Applied Biosystems, Thermo
Fisher Scientific, Carlsbad, CA, United States). The fold changes
in gene expression were determined using the 2−11Ct method.
Primers used in this study were listed in Supplementary Table 3.

K-typing analysis

As previously described (48), the capsular K-type of related
A. baumannii isolates were analyzed using wzc gene BLAST.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
7.0 (GraphPad Software, Inc.). All data were expressed as the
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mean± SD and unless otherwise noted, unpaired t-test between
two groups were used to calculate p-values.
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