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Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-
quality material for valuable furniture and carving crafts. However, limited information is
available about the process of wood formation in D. odorifera. To determine genes that
might be closely associated with the xylem differentiation process, we analyzed the
differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem
tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing
(small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and
90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and
sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed
that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47,
COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1),
jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and
terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed
that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p,
miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between
Dotz and Dosw. Further analysis revealed that the target genes of these differentially
expressed miRNAs were enriched in the GO terms “amino acid binding,” “cellulase
activity,” and “DNA beta-glucosyltransferase activity”. Further, KEGG pathway
annotation showed significant enrichment in “fatty acid elongation” and “biosynthesis
of unsaturated fatty acids”. These processes might be participating in the xylem
differentiation of D. odorifera. Next, expression correlation analysis showed that nine
differentially expressed miRNAs were significantly negatively associated with 21 target
genes, which encoded for proteins such as pyrH, SPL6, SPL12,GCS1, and ARF8. Overall,
this is the first study onmiRNAs and their potential functions in the xylem development ofD.
odorifera, which provides a stepping stone for a detailed functional investigation of D.
odorifera miRNAs.
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INTRODUCTION

Dalbergia odorifera is a semi-deciduous tree that belongs to the
Leguminosae family (Vatanparast et al., 2013;Wariss et al., 2017),
with the characteristics of easy germination, good tolerance to
drought and barren soil, high disease resistance, and high
adaptability (Liu et al., 2017; Hong et al., 2020). The
heartwood of D. odorifera is exquisite in color and pattern,
hard in texture, and has a unique aroma. Therefore, it has
always been considered as a very high-quality material for
making precious furniture, musical instruments, decorations,
and handicrafts (Meng et al., 2019). Due to its extremely high
application value, D. odorifera was over-exploited, the wild
resources were extensively destroyed. The natural forests
became increasingly scarce and were almost extinct (Liu et al.,
2019). The slow speed of heartwood formation further prevents
the existing resources ofD. odorifera frommeeting the demand of
domestic and foreign wood markets (Cui et al., 2020). Therefore,
it is urgent to cultivate D. odorifera trees with good wood quality.

Wood formation involves the biosynthesis and deposition of
lignin and cellulose on the cell wall, which comprises a complex
network of multiple genes (Mizrachi and Myburg, 2016; Wang
Y.-H. et al., 2018). Further, the heartwood formation also involves
the generation of special metabolites during its transformation
from sapwood (Ye and Zhong, 2015; Celedon and Bohlmann,
2018). The main components of heartwood in D. odorifera are
essential oils and flavonoids (The, 2017; Zhao et al., 2020).
Essential oils are secondary metabolites having aromatic odor
and volatile properties, and include terpenoids, aromatic
compounds, aliphatic compounds, and compounds containing
sulfur and nitrogen (Yang et al., 2022). The biosynthesis and
accumulation of lignin, cellulose, essential oils, and flavonoids are
important factors that influence xylem differentiation and wood
formation in D. odorifera. Still, the identity of genes and other
regulators involved in the process of xylem differentiation of D.
odorifera under natural growth remain poorly known.

Wood refers to all tissues within the vascular cambium in the
hard stems of perineal plants. Usually, in the cross-section of the
wood, we can observe the heartwood is the dark and hard
textured central area, while the sapwood is the light and soft
textured outer area (Islam et al., 2012; Mizrachi and Myburg,
2016; Chen et al., 2018). As the trees grow, sapwood gradually
transforms into the heartwood. This process usually takes place in
a narrow transition zone, which comprises living cells that
consume reserves such as starch (Bergström, 2003). In general,
the transition zone is one to two rings wide and is adjacent to the
heartwood (Celedon and Bohlmann, 2018). The xylem tissue of
the transition zone is often regarded as an important material for
studying wood formation. For example, in Taiwania
cryptomerioides, the molecular mechanism of the autolysis of
the cellular components of ray parenchyma cells in the transition
zone, during the heartwood formation, was elucidated by
transcriptome sequencing of sapwood and transition zone, in
combination with the microscopy and high-performance liquid
chromatography technology (Yeh et al., 2020). In Pinus sylvestris,
transcriptomic sequencing revealed that stilbene and resinic acid
were synthesized in transition zone and sapwood, respectively

(Lim et al., 2016). These studies suggest that sapwood and
transition zone are ideal plant parts for studying the dynamics
of gene expression and molecular regulatory mechanisms of
wood formation (Yeh et al., 2020).

MicroRNAs (miRNAs) now form an important component of
machinery that regulate gene expression. MiRNAs are a class of
small, single-strand non-coding RNAs that are approximately 21
nucleotides in length (Rogers and Chen, 2013; Yu et al., 2017).
They exert a negative regulation on the expression of target genes
through sequence-based complementarity, resulting in mRNA
cleavage or translation repression (Chen et al., 2015; Song et al.,
2019; Wang M et al., 2021). Studies have shown that miRNAs
play important roles in plant growth and development, including
organ morphogenesis, hormone secretion, and stress response
(Aukerman and Sakai, 2003; Sunkar et al., 2012; Dong et al.,
2022). For example, in Osmanthus fragrans, miR858 affects
flavonoid content in flower tissues by negatively regulating the
MYB1 gene (Shi et al., 2021). Further, some miRNAs, such as
miR397a (Lu et al., 2013), miR875 (Zhao et al., 2015), miR257
(Chen et al., 2016), and miR475b (Xiao et al., 2017), have been
identified to participate in different processes of wood formation.
However, the expression profile and functions of miRNAs in D.
odorifera have not been reported. A detailed understanding of the
complex molecular mechanism of D. odorifera xylem
differentiation has also been lacking.

Here, we have investigated the expression profile of miRNAs
and their potential role in regulating xylem differentiation in D.
odorifera. We performed small RNA sequencing (small RNA-
seq) and mRNA sequencing (mRNA-seq) analyses from three
biological replicates of two tissue types (sapwood and transition
zone) ofD. odorifera. To the best of our knowledge, this is the first
study to identify miRNAs of D. odorifera and describe their
potential role in xylem differentiation. This study will broaden
our understanding of the complex molecular mechanism of D.
odorifera xylem differentiation. The results of sequencing analysis
provide abundant candidate miRNAs and mRNAs, which are
important for the innovation ofD. odorifera germplasm resources
and the cultivation of good wood quality varieties.

MATERIALS AND METHODS

Plant Materials
The three well-developed D. odorifera trees (about the age of
7 years) were grown at an artificial nursery of Hainan Province
in China (19°38′56″N, 110°14′29″E). These three individual
trees, which have formed heartwood, were selected as
biological replicates without any treatment. These three
trees were used for all the experiments. Samples of sapwood
(Dosw1, Dosw2, Dosw3) and transition zone (Dotz1, Dotz2,
Dotz3) were taken from xylem tissues near the cambium and
near the heartwood of each tree, respectively, by following the
previously described protocols (Yeh et al., 2020). All the
samples were isolated from the trees with the help of a
sharp chisel after removing the bark, and the tissues were
immediately frozen in liquid nitrogen and stored at −80°C until
RNA isolation.
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Library Construction and Sequencing
Total RNA from Dotz and Dosw groups of samples was extracted
by the CTAB method. Agarose gel electrophoresis (2% agarose
gel) was used to evaluate RNA degradation and contamination,
and a micro-spectrophotometer was used to assess the purity of
RNA (260/280 ratio: 1.9–2.2, 260/230 ratio: ≥ 2.0). RNA integrity
was evaluated with the help of RNA Nano 6000 Assay Kit of the
Agilent Bioanalyzer 2,100 system (Agilent Technologies, CA,
United States), and samples with an RNA integrity number
(RIN) greater than 7.0 were used for further experiments.

Magnetic beads with oligo (dT) were used to enrich mRNA by
binding to its polyadenylated tail through A-T complementary
pairing. A fragmentation buffer was used for fragmenting the
mRNA. cDNA was synthesized using random hexamer primers,
buffer, dNTPs, and DNA polymerase I. Double-stranded cDNA
was purified by AMPure XP beads, and subjected to end repair,
the addition of the poly-A tail, ligation of the sequencing linker,
and fragment size selection. Finally, the cDNA libraries were
subjected to PCR enrichment and sequenced with the Illumina
HiSeq 2,500. After the original data was filtered, the redundancy
was removed to obtain clean reads. The HISAT2 software was
used to compare the clean reads of RNA-Seq to the reference
genome sequence of D. odorifera.

The NEBNext® Multiplex small RNA library prep set was used
to generate small RNA-seq libraries for Illumina® (NEB, Ipswich,
MA, United States.) by following the manufacturer’s instructions.
Then, the TruSeq SR Cluster Kit v3-cBot-HS (Illumina) was used
to generate a cluster on cBot cluster generation system. Finally, all
small RNA-seq libraries were sequenced on an Illumina HiSeq
2,500 platform.

Analysis of miRNA and mRNA Expression
Profiles
After sequencing, clean reads were obtained by removing the
reads containing poly-N, ploy A/T/G/C, with 5′ adapter
contaminants, without 3′adapter or the insert tag, and the
low-quality reads. In addition, Q20, Q30, and GC-content of
the raw reads also were calculated. At the end, all the downstream
analyses were performed on sequences ranging of 18–30 bp in
length. Bowtie was used to locate/align the small RNAs to the
reference genome of D. odorifera and analyze the distribution of
small RNAs over the reference genome. The reads that mapped
onto the reference genome of D. odorifera were compared with
sequences in miRBase (20.0) to obtain the known miRNA;
whereas novel miRNAs were predicted with the help of
miREvo (Wen et al., 2012) and mirDeep2 (Friedlander et al.,
2012). The expression level of miRNA was estimated by the TPM
(transcript per million) value. The DESeq R package (3.0.3) was
used to perform differential expression analysis of Dotz and Dosw
with the |log2 (fold change)| ≥ 1 and p-value < 0.05 as the
threshold.

Clean reads of RNA-seq were obtained by removing low-
quality sequencing fragments from the raw reads. Then, the read
count of each gene was obtained by mapping the clean reads to
the reference genome of D. odorifera with the help of HISAT2.
The expression levels of mRNAs were estimated by the

calculating FPKM (fragments per kilobase of exon model per
million) values. A |log2 (fold change)| ≥ 1 and q-value < 0.05 were
used as criteria to screen differentially expressed genes (DEGs)
between Dotz and Dosw samples.

Prediction of the Potential Target Genes of
miRNA
The psRobot is focused on plant small RNA analysis, which has
been widely used for target gene predictions (Wu et al., 2012;
Zhao et al., 2020; Liao et al., 2021). Therefore, we used its online
version (http://omicslab.genetics.ac.cn/psRobot/target_
prediction_1.php/) to predict the potential target genes of
miRNAs, using the default parameters (Wu et al., 2012). Then,
correlation analysis of accumulation of target genes and miRNAs
was performed. When the expression levels of target genes had a
strong negative correlation of at least −0.8 (p < 0.05) with
miRNAs, they were selected for further analysis. All DEGs and
the target genes of miRNAs were mapped to individual terms in
the GO database (http://www.geneontology.org/) and the
number of genes per term was calculated. Then, the GOseq
software was used for GO enrichment analysis of DEGs.
Analysis of gene regulatory pathways in the KEGG pathway
database (http://www.genome.jp/kegg/pathway.html/) was
performed with the help of KOBAS (3.0) software. Finally,
Cytoscape 3.9.0 was used to construct a co-expression
network graph.

Validation of miRNA and Gene Expression
by RT-qPCR
cDNAs were synthesized by reverse transcription of total RNA
from six D. odorifera samples (Dosw1, Dosw2, Dosw3, Dotz1,
Dotz2, and Dotz3). Gene-specific primers for the targets were
designed with the help of Primer Premier v5 software
(Supplementary Table S1). Four important DEGs (WRKY22,
AP2, FPP7, and PAL2), five miRNA target genes (SPL12, ARF8,
FH20, GCS1, and MMT1) of miRNA-mRNA correlation
network, and six differentially expressed miRNAs (miR156g,
miR167e, miR168a-5p, novel_9, novel_15, and novel_52) were
chosen to verify expression levels. For the genes, RT-qPCR
analysis was conducted with TB Green® Premix Ex Taq™ (Tli
RNaseH Plus; Takara, Beijing, China) following the
manufacturer’s recommendations. The amplification was
performed on a preheated (94°C) thermal cycler, and samples
were incubated at 94°C for 2 min, followed by 40 cycles of 95 °C
for 5 s and 60°C for 30 s. The actin gene served as an internal
control for normalization (Meng et al., 2019). We used the
miRNA RT-qPCR Detection Kit (Aidlab, Beijing, China) for
RT-qPCR analysis of miRNAs, following the manufacturer’s
recommendations. PCR amplification was performed at a
preheated (94°C) thermal cycler and samples were incubated
at 94 °C for 2 min, followed by 40 cycles of 94°C for 15 s and
60°C for 40 s. The U6 gene served as an internal control for
normalization (Meng et al., 2022). The 2–△△Ct method was used
to calculate the expression levels of the miRNAs and genes against
the internal controls (Schmittgen and Livak, 2008). Three
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technical replicates per sample were analyzed to ensure
reproducibility and reliability.

RESULTS

mRNA Expression Profile of Xylem
Differentiation in D. odorifera
To understand the molecular mechanism of xylem
differentiation, six cDNA libraries from the Dotz and Dosw of
D. odorifera were sequenced. RNA-seq generated 20,567,345
(Dotz1), 20,373,919 (Dotz2), 25,875,484 (Dotz3), 21,492,446
(Dosw1), 22,895,259 (Dosw2) and 23,017,502 (Dosw3) clean
reads (Table 1). Of these, 19,643,871 (Dotz1), 19,430,607
(Dotz2), 24,690,387 (Dotz3), 20,041,706 (Dosw1), 21,867,262
(Dosw2) and 21,684,789 (Dosw3) clean reads, respectively,
were mapped to the D. odorifera genome with mapping ratios
of 93.25–95.51% (Table 1). These results show that RNA-seq
captured a significant portion of the genes in the genome of D.
ororifera. For differential analysis of gene expression between the
Dotz and Dosw groups, the FPKM values were used to normalize
the reads from RNA-seq, and a cutoff of |log2 (fold change)| ≥ 1
and q-value <0.05 was used. A total of 395 mRNAs were
differentially accumulated, of which 72 were up- and 323 were
down-regulated, respectively, in Dotz compared to Dosw
(Figure 1A; Supplementary Table S2). All 395 differentially

expressed mRNAs (Supplementary Table S2) obtained from
Dotz and Dosw were used for subsequent analysis.

Functional Annotation of the DEGs
To annotate and reveal the function of DEGs in different tissues
of xylem, we used GO classification. Up-regulated mRNAs were
associated with 11 molecular functions, 49 biological processes,
and four cellular components (p-value < 0.05), including “anion
transport,” “anion transmembrane transporter activity,” and
“inorganic anion transport” associated with ion transport
(Figure 2A). Down-regulated mRNAs were associated with 41
molecular functions, 54 biological processes, and three cellular
components (p-value < 0.05), including “inorganic anion
transmembrane transporter activity”, “transmembrane
transport”, “sulfate transport” and “sulfate transmembrane
transporter activity” terms associated with anion transport
(Figure 2B). The DEGs were further referenced through the
KEGG database. Eight KEGG pathways (p-value < 0.05) were
significantly enriched, including “carotenoid biosynthesis,”
“diterpenoid biosynthesis,” and “alpha-linolenic acid
metabolism” (Figure 3).

Functional annotation of DEGs revealed the processes, such as
the transcriptional regulation, lignin synthesis, flavonoids, and
terpenoids synthesis, which could play important roles in the
xylem differentiation of D. odorifera. We found that 11 DEGs
might encode for transcription factors, of which eight belong to

TABLE 1 | Summary of mRNA sequencing datasets.

Sample Raw reads Clean reads Q20 (%) Q30 (%) GC (%) Mapping rate
(%)

Dotz1 21,748,426 20,567,345 96.42 90.26 45.48 93.25
Dotz2 21,250,794 20,373,919 96.51 90.47 45.19 95.51
Dotz3 27,412,017 25,875,484 97.17 92.16 45.41 94.21
Dosw1 22,942,939 21,492,446 96.40 90.41 46.17 95.51
Dosw2 24,101,319 22,895,259 96.80 91.18 45.46 95.37
Dosw3 23,998,691 23,017,502 96.80 91.16 45.70 95.42

FIGURE 1 | Expression profiles of mRNAs in D. odorifera. Hierarchical clustering of all differentially expressed mRNAs (A). Hierarchical clustering of expression of
important differentially expressed genes (B).
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the WRKY transcription factor family (Figure 1B). Four genes
(PER47 (Peroxidase 47), COMT (Caffeic acid 3-O-
methyltransferase), CCR2 (Cinnamoyl-CoA reductase 2), and
UXS2 (UDP-glucuronic acid decarboxylase 2)) are related to
lignin synthesis and cell wall composition, two genes (KAO2
(Ent-kaurenoic acid oxidase 2) and GA20OX1 (Gibberellin 20
oxidase 1)) are part of gibberellin synthesis, two genes (OPR2 (12-
oxophytodienoate reductase 2) and CYP74A (Allene oxide
synthase)) participate in jasmonic acid synthesis, and two
genes (PAL2 (Phenylalanine ammonia-lyase 2) and CYP71A1

(Cytochrome P450 71A1)) are related to flavonoids and
terpenoids synthesis (Figure 1B).

Sequencing of Small RNAs
Small RNA-seq was performed to unveil the possible role of
miRNAs in regulating gene expression during xylem
differentiation in D. odorifera. 15,809,909 (Dotz1), 15,412,631
(Dotz2), 15,469,161 (Dotz3), 15,422,891 (Dosw1), 15,394,233
(Dosw2) and 15,755,203 (Dosw3) raw reads were obtained
from the small RNA libraries generated from the Dotz and
Dosw groups. After removing connectors and low-quality
reads, a total of 45,496,409 (Dotz) and 45,444,352 (Dosw)
clean reads were obtained (Table 2). The length of most clean
reads ranged between 21 and 24 nucleotides (Supplementary
Figure S1). In comparison by Bowtie software, 90.87–95.30% of
small RNA reads matched with the genome sequence of D.
odorifera (Table 2).

Identification of Known and Novel miRNA
The 18–30 nt clean reads that mapped to the reference genome
were compared to sequences in miRBase to identify conserved/
known miRNAs. Subsequently, novel miRNAs were predicted
using miREvo and miRDeep2 tools on the basis of structural
characteristics of miRNA. We identified 38 known miRNAs in
Dotz and 36 in Dosw samples, respectively. Together, these
accounted for a total of 40 known miRNAs that belonged to
22 miRNA-families (Figure 4A; Supplementary Table S3;
Supplementary Figure S2). Further analysis of the
distribution of the first base of these known miRNAs showed
that “U” was the most dominant base (Supplementary Table S4;
Supplementary Figure S3). Also, a total of 123 novel miRNAs
were identified, where 122 were present in Dotz and all 123 in
Dosw (Figure 4A; Supplementary Table S5; Supplementary
Figure S4). The statistical analysis of the distribution of the first
base of these novel miRNAs also found that “U” was the most
dominant base (Supplementary Table S6; Supplementary
Figure S5).

FIGURE 2 | GO analysis of the biological functions of mRNAs. The x-axis represents the number of genes, and the y-axis represents the GO term. GO enrichment
analysis of the up- (A) and down-regulated (B) mRNAs are presented.

FIGURE 3 | KEGG pathway enrichment analysis of differentially
expressed mRNAs. The x-axis represents the rich factor, whereas the y-axis
represents the KEGG pathway term. The size of the dots represents the
number of genes, and the color of the dots represents the qvalue.
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Differentially Expressed miRNAs and Their
Targets
To understand the miRNA-driven mechanism of regulation of
xylem differentiation, miRNAs that accumulated differentially
between the two tissue types were identified by the TPMmethod.
Compared with Dosw, four known (miR168a-5p, miR167f-5p,
miR167h-5p, and miR167e) and three novel miRNAs (novel_15,
novel_9, and novel_165) were up-regulated in Dotz, whereas two
known (miR390a, miR156g) and five novel miRNAs (novel_45,
novel_52, novel_110, novel_47, and novel_130) were down-
regulated (Figure 4B). Among these differentially expressed
miRNAs, the most up-regulated miRNAs were miR167e (52.21
fold), miR167h-5p (20.53 fold), and miR167f-5p (16.33 fold). The
top down-regulated miRNAs were miR390a (52.75 fold),
novel_45 (21.44 fold), and novel_52 (17.17 fold)
(Supplementary Table S7).

To understand the potential function of differentially
expressed miRNAs, 1,056 candidate target genes were
predicted with the help of psRobot. Then, the target genes
with a strong negative correlation of at least −0.8 (p < 0.05)
with miRNAs were selected for further analysis (Supplementary
Table S8). We, thus obtained 21 putative target genes for nine
differentially expressed miRNAs. Subsequently, GO enrichment
analysis indicated that these 21 target genes are associated with 42
GO terms (p-value < 0.05) from biological processes, molecular
functions, and cellular components. Few examples of such

processes included “amino acid binding,” “cellulase activity,”
and “DNA beta-glucosyltransferase activity” (Supplementary
Figure S6A). Further, KEGG enrichment indicated that the
target genes were enriched in five pathways (p-value < 0.05),
including “protein processing in endoplasmic reticulum,” “fatty
acid elongation,” and “biosynthesis of unsaturated fatty acids”
(Supplementary Figure S6B).

A Key miRNA-mRNA Regulatory Network
During Xylem Differentiation of D. odorifera
To explore the relationship between miRNAs and mRNAs
during xylem differentiation of D. odorifera, a regulatory
network diagram of the nine differential expression
miRNAs and their 21 target genes was constructed
(Figure 5; Supplementary Table S8). It was evident that
one miRNA could target 1-7 mRNAs, among which
miR156g and novel_52 could negatively regulate seven and
six mRNAs, respectively, while miR167h-5p and miR167f-5p
could simultaneously regulate one mRNA (pyrH, Uridylate
kinase). Similarly, miR156g might target the transcripts of
Squamosa promoter-binding-like protein 6 (SPL6), which is
involved in programmed cell death (Wang Q.-L. et al., 2018),
as well as the SPL12. A novel miRNA, novel_130, might target
mRNA of mannosyl-oligosaccharide glucosidase (GCS1),
involved in cellulose synthesis. The up-regulated miRNA

TABLE 2 | Summary of small RNA sequencing datasets.

Sample Raw reads Clean reads Q20 (%) Q30 (%) GC (%) Mapping rate
(%)

Dotz1 15,809,909 15,359,940 97.42 92.25 50.44 94.25
Dotz2 15,412,631 15,004,955 97.17 91.47 50.13 90.87
Dotz3 15,469,161 15,131,514 97.43 92.22 50.08 93.12
Dosw1 15,422,891 15,024,534 97.33 91.99 50.81 95.30
Dosw2 15,394,233 15,027,909 97.35 91.90 50.16 93.03
Dosw3 15,755,203 15,391,909 97.36 91.88 49.18 95.20

FIGURE 4 | The expression profile of miRNAs in xylem of D. odorifera. (A) The number of known and novel miRNAs. The x-axis represents the type of miRNAs, and
the y-axis represents the number of miRNAs. (B) Hierarchical clustering of all differentially expressed miRNAs.
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novel_9 was predicted to target auxin response factor 8 (ARF8)
that is involved in auxin dynamics balance (Tian et al., 2004)
(Figure 5).

Validation of Gene Expression Levels by
RT-qPCR
We determined the relative transcript levels of miRNAs and genes
identified from DEGs and the interaction network by RT-qPCR,

and observed that only miR168a-5p was different with RNA-seq.
The expression patterns of all nine genes and other miRNAs
estimated by RT-qPCR and RNA-seq followed a similar trend in
Dotz and Dosw samples. Although the fold-change (FC) values
calculated by sequencing did not exactly match the expression
values obtained by RT-qPCR, the expression profiles were
basically consistent for all tested miRNAs and genes
(Figure 6). These analyses validate the reliability of the gene
expression values generated from sequencing results.

FIGURE 5 |miRNA-mRNA correlation network. Green circles represent the genes, red and blue triangles represent up- and down-regulated miRNAs, respectively.
The gray solid line represents the targeted regulatory relationship between miRNAs and genes, and the gray dotted line shows the protein encoded by the gene.

FIGURE 6 | RT-qPCR of the expression levels of miRNAs and genes in Dosw and Dotz from the xylem in D. odorifera. The accumulation levels of mRNAs of the
genes (A), and miRNAs (B) in RT-qPCR and RNA-seq analyses are presented. The actin was used as an internal control for genes, and the U6 was used as the internal
control for miRNAs.
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DISCUSSION

D. odorifera is an important, rare, and precious rosewood.
However, only a limited number of studies (Cui et al., 2019)
are available that describe the molecular mechanism of wood
formation of D. odorifera, which is comprised of multiple and
complex pathways. RNA-seq technology now provides a
convenient tool for a better understanding of the mechanisms
of plant growth and development at the molecular level (Yeh
et al., 2020). In this study, we explored the potential mechanism
of xylem differentiation by investigating the accumulation of
miRNAs and mRNAs in different xylem tissues. Through the
construction of a regulatory network between differentially
accumulating miRNAs and their target genes, we obtained
valuable miRNA-mRNA pairs involved in xylem
differentiation and identified their interaction and potential
role. These data provide a deeper understanding of the
molecular mechanism of wood formation in D. odorifera.

mRNA Sequencing Analysis
By analyzing the patterns of mRNA accumulations in two
tissue types related to wood formation in D. odorifera, we
identified 395 differentially expressed mRNAs between Dotz
and Dosw (Figure 1A). Further, the enriched GO terms
associated with the DEGs were largely expected. Anion
transport and inorganic anion transport were highly
enriched, indicating the function of these genes in wood
formation. KEGG analysis showed that DEGs were
commonly enriched in some pathways, including
“carotenoid biosynthesis,” “diterpenoid biosynthesis,” and
“alpha-linolenic acid metabolism”. This result is also
consistent with our expectations as these three pathways
might play an important role in the differentiation of
xylem, especially in the biosynthesis of terpenoids and plant
hormones (Biesgen and Weiler, 1999; Regnault et al., 2014).

We have identified genes that are possibly involved xylem
differentiation process. Eleven genes that may encode
transcription factors were identified, eight of which belong
to the WRKY family. Our findings on differential expression of
many genes encoding transcription factors are supported by
previous investigations on other trees, such as rubber tree
(Meng et al., 2021) and Populus tomentosa (Chen et al., 2015).
In P. tomentosa, some genes of WRKY family were also
differentially accumulated amoung the xylem tissues of
tension wood, opposite wood, and normal wood (Chen
et al., 2015). Further, earlier studies have shown that
WRKY transcription factors were widely involved in plant
responses to biotic, abiotic, and hormonal stresses, and
regulate the biosynthesis of phenols, terpenes, and alkaloids
(Schluttenhofer and Yuan, 2015). For example, MdWRKY11
promotes the expression of F3H, FLS, DFR, ANS, and 10UFGT
in Malus domestica callus, and then increases the
accumulation of flavonoids and anthocyanins (Wang N
et al., 2018). Further, we also found some genes (such as
PER47, COMT, CCR2, UXS2, KAO2, GA20OX1, OPR2,
CYP74A, PAL2, and CYP71A1) related to lignin synthesis
and cell wall composition, gibberellin synthesis, jasmonic

acid synthesis, and flavonoids and terpenoids synthesis.
Similarly, in the study of Sun et al. (2020), seven PAL
family genes involved in the phenylpropane pathway were
also significantly differentially expressed between the
discolored wood by pruning and the normal wood in D.
odorifera. In addition, COMT silenced transgenic poplar
trees have significantly reduced 17% lignin levels (Jouanin
et al., 2000). The trunk dry mass of a three-month-old
PdGA20ox1 overexpressing transgenic poplar was four times
higher than that of untransformed control poplar; the contents
of xylose and glucose were also significantly increased in these
transgenic plants (Park et al., 2015).

MiRNA Sequencing Analysis
MiRNAs are an important class of non-coding factors that
regulate genes expression at the post-transcriptional level in
nearly every aspect of plant development such as germination,
growth, tissue differentiation, and flowering (Das et al., 2019;
Glazińska et al., 2019; Qiu et al., 2019). The results of small
RNA-seq demonstrate that the xylem of D. odorifera contains a
large and diverse small RNA population, a finding similar to
previous studies in rubber tree (Meng et al., 2022) and Chinese
fir (Wan et al., 2012).

A total of 40 known miRNAs belonging to 22 miRNA
families and 123 novel miRNAs were identified in these
small RNA libraries, among which 14 miRNAs were
differentially expressed (Figure 4). Similarly, the miR156,
miR159, miR166, miR319, miR396, miR398, and miR408
families have also been identified in the xylem of rubber
tree (Meng et al., 2022). The miR396a and miR156g are
also differentially expressed in the primary stem, transition
stem, and secondary stem of Populus trichocarpa (Wang R
et al., 2021). Then, we found many miRNA families in D.
odorifera, for example, miR156 (Wang et al., 2011), miR166
(Chen et al., 2018), and miR397 (Lu et al., 2013), are known to
play a role in wood formation in other species. Subsequently,
functional analysis of the target genes of the differentially
expressed miRNAs revealed that these genes were commonly
enriched in a few pathways including, “protein processing in
endoplasmic reticulum,” “fatty acid elongation” and
“biosynthesis of unsaturated fatty acids” These results
further suggest that these differentially expressed miRNAs
possibly regulate xylem differentiation of D. odorifera.

Integration Analysis of Differentially
Expressed miRNAs and Target Genes
We predicted 1,267 target-miRNA pairs between the 14
differentially expressed miRNAs and 1,056 candidate genes
with the help of psRobot in Dotz and Dosw. Among these
miRNA target related gene pairs, 22 showed a significantly
negative correlation. Some studies have found that miR156
regulates plant growth and development, morphogenesis,
anthocyanin accumulation, gibberellin synthesis, and stress
response by inhibiting the expression of SPL transcription
factors in A. thaliana at the post-transcriptional level (Schwarz
et al., 2008; Jung et al., 2011). In our study, miR156g appears to
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negatively regulate seven target genes, including SPL6 and
SPL12. Novel miRNAs were equally differentially accumulated
and significantly negatively correlated to their target genes,
thus indicating an important regulatory role in xylem
differentiation. In our study, the novel_130 is predicted to
target the expression of up-regulated GCS1 in Dotz. In A.
thaliana, α-Glucosidase I (encoded by GCS1) is required for
cellulose biosynthesis and morphogenesis (Gillmor et al.,
2002). These results indicate that novel_130 may affect
cellulose synthesis in the Dotz of D. odorifera by
regulating GCS1.

CONCLUSION

In summary, mRNA and small RNA profiles were first revealed
in the process of xylem differentiation of D. odorifera. A total
of 395 differentially expressed mRNAs were identified, many
of which are involved in diterpenoid biosynthesis and alpha-
linolenic acid metabolism, and controlled synthesis of
terpenoids. Further, eight genes encoding the WRKY
transcription factors, and some genes related to lignin
synthesis, cell wall composition, gibberellin synthesis,
jasmonic acid synthesis, flavonoids, and terpenoids
synthesis (such as PER47, COMT, CCR2, UXS2, KAO2,
GA20OX1, OPR2, CYP74A, PAL2, and CYP71A1), were also
identified. Subsequently, 14 differentially expressed miRNAs
between Dotz and Dosw were found, and nine of these were
significantly negatively correlated to the expression of 21 target
genes. This evidence provides valuable information for further
functional characterization of the miRNAs and their targets in
the xylem differentiation of D. odorifera.
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