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oton energy of quasi-2D lead
halide perovskites from the precursor composition
through machine learning†
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Quasi-2D perovskites with the general formula of L2An�1PbnX3n+1 (L ¼ organic spacer cation, A ¼ small

organic cation or inorganic cation, X ¼ halide ion, and n # 5) are an emerging kind of luminescent

material. Their emission color can be easily tuned by their composition and n value. Accurate prediction

of the photon energy before experiments is essential but unpractical based on present studies. Herein,

we use machine learning (ML) to explore the quantitative relationship between the photon energies of

quasi-2D perovskite materials and their precursor compositions. The random forest (RF) model presents

high accuracy in prediction with a root mean square error (RMSE) of �0.05 eV on a test set. By feature

importance analysis, the composition of the A-site cation is found to be a critical factor affecting the

photon energy. Moreover, it is also found that the phase impurity greatly lowers the photon energy and

needs to be minimized. Furthermore, the RF model predicts the compositions of quasi-2D perovskites

with high photon energies for blue emission. These results highlight the advantage of machine learning

in predicting the properties of quasi-2D perovskites before experiments and also providing color tuning

directions for experiments.
1. Introduction

Lead halide perovskites are a kind of miraculous material,
which delivers unique performance in optoelectronic devices.1–4

Quasi-2D perovskites with the general formula of L2An�1Pbn-
X3n+1 (L ¼ organic spacer cation, A ¼ organic or inorganic
cation, X ¼ halide ion, and n # 5), exhibit higher material
stability compared to their 3D counterparts.5–8 Color tuning is
essential to their application in light-emitting diodes (LEDs)
and other optoelectronic devices. In particular, pushing the
photon energy of the quasi-2D perovskites to the blue scale is
gaining increasing importance for LEDs.

The photon energy of quasi-2D perovskites can be tuned
from deep red to blue by adjusting halide ions and the n value.
Their physical origins are well explored by previous work,9–17

which provides general directions for color tuning. However,
a large number of trial-and-error experiments are still needed to
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fabricate perovskites with the desired emission color, which
requires lots of materials and workforce. Hence, it is critical to
accurately predict the photon energy before carrying out
experiments which will signicantly accelerate the development
of quasi-2D perovskites with expected emission colors.

The machine-learning (ML) approach is a scientic model
that can efficiently learn from existing results and is gaining
increasing attention in material exploration.18–22 With the
assistance of ML, researchers can explore a large number of new
materials (such as lead-free perovskites),23,24 develop efficient
solar cells,19,21,22,27 etc. Previously, using ML algorithms, we
successfully predicted the bandgap of 3D lead halide perov-
skites from their compositions and proposed possible compo-
sitions of mixed halide perovskites, which can be used in
tandem solar cells.24 Marchenko et al. established a database of
2D perovskites; they employed ML algorithms to predict the
bandgap of 2D perovskites from their compositions, n values,
crystal structures, and so on.25 The following work by Wan et al.
utilized this database and ML algorithms to accurately predict
the bandgap of 2D perovskite through molecular graphic
descriptors.26 These pioneering studies reveal the power of ML
in exploring material and device properties. Here, it is also
possible to explore the quantitative relationship between the
photon energy of quasi-2D perovskites and the governing
factors.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Correlation matrix of the screened factors and the photon
energy of quasi-2D perovskites. The numbers at the intersection of
two factors on the figure represent their Pearson coefficients: the sign
of the values indicates a positive (+) or negative (�) correlation, while
the magnitude indicates a strong (large) or weak (small) correlation.
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Hence, in this work, the ML approach is employed to predict
the photon energies of quasi-2D perovskites. To make the
prediction more referable for experiments, we use the precursor
compositions instead of the calculated material compositions
as the input features and identify the relationship between the
precursor compositions and the resultant photon energies. A
dataset was established by collecting the reported experimental
data, which covers a large range of quasi-2D perovskites,
including a variety of large organic cations and small cations. In
particular, a series of quasi-2D perovskites with photon energies
exceeding 2.58 eV for blue LEDs are predicted, which provide
essential guidance for experimental screening.

2. Results and discussion

The type of organic spacer cation, A-site cation ratio (cesium
(Cs), formamidinium (FA), methylammonium (MA)), halide ion
ratio, molar ratio of Pb2+ to the organic spacer cation (abbre-
viated as P2L) and molar ratio of Pb2+ to the organic cation
(abbreviated as P2A) in the precursor solution are taken into
account. Here, we use the ion ratios in the precursor solution
instead of the n value because the molar ratios utilized in the
precursor sometimes differ from the stoichiometric ratio
provided by their formula of L2An�1PbnX3n+1. We employ the ion
ratios in the precursor solution since they are signicantly more
straightforward in the experimental design. As the green to blue
color range is particularly important for luminous materials, we
exclusively analyze Br-/Cl-based quasi-2D perovskites and
exclude I-based perovskites due to the narrow bandgaps of I-
based perovskites, which make them suitable for green to red
emission. 6 input features were screened for ML: the Cs/(Cs + FA
+ MA) ratio, the FA/(Cs + FA + MA) ratio, the Br/(Br + Cl) ratio,
and P2L, P2A and XLogP3 values of the bromide salt based on
the organic spacer cation. XLogP3 predicts the log P value of
a query compound by starting with the known log P value of
a reference compound,28 whereas log P is a crucial parameter
for characterizing lipophilicity. A higher XLogP3 value makes
the compound more difficult to dissolve in a polar solvent
(usually dimethyl sulfoxide (DMSO) and/or dimethylformamide
(DMF) for quasi-2D perovskite precursors). XLogP3 values were
obtained from a website.29 The photon energy, calculated from
the emission peak wavelength (most of them are electrolumi-
nescence wavelengths), represents the output performance. We
didn't use the dominant absorption peak to calculate the
photon energy, as the absorption energy is typically larger than
the photon energy, i.e., the Stokes shi.

To build a dataset, we searched for studies that reported the
photon energy of quasi-2D perovskites and collected approxi-
mately 300 data points. The dataset was then cleaned using the
following rules: (1) data points with P2A larger than 2.5 (n value
larger than 5) were removed, as they generally reect the
properties of 3D perovskites; (2) data points with missing data
for one or more input features were removed; (3) duplicate data
points from different literature studies were removed; (4) for the
data points with same input features but different photon
energies, we reserved the data point with the reported largest
value. For PEA2Csn�1PbnBr3n+1 with P2L ¼ 2.5, for example, we
© 2022 The Author(s). Published by the Royal Society of Chemistry
reserved the data point with the highest energy of 2.451 eV. As
a result, we obtained 106 data points, listed in Table S1.† These
data points include Cl-, Cl/Br mixed, Br-based perovskites with
different organic spacer cations and A-site cations (Cs, FA, and
MA). The maximum photon energy of quasi-2D perovskites is
2.840 eV, and the smallest value is 2.280 eV.

Firstly, we use a correlation matrix to learn the linear
correlations between the features and the photon energy. As
displayed in Fig. 1, the photon energy (abbreviated as PE in
Fig. 1) of the perovskites has a non-negligible correlation with
the halide anions, the cations, and the ratios of the organic
spacer cation and small cation to Pb2+. As expected, the photon
energy shows a positive correlation with the Cl ratio (¼Cl/(Br +
Cl), abbreviated as Cl) and a negative correlation with the Br
ratio (¼Br/(Br + Cl), abbreviated as Br). Among the three types of
A-site cations (MA, FA, and Cs), the photon energy exhibits
a negative correlation with the FA ratio (¼FA/(Cs + FA + MA),
abbreviated as FA), while it is positively changed with the Cs
ratio (¼Cs/(Cs + FA + MA), abbreviated as Cs). The photon
energy shows a negative correlation with P2L, as expected. It
shows a positive correlation with P2A, implying that a higher
concentration of Pb2+, which refers to organic cations, aids in
reaching higher photon energy.

To clearly show the relationship between the factors and the
device performance, the statistics of the photon energy values
changing with different factors are plotted, as shown in Fig. 2.
(a) The molar ratios of Pb2+ to the organic spacer cation (P2L)
and to the A-site cation (P2A) in the precursor solution

P2L, which determines the n value in the perovskite with the
formula of L2An�1PbnX3n+1, is widely acknowledged as one of the
dominant factors governing photon energy. Due to the
quantum connement effect and the dielectric effect, a small
P2L leads to high photon energy. However, it is not always
accurate in experimental results. As shown in Fig. 2a, low
photon energy can be found across the P2L scale from 1 to 2.5,
corresponding to n values ranging from 2 to 5. The deviations of
Nanoscale Adv., 2022, 4, 1632–1638 | 1633



Fig. 2 Effects of different factors on the photon energy: (a) the molar
ratios of Pb2+ to the organic spacer cation (P2L) and A-site cation (P2A)
in the precursor solution, (b) halide ion ratios, (c) A-site cation ratios,
and (d) organic spacer cation. The photon energy determines the
bubble size in (a and b). The red lines in the violin plots in (b–d)
represent the corresponding mean value of the photon energy. The
breadth of the violin at a given photon energy is positively related to
the size of the data at that energy.
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the experimental results from the theory are probably induced
by the phase impurities. In quasi-2D perovskites, phase impu-
rities with different n values compared to those of the stoi-
chiometric condition also form in the lm. Large n phases have
low photon energies and contribute signicantly to electrolu-
minescence and hence they may present the main emission
color of the device. The formation of phase impurities is diffi-
cult to control, posing challenges to the fabrication of blue
devices based on low n phases. On the other hand, P2A, which is
equal to n/(n � 1) under the stoichiometric condition according
to the formula of L2An�1PbnX3n+1, is sometimes smaller than 1
in the precursor solution, corresponding to the condition of
excess Pb2+. The relationship between P2A and the photon
energy cannot be deduced directly from their distributions
shown in Fig. 2a.
Table 1 Different ML algorithms' performance in photon energy
prediction of quasi-2D perovskites from their precursor solutions

ML algorithms

Training set Test set

RMSE (eV) r Value RMSE (eV) r Value

LR 0.065 0.80 0.066 0.76
RF 0.038 0.94 0.047 0.92
XGBoost 0.012 1.00 0.069 0.71
NN 0.013 0.99 0.059 0.88
(b) Effects of halide ion ratios and A-site cations

The effects of halide ion ratios and A-site cation ratios on the
bandgap and emission photon energy of the perovskite have
been thoroughly investigated in 3D perovskites. It is proved that
the observed bandgap changes induced by halide ions are
determined by the electronic states of the halide anion, i.e.,
from Cl to Br, and the valence band composition changes from
3p to 4p with a monotonic decrease in electron binding
energy.30 The changes in the bandgap caused by A-site cations
are generated by their various cation sizes,31,32 which tilt the
PbX6 octahedra to different extents. The photon energy changes
positively with the bandgap. As shown in Fig. 2b and c, in
general, the high ratio of Cl and the small Cs cation increase the
photon energy, while a higher ratio of a large FA cation
decreases the photon energy.
1634 | Nanoscale Adv., 2022, 4, 1632–1638
(c) Effect of organic spacer cation

Three of the most frequently used organic spacer cations are
phenylethylamine (PEA), 4-phenylbutylamine (PBA) and butyl-
amine (BA). As shown in Fig. 2d, generally speaking, PBA leads
to high PE, while BA leads to low PE. Theoretically, the organic
spacer cation inuences the bandgap of 2D perovskites via the
dielectric connement effect. Density functional theory calcu-
lations show that the bandgap of EA-based 2D perovskites (2.12
eV) is slightly smaller than that of PEA-based 2D perovskites
(2.28 eV) due to the weaker connement of EA with a larger
dielectric constant.33 In practice, the organic spacer cation may
also affect the formation of different n phases, leading to
a change in photon energy. As different organic spacer cations
have different solvent solubilities, the dynamic equilibrium
state during the crystallization process is probably distinct,
resulting in the formation of diverse n phases. In this context,
we introduce a descriptor, XLogP3, to describe the solubility of
the organic spacer cations. A substance with a high XLogP3
value has low solubility in water. The XLogP3 values for PEABr,
PBABr and BABr are 2.37, 3.37 and 1.94, respectively. The
correlation between XLogP3 and the photon energy is also listed
in Fig. 1, which shows a remarkable correlation (0.19).

4 algorithms were used for ML, including linear regression
(LR), neural network (NN), random forest (RF) and extreme
gradient boosting (XGBoost). LR is simple and facile to estab-
lish manually, and we previously proved that it was effective in
predicting the bandgap of 3D perovskites.24 The input features
for the ML algorithms are the Cs/(Cs + FA + MA) ratio, FA/(Cs +
FA + MA) ratio, Br/(Br + Cl) ratio, the molar ratios of Pb2+ to an
organic spacer cation (abbreviated as P2L) and of Pb2+ to an
organic cation (abbreviated as P2A) in the precursor solution,
and XLogP3 value. The output is photon energy. 10-fold cross-
validation was employed to optimize the hyperparameters.
The dataset was randomly divided into 7 : 3 halves for training
(the training set) and testing (the test set). The performances of
the algorithms are evaluated using the root mean square error
(RMSE) and Pearson's coefficient (r value). An algorithm with
a lower RMSE and a higher r value predicts with higher accuracy
and reliability.

Table 1 shows the performance of the different algorithms n
predicting the photon energy. Fig. 3a shows the comparison of
the actual photon energies and the predicted values by the
different algorithms. A low RMSE (#0.07 eV) is achieved by all
algorithms, indicating a high accuracy of these algorithms in
prediction. Moreover, the r value is higher than 0.70 for all
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Comparison of the predicted photon energies by different
algorithms and the true values of quasi-2D perovskites based on the
dataset excluding the outlier with an energy of 2.844 eV (a) and the
entire dataset (b), respectively. The red dashed line represents the
condition in which the predicted value equals the experimental value.
XGB stands for XGBoost.

Fig. 4 Feature importance of the input features on photon energy
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algorithms, which means that the predicted values and the
experimental values have a strong linear correlation.
Comparing these 4 algorithms, RF performs best, with the
smallest RMSE on the test set and a high r value, larger than 0.9.
We also calculated the average RMSE on the test set based on 10
executions, and the RF model still shows the lowest RMSE. LR is
not as accurate as it is in predicting the bandgap of 3D perov-
skites in our previous work, because the quasi-2D perovskite is
more complex, and LR is too simple to process it. This also
indicates that the photon energy of the quasi-2D perovskite
does not linearly depend on the screened factors. NN and
XGBoost algorithms deliver excellent performance on the
training set and a relatively poor performance on the test set,
implying that their models are over-tted due to the limited
dataset size. The RF model is not over-tted and exhibits its
advantages in complex systems such as those in this work.

The accuracy of the algorithms highly depends on data
screening. Fig. 3b depicts the prediction performance on the
dataset, including the outlier with a photon energy of 2.844 eV.
The predicted values deviate further from the true values than
those shown in Fig. 3a based on the dataset without the outlier.
Generally, higher photon energies are underestimated, whereas
lower photon energies are overestimated in Fig. 3b. For the LR
model, the RMSEs for the training and test sets are 0.068 and
0.067 eV, respectively, which are higher than the values (0.065
and 0.066 eV) listed in Table 1. For the RF algorithm, the RMSEs
for the training and test sets are 0.040 and 0.050 eV,
© 2022 The Author(s). Published by the Royal Society of Chemistry
respectively, which are also higher than the corresponding
values listed in Table 1. These results illustrate the importance
of the smart screening of the reported experimental dataset.

The RF model can assess the signicance of the input
features (shown in Fig. 4). The Cs ratio, rather than the P2L or Br
ratio, is the most critical factor affecting photon energy. The Br
ratio is also important, while P2A and XLogP3 are less impor-
tant. Considering the extreme importance of the Cs ratio and its
positive correlation with photon energy, these results imply that
using Cs as the major A-site cation is crucial for obtaining high
photon energy. In addition, it also implies that the reported
quasi-2D perovskites suffer from phase impurity, as P2L is not
as essential to determining photon energy as expected.

As the RF model predicts the photon energy more accurately,
we use it to screen quasi-2D perovskites with desired composi-
tions and photon energies. Here, MA-free quasi-2D perovskites
tend to achieve high material stability. The settings for the
precursor compositions are listed in Table S3,† leading to the
generation of nearly 40 000 data points. These quasi-2D perov-
skites are Cs-dominated (Cs ratio in the range of 0.75–1.00) and
have small n values (P2L in the range of 0.6–1.6). The RF model,
trained by the experimental dataset listed in Table S1,† was
used to predict their photon energies.

The predicted photon energies of the perovskites vary on the
scale of 2.478–2.628 eV, with the emission peak wavelengths
varying from 471 nm to 500 nm. For blue emission, photon
energies larger than 2.58 eV (wavelength shorter than 480 nm)
are required. Fig. 5a shows the statistics of the factors enabling
the photon energies to meet this requirement. As can be seen,
a high Cs ratio (0.90–1.00) is essential to get blue emission.
Other factors have identical ranges as those of the settings.
Moreover, it is found that the factors interplay with each other.
For example, for a Cs ratio of 0.90, the Br ratio should be lower
than 0.50 to get blue emission, whereas for a Cs ratio of 1.00,
pure Br-based perovskites can also achieve blue emission,
which is in accordance with the experimental results.34 Two
aspects can explain the importance of the Cs ratio in getting
high photon energy: small radius size35 and low solubility36 in
the typically used polar solvents DMSO/DMF. The small radius
size of Cs tilts the PbX6 octahedra, generating the large bandgap
as discussed before.35,37 The lower solubility of Cs+ compared to
that of FA+ and MA+ (ref. 34) makes it participate in the initial
presented by the RF algorithm.

Nanoscale Adv., 2022, 4, 1632–1638 | 1635



Fig. 5 (a) Ranges of different factors for blue emission and (b–d)
graphs of the predicted photon energies of the quasi-2D perovskites
with different factors by the RF model: (b) the ratio of halide ions, (c)
P2A and P2L, and (d) XLogP3.
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nucleating process together with large spacer cations with low
solubility, which can formmoderate n phases. Hence, the phase
impurity can be reduced, bringing the photon energies closer to
the expected values.

To clearly show the effects of the different factors on the
photon energy of quasi-2D perovskites, the graphs of the pre-
dicted values and the factors are shown in Fig. 5b–d. Fig. 5b
shows the variation of the photon energy with the ratios of Br
and Cs, while P2L, P2A and XLogP3 are xed to be 1.5, 1.6, and
2.80, respectively. Obviously, increasing the Cs ratio from 0.75
to 1.00 leads to an increase in photon energy from 2.50 eV to
2.58 eV. A decrease in the Br ratio (an increase in the Cl ratio)
leads to a complex change in the photon energy. Pure Br-based
perovskites have relatively higher photon energy than Br0.9Cl0.1-
based ones; in Br–Cl mixed perovskites, the photon energy rst
increases with decreasing Br ratio, and then displays a slight
chance. Despite the fact that this trend is contrary to theoretical
knowledge, it is in accordance with the reported experimental
results shown in Fig. 2b. The RFmodel learned the role of the Br
ratio from the data in Fig. 2b, i.e.; decreasing the Br ratio does
not always increase the photon energy. Hence, it assigned the
corresponding weight to the Br ratio. In comparison, increasing
the Cs ratio was discovered to be effective in increasing the
photon energy, and the RF model assigned a large weight to the
Cs ratio. As a consequence, increasing the Cs ratio efficiently
increases the photon energy. These ndings further demon-
strate the RF model's ability to handle complex relationships.

Decreasing P2L generally increases photon energy, as shown
in Fig. 5c, which is to be expected. However, the change is
minor, i.e., decreasing P2L from 1.5 to 1.0 (corresponding to n
decreasing from 3 to 2) leads to an increase of less than 0.02 eV.
Though decreasing P2L is also thought to be efficient in
increasing photon energy,14,38,39 the formation of large n phases
with low photon energies produces the main emission peak
arising from large n phases. Hence, the RF model discovered
that decreasing P2L did not effectively enhance photon energy.
1636 | Nanoscale Adv., 2022, 4, 1632–1638
Additionally, modifying XLogP3 also leads to a change in
photon energy, as shown in Fig. 5d. Increasing XLogP3 from 1.9
to 2.8 induces the largest increase of 0.04 eV in the photon
energy. This is in line with the observations from the experi-
mental results in Fig. 2d. As P2L and other factors are controlled
to be the same, this increase can be ascribed to the reduction of
large n phases with low photon energy.

Based on these results and the evidence in the literature, it
can be summarized that the photon energy of quasi-2D perov-
skites is largely affected by the formation of large n phases, i.e.,
the phase impurities. Hence, suppressing phase impurity is
critical for getting blue emission. From the correlation between
the photon energy and the XLogP3 value, it can be speculated
that the solubility of the organic spacer cation in the solvents is
probably an important factor that needs to be considered to
suppress the phase impurity. From these results, it can also be
observed that a high Cs ratio is essential to obtain blue emission.
3. Methods

The R tool was employed as the platform for machine learning.
Linear regression (LR), neural network (NN), random forest (RF)
and extreme gradient boosting (XGBoost) algorithms were used
based on glm, neuralnet, randomForest and xgboost functions,
respectively. The performance of the algorithms was evaluated
using the root mean square error (RMSE) and Pearson's coeffi-
cient (r value) on the test set. Here,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðXi � YiÞ2
n

s

r ¼
Pn
i¼1

�
Xi � X

��
Yi � Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Xi � X

�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Yi � Y

�2

s

Xi, Yi, �X , �Y , and n represent the ith value of the experimental
dataset, the ith value of the predicted dataset, the mean value of
the experimental dataset, the mean value of the predicted
dataset, and the number of the dataset points, respectively. The
ratio of the test set is 0.3. To train the ML algorithms, we use 10-
fold cross-validation to optimize the hyperparameters, which
divides the datasets into 10 parts (90% data points for training
and 10% for validation) and does the learning 10 times. The
model having the lowest average RMSE on the validation sets
was screened for testing on the test set and further use. In
detail, the NN model had 3 hidden layers, which had 8, 6 and 4
neurons, respectively; the tree number in the RF model was
5000. The maximum depth and the number of rounds in the
XGBoost model were 10 and 40, respectively.
4. Conclusions

In summary, this work proves that the photon energy of quasi-
2D perovskites can be well predicted by machine learning based
© 2022 The Author(s). Published by the Royal Society of Chemistry
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on their precursor compositions. The random forest algorithm
outperforms the other three algorithms, which presents an
RMSE of �0.05 eV on the test set. According to the random
forest model's evaluation of feature relevance, the ratio of the Cs
cation is found to be critical to getting high photon energy.
Moreover, it is also shown that increasing the ratio of the
organic spacer cation to lead ion is not so effective in increasing
the photon energy. These results show that the experimental
results have a large deviation from the theoretical speculations,
while the data-driven analysis is critical to providing guidance
for experiments. The results also suggest that the phase impu-
rities should be suppressed to get deep blue emission. In
addition, the solubility of organic spacer cations in precursor
solvents is better to be considered to suppress the formation of
phase impurities. Furthermore, a series of quasi-2D perovskites
for blue emission are predicted by the random forest model.
These results reveal that machine learning is an efficient tool to
explore the underlying relations between the fabricating
conditions and the properties of quasi-2D perovskites, which
will greatly reduce the time and material cost of experimental
material screening.
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