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Abstract

Motivation: Repositories support the reuse of models and ensure transparency about results in

publications linked to those models. With thousands of models available in repositories, such as

the BioModels database or the Physiome Model Repository, a framework to track the differences

between models and their versions is essential to compare and combine models. Difference detec-

tion not only allows users to study the history of models but also helps in the detection of errors

and inconsistencies. Existing repositories lack algorithms to track a model’s development over

time.

Results: Focusing on SBML and CellML, we present an algorithm to accurately detect and describe

differences between coexisting versions of a model with respect to (i) the models’ encoding, (ii) the

structure of biological networks and (iii) mathematical expressions. This algorithm is implemented

in a comprehensive and open source library called BiVeS. BiVeS helps to identify and characterize

changes in computational models and thereby contributes to the documentation of a model’s his-

tory. Our work facilitates the reuse and extension of existing models and supports collaborative

modelling. Finally, it contributes to better reproducibility of modelling results and to the challenge

of model provenance.

Availability and implementation: The workflow described in this article is implemented in BiVeS.

BiVeS is freely available as source code and binary from sems.uni-rostock.de. The web interface

BudHat demonstrates the capabilities of BiVeS at budhat.sems.uni-rostock.de.

Contact: martin.scharm@uni-rostock.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modelling and simulation is a standard approach to investigate com-

plex biological processes. A steadily increasing number of computa-

tional models are available from open repositories such as the

BioModels database (Li et al., 2010) or the Physiome Model

Repository (PMR2; Yu et al., 2011). These repositories provide the

infrastructure necessary to maintain model code and associated

metadata. The distribution of models through these repositories

accelerates collaborative research and encourages model reuse.

The reusability of models improves the modelling workflow, by

reducing errors and saving time. Tracking the evolution of a model,

that is providing information about changes in the model and its

encoding, plays an important role in supporting the user (Waltemath

et al., 2013a). The need of model version control has been empha-

sized repeatedly on several occasions (Li et al., 2010; Miller et al.,

2011; Saffrey and Orton, 2009; Waltemath et al., 2013a).

Figure 1 visualizes the evolution of a single model. In 1993,

Novak and Tyson published the first cell cycle model describing the
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M-phase control in Xenopus oocyte extracts and intact embryos

(Novak and Tyson, 1993). The model representing these findings

was first published in the BioModels database in 2007 (release

number 8) with the identifier BIOMD0000000107 (identifiers.org/

biomodels.db/BIOMD0000000107). Along with 20 official releases

of the database, the model has undergone numerous changes.

Figure 1 shows the differences in one of the model’s reactions,

namely the formation of Cdc2-cyclin dimers from Cyclin subunits

and free Cdc2 monomers (Step 3 Novak and Tyson, 1993, Fig. 1).

The relation between versions of a model from different releases

can be considered the history of the model’s encoding (Fig. 1). In the

simplest case, the history follows a single line along the time axis. In

practice, however, models are subject to modifications, including

corrections, extension and other refinements. After publication,

models may be combined into larger networks (e.g. Gennari et al.,

2008; Krause et al. 2010; Smallbone et al., 2010). Also during model

development, several alternatives are tested, leading to different

paths in the history of a model. These so-called branches complexify

the study of a model’s history, especially when branches with differ-

ent modifications shall be merged back into a single version of the

model at a later time. For this reason, difference detection plays a

key role in model version control. We refer to model provenance as

the field of research that investigates the nature of differences in

model versions, seeking answers to the seven W-questions: Who,

What, Where, Why, When, Which, With (How)? (Davidson and

Freire, 2008; Goble, 2002; Moreau et al., 2008; Ram and Liu,

2010).

In this article, we present a novel algorithm for difference detec-

tion in models of biological systems. Our algorithm pre-processes

the model documents, maps the hierarchical model structures and

post-processes the resulting mappings. The mapping can then be ex-

ported in both machine and human readable formats. The algorithm

is implemented in a software library called BiVeS. It can immedi-

ately be used with existing model repositories and model manage-

ment platforms. In addition, we showcase the capabilities of BiVeS

in our web-based tool BudHat for version control of models

encoded in the Systems Biology Markup Language (SBML, Hucka

et al., 2003) or in CellML (Cuellar et al., 2003). BiVeS and BudHat

demonstrate how our work contributes to successful provenance of

model-driven research in computational biology.

In the following sections, we will describe the algorithm (Section

2) in technical detail, present the results using a representative ex-

ample (Section 3) and discuss the outcome and the impact of our

work (Section 4).

2 Methods

Our algorithm for detection and communication of differences com-

pares two versions of an XML-encoded model. It distinguishes six

major steps: (Section 2.1) Pre-processing the XML documents,

(Section 2.2) Mapping the hierarchical structures and (Section 2.3)

Post-processing the resulting mapping. Based on the identified map-

ping, the algorithm computes a delta (Section 2.4). This delta can be

converted into both machine readable (2.5) and human readable

(2.6) formats. All steps are described in full technical detail in the

following sections. Sections 2.1, 2.2 and 2.4 follow the original

ideas of the XyDiff (leo.saclay.inria.fr/software/XyDiff/cdrom/

www/xydiff/index-eng.htm) algorithm, which was developed at

INRIA and focuses on efficiency in terms of speed and memory

(Cobena et al., 2002). The Section 3 and the Supplementary

Material provide illustrative examples.

2.1 Pre-processing the XML documents
First, two versions of an XML-encoded model are translated into an

internal tree structure. For every node n in the tree, a hash sum nr

and a weight nx are calculated. With length ðnÞ denoting the length

of the text stored in n, the weight nx is determined as in the original

XyDiff algorithm:

nx ¼

1þ logðlengthðnÞÞ if n is text node;

1 if n is leaf;

1þ
X

c2 childrenðnÞ
cx otherwise:

8>>>><
>>>>:

The weight of a node is thus always greater than the weight of its

children. As such, the weight represents the size of the corresponding

subtree. The hash sum of a node n represents the signature of the

subtree rooted at n. In the current version of our implementation,

we determine the hash nr of a node n by the SHA-2 sum of the con-

catenation of the node’s tag name, its attributes and the hash sum of

all its children. While nr unambiguously defines the subtree rooted

in n, nr does not need to be unique among all nodes in the tree.

Thus, if nr ¼ mr then the subtrees in n and m are identically equal.

We explain in the following section how these signatures speed up

the mapping of two hierarchical structures.

2.2 Mapping the hierarchical structures
To compare two tree structures T1 and T2,

we use XyDiff’s BULD

algorithm, in which matchings are propagated bottom-up and only

lazily down. It finds matchings between common large subtrees of

the two documents and propagates these matchings (Cobena et al.,

2002). We distinguish four phases of mapping.

2.2.1 Mapping by ID

First, nodes are being mapped with respect to their identifiers. As

suggested in the original algorithm, the id attributes in the XML

documents serve as identifiers. In addition, we also evaluate biolo-

gical identifiers, specifically links into bio-ontologies. In our current

implementation, we assign a higher priority to biological identifiers

than to id attributes. In this step, nodes in both documents which

share the same identifier are mapped onto each other. If many nodes

Fig. 1. Sketch of a model’s temporal evolution. Changes in a single reaction

of Novak and Tyson’s model with ID BIOMD0000000107 in the BioModels

database. The differences between versions from June 2007 (release number

8), June 2013 (release number 25) and February 2015 (latest available ver-

sion) are shown. The branch represents a modification. The boxes visualize

the differences between related versions
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are labelled with an id attribute, then a large number of mappings

are already computed at this stage. Consequently, the following

mapping procedure, which is computationally harder, typically

simplifies.

2.2.2 Bottom-up propagation

Second, the initial mapping is propagated upwards into the trees.

The connections of a node’s children are evaluated in a depth-first

traversal of T2. If a node n in T2 is connected to a node m in T1 then

a mapping of parentðnÞ to parentðmÞ is suggested. The confidence

equals nx and is therefore proportional to the size of n’s subtree. If,

in contrast, n is not connected, we examine the candidates that were

previously suggested by the connections of n’s children. Candidates

which have a different tag name than n and candidates which al-

ready have a connection are neglected. Among the remaining candi-

dates, the algorithm chooses the one that received the best

suggestions and connects it to n.

2.2.3 Top-down propagation

Third, the algorithm makes use of the initially computed signatures

and maps nodes of T2 on nodes of T1 which share the same hash

value. A priority queue U is maintained to sort the nodes of T2

based on their weights. Initially, U only consists of the root node of

T2. Unless U is empty, the algorithm repeatedly removes node

n 2 U � T2 with the biggest weight, which represents the biggest

subtree in the queue and collects a set of mapping candidates

M � T1 with 8m 2M : mr ¼ nr. If M is empty, all children of n are

added to U and the loop continues with the next biggest subtree.

Otherwise, the algorithm tries to find a node m 2M for which there

already exists a mapping between ancestorsðmÞ and ancestorsðnÞ. As

proposed by Cobena et al. (2002), the number of levels to chase the

ancestry of both nodes depends on the ratio of nx to rootðT2Þx.

Thus, for large subtrees, we are willing to climb many levels in the

tree to find a mapping of ancestors, but we might just examine first-

hand parents to map leaf nodes. If we are able to find such an

m 2M, all nodes of the subtrees in m and n are mapped onto each

other, just as the ancestors up to the discovered mapping.

2.2.4 Optimization

Fourth, the algorithm improves the quality of the mapping by exam-

ining the network structure of T1 and T2 in a top-down approach.

For every mapping n 2 T2 on m 2 T1, it compares unmatched chil-

dren of n and m to find missed mappings. A distance matrix Mi�j is

created with Mi;j being the ratio of the number of differing attributes

to the total number of attributes between the ith child of n and the

jth child of m or 0 if both nodes do not have any attributes. We as-

sign 1 to elements Mi;j if the corresponding nodes already have a

mapping or if they do not share the same tag name. The algorithm

evaluates the matrix greedily and adds new mappings up to a max-

imum distance of 0.9. Thus, nodes which have nothing in common

will not be connected.

2.3 Post-processing the resulting mapping
Additional mapping rules capture the domain characteristics of the pro-

cessed data. Following the current specifications for SBML and

CellML, we prohibit certain changes in the hierarchical tree of docu-

ment nodes. Specifically, we treat parts of the model as atomic con-

structs for which we define restrictions on possible network operations.

In SBML models, e.g. listOf-nodes must not change their

parents. That means, if a listOfModifiers of T1 is mapped

onto a listOfModifiers of T2 but their parents are not linked,

then we drop this mapping. Similarly, nodes with tag names

speciesReference, trigger, eventAssignment,

modifierSpeciesReference, delay and priority are glued

to their respective parents. If the parents in the corresponding tree

are not connected, which means their networks in the XML docu-

ments differ, we remove the mapping from the set of operations. In

CellML models, nodes with tag names variable and reaction

are glued to their components.

Obviously, these rules expand the set of operations in the delta

later on, but we are willing to trade some minimality to increase the

significance of produced deltas. This step is a major reason why our

algorithm outperforms standard XML diff algorithms.

2.4 Computing the delta
A delta is a set of operations on entities (nodes or attributes, respect-

ively) necessary to transform one document into another. We distin-

guish the following four types of operations which apply on entities

of the corresponding XML tree:

insert if an entity is present in T2 but absent in T1

delete if an entity is present in T1 but absent in T2

move if a node is present in both documents, but either (i) the par-

ents in the corresponding trees are not connected or (ii) the parents

are connected, but the sequence of their siblings has changed

update if the value of an attribute, a text node’s content or the tag

name of a node was modified

While the set of move operations may only contain document

nodes, the set of updates in general only consists of operations on at-

tribute values. There is a single exception: the root nodes of both

documents are always mapped onto each other. Therefore, we must

include an operation which updates the tag name of nodes.

However, we only support this operation for root nodes. Thus, in-

ternal document nodes will never occur in the set of updates and we

will neglect this special case in the following.

After the mapping, we distinguish two types of nodes: mapped

nodes and unmapped nodes. Unmapped nodes n 2 T1 [ T2 are

nodes for which the algorithm could not find a matching node in the

opposite tree. These nodes and their attributes correspond to either

inserts or deletes, depending on their origin (T2 or T1, respectively).

In contrast, mapped nodes are nodes for which the algorithm did

find a matching node in the opposite tree. If the parents of such a

mapping of n 2 T2 onto m 2 T1 are not connected, or if the se-

quence among their siblings has changed, then these nodes are

included in the set of moves. Moreover, for each attribute

a 2 attributesðnÞ [ attributesðmÞ:

• if a 62 attributesðmÞ then a is included into the set of deletes
• if a 62 attributesðnÞ then a is included into the set of inserts
• if valueðm; aÞ 6¼ valueðn; aÞ the attribute is included into the set

of updates

All other cases (nodes are mapped and occur at the same position

in both trees; attribute values of mapped nodes are equal) do not

call for an operation to transform T1 into T2 and are therefore not

included in the delta.

2.5 Translation into machine readable XML
The resulting delta is then encoded in an XML document consisting

of the four sections deletes, inserts, moves and updates. These sec-

tions contain three types of nodes:

• Nodes with a tag name node, describing operations on nodes
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• Nodes with a tag name attribute, describing operations on at-

tribute values
• Nodes with a tag name text, describing operations on text

nodes

All these nodes have to carry a unique id attribute and, if avail-

able, must contain identifiers oldPath and newPath to unambigu-

ously point to the corresponding nodes in T1 and T2, respectively.

These identifiers are XPath (www.w3.org/TR/xpath/) expressions, a

language defined by the World Wide Web Consortium (W3C), to

identify nodes in an XML document. In addition, node nodes may

also contain the attributes:

• oldParent and newParent (XPath expressions), identifying

the parents of the corresponding nodes
• oldChildNo and newChildNo (Integers), defining the position

among their siblings, in order to encode moves
• oldTag and newTag (Strings), specifying the tag name of the

corresponding nodes

Furthermore, attribute nodes may have three additional

attributes:

• name, defining the name of the corresponding attribute
• oldValue and newValue, specifying the value of that attribute

in T1 and T2, respectively

The generated delta is complete and, thus, it is invertible. That

means, it contains all information necessary to transform T1 into T2,

but it can also be used to obtain T1 given T2. Figure 3c shows an

example.

2.6 Translation into human readable formats
To support the readability, we currently export two different for-

mats: (i) A text-based report and (ii) a graphical representation. The

text-based report is a list of differences between the corresponding

files. It contains all modified entities relevant for the biological

model, such as parameters, species and reactions, and it contains the

specific changes. The report can be generated in HTML,

ReStructuredText or Markdown. Markdown and ReStructuredText

are easy-to-read plain-text markup languages, specifically designed

to ensure a straightforward conversion to other markup languages,

such as (X)HTML, doc(x), ODF or LATEX.

Moreover, standard formats usually allow for the inclusion of in-

formation about the reaction network encoded in the computational

model. If models contain such information, we extract the reaction

network of T1 and translate it into an internal graph representation.

We then obtain the reaction network of T2 and put it as an overlay

on top of the network of T1, using the previously computed map-

ping of entities in T1 and T2. Subsequently, the graph is evaluated:

We check whether nodes and edges originate from one or both docu-

ments and analyse what has changed in the corresponding tree

nodes. To export this graph, we developed translators that convert

the internal graph representation to exchangeable graph formats,

such as GraphML (graphml.graphdrawing.org/) or Dot (graphviz.

org/content/dot-language). These graphs can then easily be used in

end-user applications.

3 Results

Models are continuously modified. Consequently, new versions of a

model are regularly being generated. We observe three major steps

in model development that result in new versions: during the design

phase of models; later on during curation and error correction and

with updates of the format specification. Here, we present an

algorithm to detect and communicate differences between these co-

existing versions of an SBML or CellML model. We implemented

this algorithm in a software library, BiVeS. Together, our work

helps to identify and characterize the changes and thereby contrib-

utes to the documentation of a model’s history.

BiVeS detects the differences between model versions. Figure 2

exemplifies the method, showing two versions of a minimalist

model, following the SBML structure. Here, the reaction CþD ¢ E

(left) is updated to DþH ¢ E (right). First, the model files are

transformed into internal tree representations and prepared for the

subsequent mapping procedure (row one, pre-processing). The

weights x of nodes in the tree are computed according to the size of

the corresponding subtrees. For example, the subtree rooted in B is

larger than the subtree rooted in F and, thus, B’s weight is greater

than F’s (namely x¼4 and x¼2, respectively). The mapping pro-

cedure starts in row two of Figure 2 with a mapping by id. Since the

id attribute plays a key role and many elements do carry id attri-

butes, the algorithm typically finds a large number of mappings at

this early stage. In our example, only the identifiers of the G-nodes

are identical (id¼’reaction1’) and thus only a single connection

is found (for demonstration purposes, we assume that the D-nodes

do not carry id attributes). The mapping by id phase is followed by a

bottom-up propagation (row three), which makes use of the parent-

child relation of nodes in the trees: For nodes that are mapped al-

ready, there is a good chance that their parents also stem from each

other. In the example, the mapping of the G-nodes is propagated to-

wards the roots of the trees and the A-F-G-paths in both model ver-

sions are mapped. Afterwards, the algorithm tries to map subtrees

with an equal signature (row four, top-down propagation). The sig-

natures r, which are computed in the pre-processing step, uniquely

identify the subtrees. Here, only the signatures of the D-nodes are

equal (r ¼ x), which is why D is the only candidate for a mapping.

Since the D-nodes originate from each other, as well as the A-nodes

do, a mapping of the B-nodes is added. Following the propagation

phases, the algorithm tries to connect unmapped children of mapped

nodes (row five, optimization). In our example, only the B-nodes

have unmapped children: Nodes C and E in version 1 and nodes E

and H in version 2 do not yet have partners. To find a mapping of

these children, a 2�2 distance matrix is created. The elements in

this matrix represent differences between the attributes of the corres-

ponding nodes. The E-nodes only differ in the value of the concen-

tration attribute. Changing the value of one single attribute in a

species is a minor update and, thus, the nodes’ distance is very small.

In contrast, the nodes C, E and H do not have anything in common.

Consequently, the E-nodes will be mapped, while C and H remain

unmapped. Finally, the resulting mapping is analysed (row six,

evaluation). For example, the algorithm detects that C was deleted,

D was inserted and E was modified in version 2. The difference

graph, as obtained when interpreting the results of the evaluation

step, is shown on the bottom of Figure 2. Particular means of com-

municating the differences are described with Figure 3. The

Supplementary Material contains a more detailed, real-life showcase

for difference detection with BiVeS.

BiVeS communicates the differences. BiVeS exports the difference

graph in several output formats, including computer-digestible

XML code and a graphical representation.

One type of output are XML-encoded, machine readable deltas,

which describe the difference between two versions of a model
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(see Section 2.4). A remarkable feature of these deltas is their com-

pleteness. They can be inverted and composed (Marian et al., 2001).

That means, given one model version and the delta, the opposite ver-

sion can be retrieved (Saffrey and Orton, 2009).

Another major feature is the translation of the delta into human

readable formats (refer to the communication step in Fig. 2). BiVeS,

for example, summarizes the model-related changes in a text-based

report. This type of output is ideally suited to be integrated in other

tools. Specifically, the report is encoded in MarkDown,

ReStructuredText or HTML. MarkDown and ReStructuredText are

themselves already easy to read and can be converted to common

markup languages. The report in HTML format is generated for

convenience, e.g. to instantly display the changes on a web page.

Figure 3b shows a sample report. Another notable feature is the

encoding of differences between two versions of a model in standard

graph representations enabling a subsequent visualization. While

BiVeS is itself not able to produce rendered graphical output, it

exports different graphical notations, including GraphML, Dot or

JSON (json.org). Armed with this, it is effortlessly possible to pro-

duce visualizations, as implemented in the demonstrator BudHat.

BudHat demonstrates the advantages of our algorithm. As a proof

of concept, we implemented a web-based interface BudHat (bud-

hat.sems.uni-rostock.de), which uses BiVeS to compare versions of a

computational model. BudHat contains a rudimentary user manage-

ment and stores models in a database back-end. It calls BiVeS for

the comparison and displays the obtained results in the web

browser. The different visualizations that are possible in BudHat are

shown in Figure 3. All figures show the difference between versions

2007-06-05 and 2013-11-03 of model BIOMD0000000107 in the

BioModels database.

More specifically, BudHat provides access to (i) the reaction net-

work highlighting the changes, as shown in Figure 3a; (ii) the

HTML report of the changes, as shown in Figure 3b and (iii) the

delta encoded in XML, as shown in Figure 3c. Delta and report are

directly passed to the web interface. But as stated above, BiVeS ex-

ports the graph representing the reaction network in an exchange-

able format (in this case it is GraphML or JSON). Therefore,

BudHat uses either CytoscapeWeb (Lopes et al., 2010) or

CytoscapeJS (cytoscape.github.io/cytoscape.js) to display the high-

lighted reaction network. From Figure 3a, it is easy to see that the

role of cdc2 in reaction cyclin-cdc2 dimer formation has

changed. In the former version, cdc2 modified this reaction, but

this modification was deleted (deletion is highlighted by the red

edge). Instead, in the updated version, cdc2 is one of the reactants

for this reaction (insertion is indicated by the blue edge). Since this

modification changed the reaction, the node representing the reac-

tion is coloured in yellow. This approach makes it much easier to

understand the differences, compared to a pure textual diff. Already

for this small example, it would be much more effort to see and

understand what happened to a model from the sources or from the

1559 lines of output reported by Unix’ diff.

4 Discussion

Reproducibility of model-based scientific results has gained increas-

ing attention (Casadevall and Fang, 2010; Gentleman, 2005; Laine

et al., 2007; Mesirov, 2010; Peng, 2011; Sandve et al., 2013;

Waltemath et al., 2011, 2013b). Indeed, the ability to reproduce re-

sults is a basic requirement for the advance of science (King et al.,

2011). However, the reuse of models requires the accessibility and

Fig. 2. Schematic of the mapping procedure. The procedure to communicate

the differences between two versions of a model (row one) to the user (row

seven) is shown. Nodes A–H represent single entities in the model docu-

ments. Dashed lines indicate mappings between the nodes. The values of r

and x represent signatures and weights of nodes. They are calculated during

pre-processing. The different colours of the nodes indicate modifications: up-

dates are yellow, inserts are green and deletes are red. In the evaluation step,

moves are blue
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Fig. 3. Outputs as generated by BiVeS and available from BudHat. All three figures show the differences between versions June 2007 and November 2013 of

model BIOMD0000000107 (cf. Fig. 1). The reaction network (a) and the report (b) present the differences in a human readable format. The XML encoded delta (c)

allows for further processing by computers. The modifications described in Figure 1 are highlighted in orange. In the highlighted reaction network (a), deletes are

coloured in red, while inserts are blue and updates are yellow

568 M.Scharm et al.



comparability of models and their versions. Model provenance and

version control enable the widespread use and application of mod-

els, saving time and efforts during development. Model repositories

have been working towards this goal for the past decade and provide

access to computational models described in scientific publications.

Support for version control, however, is still limited. Existing imple-

mentations rely on standard version control systems and do not con-

sider the specific requirements of modelling in the domain of

computational biology (Waltemath et al., 2013a). Model reposito-

ries, specifically the BioModels database and the Physiome Model

Repository, could benefit from integrating BiVeS with their solu-

tions for version control. Such a combined system stores model ver-

sions and detects the differences between them. In addition, it offers

support for understanding these changes and filtering them accord-

ing to the users’ preferences, as discussed in the following.

BiVeS improves difference detection for your model versions.

Standard formats describing computational models in biology are

based on XML. Changes in versions of these models are typically

computed with Unix’ diff, which performs badly on XML docu-

ments because it uses a line-based algorithm (Myers, 1986). BiVeS,

on the other hand, is designed to respect the characteristics of XML

documents and to produce meaningful deltas. Its major advantages

over existing solutions for biological models are as follows: (i) it rec-

ognizes the models’ hierarchical structures; (ii) it ignores white

spaces, such as indentation, which generally do not affect the mod-

el’s behaviour and (iii) it ignores the specific order of attributes in an

entity. Additional post-processing rules capture the domain charac-

teristics of the processed data and increase the significance of pro-

duced deltas. Currently, these rules are static. However, we consider

introducing adjustable rules, which can be modified and extended.

In the Supplementary Material, we compare the BiVeS diff and

standard Unix’ diff. We also discuss the dependencies of modifica-

tions, explain the concepts of direct and implicated operations and

provide statistics about model changes in the BioModels database

and in the Physiome Model Repository (see Supplementary Figs A

and B in the Supplementary Material). From the data, we assume

that we can further improve the mapping by ID step, described in

Section 2.2. Currently, we just map entities having the same identi-

fiers. In future versions, we would like to also map entities based on

their ontological similarity.

BiVeS helps grasping the changes. Our algorithm filters the identi-

fied differences and drops all but biologically and mathematically

relevant modifications. We are currently working on refining these

filters using an ontology for differences. We envision that this ontol-

ogy, together with tools for semi-automatic annotation, will help re-

duce the number of displayed changes to the ones that are

meaningful or requested by the user (Waltemath et al., 2013a).

BiVeS produces reports and graphical representations of changes

using open formats such as GraphML, HTML or Markdown and

thereby helps to communicate the changes. For example, Figure 3a

shows that the graphical representation supports users in

exploring the changes affecting the biological network.

Additionally, a comprehensive list of changes is compiled into a

human readable report, as shown in Figure 3b. Reports are particu-

larly suitable for people interested in the details of mathematical

changes. BiVeS’ outputs can of course be used by other tools for fur-

ther processing of results. Current limitations with respect to output

formats are missing support for the SBGN format and suitable

graphical representations of models that do not specify a reaction

network.

You can easily integrate BiVeS with your tools. BiVeS can be used in

three different ways: first, the BiVeS Java library provides a smart

API for comparison of model versions. The differences can then be

obtained in various formats, as described earlier. This API is, for in-

stance, used by our open source tool BudHat, providing plenty of

example code. Second, BiVeS is available as a web service to facili-

tate the integration with non-Java applications. The corresponding

package can be installed on Java-based web servers, such as Apache

Tomcat (tomcat.apache.org). The Functional Curation (chaste.

cs.ox.ac.uk/FunctionalCuration) project of Chaste (Cooper et al.,

2011), for example, uses the BiVeS web service to track the evolu-

tion of models uploaded to their system. Third, the library is shipped

with a main class and, therefore, it can be executed on a command

line. The data management platform SEEK (Wolstencroft et al.,

2015), for example, implemented support for model version control

calling BiVeS on a separate command line. The web site at sems.

uni-rostock.de/bives offers further information about the three im-

plementations, including examples, how-tos, the source code and

binaries of our tools. BiVeS currently supports SBML and CellML,

but it could also be extended towards other XML-based model

exchange formats such as NeuroML (Gleeson et al., 2010) or

PharmML (Swat et al., 2015). Moreover, BiVeS could improve ver-

sion control of simulation descriptions [e.g. differences between two

simulation setups encoded in the Simulation Experiment

Description Markup Language (SED-ML), Waltemath et al., 2011].

In summary, BiVeS improves the detection of differences be-

tween versions of models in SBML or CellML format. Returning to

the seven W-questions from the introduction, BiVeS contributes to

the What and How as defined in (Ram and Liu, 2010). The What

refers to content-related events, such as modifications of parameter

values in the model, and non-content-related events, such as the up-

grade to a new SBML version. In addition, BiVeS tells you How the

What has changed. There is scope for further extensions to provide

hypotheses for the Why.
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