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Abstract

We analysed the coronavirus disease 2019 epidemic curve from March to the end of April
2020 in Germany. We use statistical models to estimate the number of cases with disease
onset on a given day and use back-projection techniques to obtain the number of new infec-
tions per day. The respective time series are analysed by a trend regression model with change
points. The change points are estimated directly from the data. We carry out the analysis for
the whole of Germany and the federal state of Bavaria, where we have more detailed data. Both
analyses show a major change between 9 and 13 March for the time series of infections: from a
strong increase to a decrease. Another change was found between 25 March and 29 March,
where the decline intensified. Furthermore, we perform an analysis stratified by age. A
main result is a delayed course of the pandemic for the age group 80 + resulting in a turning
point at the end of March. Our results differ from those by other authors as we take into
account the reporting delay, which turned out to be time dependent and therefore changes
the structure of the epidemic curve compared to the curve of newly reported cases.

Introduction

The first phase of the coronavirus disease 2019 (COVID-19) pandemic in Germany was man-
aged relatively successfully in comparison to other countries in Europe. Therefore, it is worth
taking a closer look at the course of the pandemic in Germany, which has already led to con-
troversial discussions in the public. This particularly concerns the important question about
the effectiveness of various control measures. Several publications discuss the effects of control
measures in different countries, see, e.g., [1–3]. As [4] point out, however, many of such stud-
ies are undermined by unreliable data on incidence. Many papers use data provided by the
Johns Hopkins University (JHU) [5]. These data are based on cumulative registered cases in
different countries, which induces several problems, particularly the fact that not all cases
are reported and that there is delay between the day of infection and the reporting day.
Furthermore, the systems of reporting vary between countries, which makes comparisons
between countries difficult.

In a recent paper on Germany [6], the authors use a complex Bayesian modelling approach
based on the daily registrations in the JHU data for Germany. An important claim in [6] is that
the lock-down-like measures on 23 March were necessary to stop exponential growth.
However, this claim is contradicted for example by results from the RKI [7]. Furthermore,
these approaches were critically questioned by [8, 9], where the latter emphasised the import-
ance of taking into account the delay by reporting and incubation time, when analysing the
possible effect of non-pharmaceutical interventions.

In our analysis we focus on the curve of infection at two geographical levels: the federal
state of Bavaria and all of Germany and on four age-strata. The paper is organised as follows.
In section ‘Data and methods’, we present the data and the strategy of estimating the relevant
daily counts. Then the segmented regression model, which is the basis for further analyses, is
presented. The penultimate section presents the results followed by a discussion.

Data and methods

Estimation of diseases onset

For the analysis of the Bavarian data, we use the COVID-19 reporting data of the Bavarian
State Office for Health and Food Safety (LGL) that is collected within the framework of the
German Infection Control Act (IfSG). At the case level, these data include the reporting
date (the date at which the case was reported to the LGL) as well as the time of disease
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onset (here: symptom onset). However, the latter is not always
known: partly because it could not be determined and partly
because the case did not (yet) have any symptoms at the time
of entry into the database. A procedure for imputation of missing
values regarding the disease onset has been developed by [10],
using a flexible generalised additive model for location, scale
and shape (GAMLSS; [11]), assuming a Weibull distribution for
the time period between disease onset and reporting date. The
model includes gender, age, as well as calendar time and day of
the week of reporting as covariates. We estimate the delay time
distribution from data with disease onset and impute missing dis-
ease onsets based on this model.

For the German data, no individual case data were available, so
instead we used publicly available aggregated case reporting data
published on a daily basis by the RKI [12]. These data contain
aggregated numbers of reported cases for all observed combinations
of disease onset date and reporting date at local health authorities as
well as the numbers of reported cases per day without information
on disease onset date. Information is aggregated on district level in
different age and sex groups. Based on this aggregated data, we esti-
mated a similar model as described above for the imputation of
missing disease onset dates, replacing the smooth associations of
age and reporting delay by a categorical effect of the age group of
the cases. To account for differences in reporting behaviour in the
different federal states, the model was estimated separately for
each state and daily onset counts were aggregated after imputation.

We estimated the imputation model for the German data
based on all cases reported up until 1 June. The percentage of
imputed values was 37% for the Bavarian data and 28% for the
German data. Since this percentage is rather high, we performed
a sensitivity analysis using (1) only data with a documented dis-
ease onset and (2) utilising the reporting date of cases as disease
onset date when the actual onset date is unknown.

Back-projection

To interpret the course of the pandemic and possible effects of
interventions, case-based data on time of infection is essential.
However, as such data are generally not available, one simple
approach is to shift the curve of disease onsets to the past by
the average incubation period. The average incubation period
for COVID-19 is about five days [13]. A more sophisticated
approach, however, is to use the incubation period distribution
as part of an inverse convolution, also known as back-projection,
in order to estimate the number of infections per day from the time
series of disease onsets [14, 15]. We assume a log-normal distribu-
tion for the incubation time with a median of 5.1 days and a 97.5%
percentile at 11.5 days [13]. These are the same values as used by
[6]. For our calculation, we use the back-projection procedure
implemented in the R package surveillance [16].

The segmented regression model

To analyse the temporal course of the infection, we use the follow-
ing regression model and change points (see [17, 18]):

E(log(Yt)) = b0 + b1t +
∑K

k=1

gk(t − CPk)+, (1)

where Yt is the number of detected COVID-19 cases by time t of
infection, K is the number of change points and x+ = max(x, 0) is

the positive part of x. The change points CPk, k = 1, …, K are used
to partition the epidemic curve Yt into K + 1 phases. These are
characterised by different growth parameters. In the phase before
the first change point CP1 the growth is characterised by the par-
ameter β1, in the 2nd phase between CP1 and CP2 by β2 = β1 + γ1.
The next change is then at time CP2. In the 3rd phase between
CP2 and CP3 the growth parameter is given by β3 = β1 + γ1 + γ2.
This applies accordingly until the last phase after CPK. The quan-
tities exp(βj), j = 1, …, K + 1 can be interpreted as daily growth
factors. Since we use estimated, non-integer values Yt from the
back-projection procedure as outcome, we assume a (conditional)
Gaussian distribution for log(Yt). Furthermore, we assume an AR
(1) error term for the regression model, since serial correlation
occurs due to smoothing in the backprojection procedure.

Since model (1) is a generalised linear model given the change
points, the parameters of the model (including the change points)
can be estimated by minimising the respective likelihood function.
However, due to the estimation of the change points, the numer-
ical optimisation problem is not straightforward. For the estima-
tion of the model we use the R package segmented, see [19]. The
starting values are partly estimated by discrete optimisation. The
number of change points K is increased from K = 1 up to a
maximum of K = 6. It is examined whether the increase of the
number of change points leads to a lower value of the Bayesian
information criterion (BIC). Since the considered time series con-
sist of only 61 data points, we exclude models with more than 6
change points, since they are hardly interpretable and the danger
of overfitting is high.

We apply the segmented regression model to time series of the
estimated daily counts of infections for detected COVID-19 cases
in Bavaria and all of Germany. Since the back-projection algo-
rithm yields an estimate for the expected values of the number
of daily infections and does so by inducing a smoothing effect,
as a sensitivity analysis for the location of the breakpoints, we
also apply a regression model to the time series of the daily counts
of disease onsets. The results of this sensitivity analysis are pre-
sented in the supplementary material. Furthermore, as a more
detailed analysis, we apply our procedure to data stratified by
age groups. A special focus is on the age group 80 + , as this
group has the highest risk for a critical course of the disease.

Results

In Figure 1, the three different time series of daily case counts
(newly reported, disease onset and estimated infection date) are
presented. The time delay between the three time series for
Bavaria and Germany is evident. Furthermore, the curves do
not just differ by a constant shift on the x-axis, instead there is
also a notable change in the structure of the curves. The curve
relating to the date of infection is clearly smoothed due to the
back-projection procedure (cf. Section 2.2) and has a clear max-
imum both for Bavaria and Germany.

Bavarian data

The overall Bavarian model includes five change points. The
result can be seen in Figure 2 (left panel) and in Table 1.

The resulting six phases are:
1st phase: There is a substantial increase in new infections

with a high daily multiplication factor of 1.25. The first phase
ends on 6th March.
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2nd phase: The increase slows down to a daily multiplication
factor of 1.17.

This phase lasts to the 10th of March.
3rd phase: For a short time the multiplication factor further

goes down to 1.06
4th phase: The change point on 12th March marks a clearly

visible change in the course of the pandemic. It is the turning
point of the curve (change of the multiplication factor to 0.97).

5th phase: A further change point is found around 26th
March. There is an accelerated decrease in the infections with a
daily factor of 0.94.

6th phase: On 25th April the estimated number of infections
of reported cases is rather low and there is no further decrease
after this change point (multiplication factor close to 1).

The age-stratified analysis gives some interesting further
insights about the course of the pandemic, see Figure 2 (right
panel) and Table S1 in the supplementary material. The age
groups 15–59 and 60–79 years show a similar pattern as the over-
all analysis. However, in the 80 + age group there are clear differ-
ences compared to the other groups. There, the turning point of
the pandemic is considerably later on 22nd March. Furthermore,

the number of estimated infections per 100 000 is higher than in
the other groups. The age group 0–14 years has a much lower
number of reported infections, and change points similar to the
overall analysis.

German data

The results for the German data are presented in Figure 3 and in
Table 2. The model for Germany has four change points inducing
five phases:

1st phase: There is a strong increase (multiplication factor 1.32
per day) in new infections in the beginning of the pandemic until
5th March, where the increase decreases.

2nd phase: From 5th March to 10th March there is still a sub-
stantial increase of infections with a daily multiplication factor
around 1.1.

3rd phase: After the change point on 10th March, there is a
clearly visible change in the course of the pandemic. There is
change from an increasing to a decreasing curve with a daily
multiplication factor of about 0.98. This phase lasts until 27th
March.

Fig. 1. Comparison of time series of daily reported cases (7 day average and daily reported numbers, light grey), disease onsets (reported and imputed, grey) and
backprojection (derived number of infections, dark grey) for Bavaria (left panel) and Germany (right panel).

Fig. 2. Segmented regression models for Bavaria. The left panel shows results for all reported cases from Bavaria. The solid line is the fitted curve ac cording to the
segmented regression model (1) with five change points (K = 5) selected based on BIC. The bars are the expected numbers of detected COVID- 19 cases by time of
infection (cf. Section 2.2). Dashed lines and surrounding shaded ribbons indicate estimated change points and respective, approximate 95% confidence intervals.
The right panel shows results of the segmented regression in four age groups based on the back-projected number of infections per 100 000 individuals. The back-
projection and segmented regression was estimated in each age group separately and the selected number of change points varies between groups.
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4th phase: An acceleration of the decrease can be seen from
27th March onward. The daily multiplication factor is 0.94.

5th phase After 21st April, the number of infections is rather
low with a slow decrease.

The results of the age stratified analysis are similar to the
results for Bavaria (cf. Figure 3, right panel and Supplement
Table S2). The age group 80 + once again differs substantially
from the other age groups. The turning point for the 80 + group
is on 25th March. The other age groups show a structure similar
to the overall analysis.

Discussion

The current analysis is a retrospective, exploratory analysis of the
German and Bavarian COVID-19 reporting data during Mar–Apr
2020.

Limitations

The analysis only includes reported cases. If the proportion of
undetected cases changes over time, e.g., due to different test
criterion, this can distort the curve and thus the determination
of the change points. Therefore, additional data on daily deaths
and hospital admissions and the number of tests performed
should be considered. Furthermore, it is possible to estimate
the proportion of undetected cases with the help of representa-
tive studies such as the one currently conducted in Munich, see
[20]. In a recent paper [21] performed a time-varying estima-
tion of the case detection ratio (CDR) for different age groups.
They find a linear decreasing CDR from 2 March until 12 April
in the main age groups. The CDR was only half as large at the
end of the period as it was at the beginning. This can only

partly explain the curve, where we observe a much higher
increase.

Our analysis is based to a considerable extent on imputed data,
see [10], which is a result of missing data w.r.t. the disease onset.
We have performed a sensitivity analysis using only cases with
available disease onset date and based on imputing missing dis-
ease onset dates by the reporting date of the cases (Figure S2 in
the supplementary material).

The back-projection procedure is based on an assumption of
the distribution of the incubation time. There are some recent
papers showing some evidence for a longer incubation time in
elderly cases, see [22, 23]. There-fore, we performed an additional
sensitivity analysis comparing the results for the 80 + age group
for different assumptions about the incubation time distribution,
see supplementary material Figure S3. We find in this sensitivity
analysis that the curve of the new infections is shifted to the left by
about 2–3 days. However, the structure of the curve does not
change considerably. Altogether, the much later peak in the 80
+ compared to the other population strata cannot only be due
to a different incubation time.

Furthermore, our estimation of the change points and the cor-
responding confidence intervals is based on the estimated curve of
the number of detected COVID-19 cases by time of infection. Due
to the additional uncertainty of the curve induced by imputation,
back-projection and model selection, the confidence intervals for
the change points might not reflect the full extent of uncertainty
in our modelling. However, even somewhat wider confidence
intervals would not fundamentally change the interpretation of
our results.

Since changes in behaviour do not occur abruptly, the assump-
tion of change points is also problematic in itself. Therefore, the
interpretation of change points should always be done in conjunc-
tion with a direct observation of the epidemic curve.

Interpretation of results

Our analysis is based on the onset of the disease (more precisely:
the onset of symptoms) and a back-projection to the date of infec-
tions, and therefore, despite its limitations, is better suited to
describe the course of the pandemic than the more common ana-
lysis of daily or cumulative reported case numbers. In the analysis
of the Bavarian and the German data our main result is the
change point, where the exponential growth was stopped: this
clearly happened already between 9 and 13 March. The timing
of this change point coincides with the implementation of the
first control measures: the partial ban of mass events with more
than 1000 people. Furthermore, in a press conference on March
11th chancellor Merkel and the president of the RKI appealed
to self-enforced social distancing [24]. Furthermore, the extended
media coverage from Bergamo, Italy, as well as the voluntary tran-
sition to home-office work could be related to this essential
change in the course of the pandemic.

In Bavaria and in Germany, the change point at 26/27th
March of the infection date is apparent. This change point is asso-
ciated with different measures taken in March (closing of schools
and stores on 16th March and the shut- down including contact
ban on 22nd March in Germany including Bavaria). Other mea-
sures were similar in timing in Bavaria and all over Germany. In
Bavaria, some measures were implemented a little earlier. Since
there were many measures administered simultaneously and
since – as described above – other factors beyond the measures
itself contributed, we do not think is not possible to quantify

Table 1. Summary table of the segmented regression model for the expected
number of daily infections in Bavaria with five change points

Estimated change points for Bavaria

CP Date 95%-CI lower 95%-CI lower

1 7.6 (06-03-2020) 7.2 (05-03-2020) 8 (07-03-2020)

2 11.5 (10-03-2020) 11.2 (09-03-2020) 11.8 (10-03-2020)

3 14.4 (12-03-2020) 14.1 (12-03-2020) 14.7 (13-03-2020)

4 28.4 (26-03-2020) 27.8 (25-03-2020) 29.1 (28-03-2020)

5 58.4 (25-04-2020) 57.9 (24-04-2020) 58.8 (26-04-2020)

Estimated multiplication factor

Phase Factor 95%-CI lower 95%-CI upper

1 1.25 1.24 1.26

2 1.17 1.16 1.19

3 1.06 1.04 1.08

4 0.97 0.97 0.98

5 0.94 0.94 0.94

6 0.99 0.99 1.00

The dates of the estimated change points and the corresponding 95% confidence intervals
are given. For the date of the lower/upper limit of the confidence intervals, the values were
rounded up or down to the more extreme value. In the second part of the table the estimated
multiplication factors of the number of cases per day with the confidence intervals for the six
phases are given
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the effect of individual measures to the development of the epi-
demic curve.

The results for the 80 + age group indicate an infection curve
which is delayed by about one week compared to the other age
groups. This is possibly due to the fact that the disease was first
introduced into Germany by younger holiday makers and busi-
ness travellers. Hence, it likely took some additional generations
of transmission before the infections mitigated into the 80 +
group. Furthermore, many infections in the age group 80 + are
due to outbreaks in nursing homes and homes for the elderly,
where very different mechanisms of contact occur compared to
the rest of the population. Many of the restrictions were targeted
at the younger age groups (school closings, mobility restrictions),

hence, the effect of these interventions is only indirect for the 80
+ group and thus the impact is delayed. This underlines the need
for more direct measures for this group. For the age group of 0–14
the breakpoints are similar to the other age groups. The much
lower infection rate could be partly due to lower case detection
ratio, since infected children show less symptoms, see e.g. [25].

The claim by Dehning et al. [6], that the shutdown on 21st
March was necessary to stop the growth of the pandemic is not sup-
ported by our analysis. There is a change point in the epidemic
curve after that date, but the major change from an exponential
growth to a decrease was before the shutdown. The difference in
results can be explained by the different data bases used for the
respective analyses. While Dehning et al. [6] used data bases on
daily registered cases, in our analysis, data on disease onset are
included. As can be seen from Figure 1 and from the results of
our data analysis, the delay distribution of the time between disease
onset and reporting day changed over time. This makes a crucial dif-
ference. In a recent technical addendum [26] the authors re-fit their
model on more appropriate data. These analysis – in our opinion –
clearly show that the effective reproduction number decreased earl-
ier than in their initial analysis, however, they attribute the decrease
to a SIR model peculiarity, where a linear decrease in the contact
rate can lead to the incidence curve dropping despite R(t) > 1.

The above discussions illustrate how complex the interpret-
ation of even simple SIR models is and the question is, if such
SIR modelling is not too simple to really allow for questions to
be answered model based (no age structure, no time-varying
reporting delay, no incubation period). In contrast, our approach
is more data driven with a minimum of modelling assumptions
and without the need to include strong prior information about
the change points. Directly using a segmented curve with expo-
nential growth (decline) is in line with common models of infec-
tious diseases in its early stages, where the limitation of the spread
by immune persons plays no role. The problem of using complex
models with many parameters for the evaluation of governmental
measures has also been highlighted by [8].

Our approach is similar to that of [9] who performs a change
point analysis for the cumulative reported numbers as well as the
estimated R(t). The use of the time-varying reproduction number
R(t), a standard measure to describe the course of an epidemic is

Fig. 3. Segmented regression models for Germany. The left panel shows results for all reported cases. The solid line is the fitted curve according to the segmented
regression model (1) with three change points (K = 3) selected based on BIC. The bars are the expected numbers of detected COVID-19 cases by time of infection
(cf. Section 2.2). Dashed lines and surrounding shaded ribbons indicate estimated change points and respective, approximate 95% confidence intervals. The right
panel shows results of the segmented regression in four age groups based on the back-projected number of infections per 100 000 individuals. The back-projection
and segmented regression was estimated in each age-group separately and the selected number of change points varies between groups.

Table 2. Summary table of the segmented regression model for the expected
number of daily infections in Germany with four change points

Estimated change points for Germany

CP Date 95%-CI lower 95%-CI upper

1 7.4 (05-03-2020) 7.2 (05-03-2020) 7.6 (06-03-2020)

2 11.6 (10-03-2020) 11.3 (09-03-2020) 11.9 (10-03-2020)

3 29.4 (27-03-2020) 28.4 (26-03-2020) 30.4 (29-03-2020)

4 53.7 (21-04-2020) 52.4 (19-04-2020) 55 (23-04-2020)

Estimated multiplication factor

Phase Factor 95%-CI lower 95%-CI upper

1 1.32 1.30 1.33

2 1.11 1.09 1.13

3 0.98 0.97 0.98

4 0.94 0.94 0.95

5 0.97 0.96 0.98

The dates of the estimated change points and the corresponding 95% confidence intervals
are given. For the date of the lower/upper limit of the confidence intervals, the values were
rounded up or down to the more extreme value. In the second part of the table the estimated
multiplication factors of the number of cases per day with the confidence intervals for the
5 phases are given.
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challenging, as different definitions have been proposed in the lit-
erature that also imply different interpretations (see [27, 28]).
However, the analysis of R(t) as a relative measure can be useful,
when one wants to analyse data from different countries with
non-comparable reporting systems, see [3].

Altogether, the effect of governmental measures as a whole is
clearly documented in the literature, see, e.g., [1] and [2]. Our
results are in line with that of [29], where a stop of exponential
growth in Great Britain was also observed before the lockdown.
Our result on a possible effect of the ban of mass events is also
in line with the results of [3].

The temporal connection between the change points in our ana-
lysis and various control measures should be interpreted as an
association, rather than a direct causal relationship. In the end
many other explanations exists and from a simple time-series ana-
lysis it is not possible to say to what extent the population already
had changed their behaviour voluntarily, as for example observed
in mobility data [30, 31], and in what way the measures contribu-
ted to this. More speculative alternative explanations would include
the possibility of a seasonal effect on coronavirus activity (e.g.
related to temperature) or changes in test capacity or the case
detection ratio. However, given the re-emergence of the pandemic
in the fall of 2020 at high test capacity and at relatively high tem-
peratures shows that contact behaviour is the major explanatory
factor for virus activity. Nevertheless, any analysis of observational

Time-series data including only a limited amount of explana-
tory factors has to be interpreted with care and with respect to the
many uncertainties which remain regarding COVID-19 [32].

Despite the limitations of the approach, we argue that it is
advantageous and important to directly interpret the epidemic
curve and the absolute number of cases, rather than indirect mea-
sures like the R(t). Furthermore, the reproduction rate does not
contain information about how many people are currently affected,
or whether the infected persons belong to risk groups. The course
of the time-varying reproduction number calculated by us for
Bavaria fits well with the change point analysis [10]. A value of
R(t) > 1 corresponds to a rate of increase >1, noting that the
time delays in the interpretation of R(t) must be kept in mind.

It should be noted, that the presented analysis is retrospective.
Control measures have to be decided based on a completely differ-
ent level of information than what the retrospectively established
epidemic curve suggests. The simple observation of the course of
the reported case numbers by reporting date is also problematic
because this course is strongly influenced by the reporting behav-
iour and the methods and capacities of the test laboratories.
Typically, substantially fewer cases are reported at weekends than
during the week. Therefore, the estimation proposed by Günther
et al. [10] is an important step to estimate the better interpretable
curve of new cases, but is limited by assumptions and limitations
itself, that need to be considered when interpreting the results.

Since the impact of the measures also depends on how they are
implemented by the population (compliance), the results cannot
be directly transferred to the future. Nevertheless, it remains a
remarkable result that the clear turning point of the early
COVID-19 infection data in Germany is associated with non-
drastic measures (no shutdown) and strong appeals by politicians.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821000558
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