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Abstract: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disease
with worldwide prevalence and limited therapies exclusively aimed at treating symptoms. To gain
insights into the molecular disruptions in ME/CFS, we utilized an aptamer-based technology that
quantified 4790 unique human proteins, allowing us to obtain the largest proteomics dataset yet
available for this disease, detecting highly abundant proteins as well as rare proteins over a nine-
log dynamic range. We report a pilot study of 20 ME/CFS patients and 20 controls, all females.
Significant differences in the levels of 19 proteins between cohorts implicate pathways related to
the extracellular matrix, the immune system and cell–cell communication. Outputs of pathway and
cluster analyses robustly highlight the ephrin pathway, which is involved in cell–cell signaling and
regulation of an expansive variety of biological processes, including axon guidance, angiogenesis,
epithelial cell migration, and immune response. Receiver Operating Characteristic (ROC) curve
analyses distinguish the plasma proteomes of ME/CFS patients from controls with a high degree of
accuracy (Area Under the Curve (AUC) > 0.85), and even higher when using protein ratios (AUC up
to 0.95), that include some protein pairs with established biological relevance. Our results illustrate
the promise of plasma proteomics for diagnosing and deciphering the molecular basis of ME/CFS.

Keywords: ME/CFS; proteomics; plasma; ephrin-Eph pathway; immune metabolism; adherens
junction; glucose; SOMAscan®; diagnosis

1. Introduction

The illness variously known as myalgic encephalomyelitis or chronic fatigue syndrome
(ME/CFS) profoundly affects the quality of life of its victims. Predominant symptoms are
not only exhaustion, but also malaise, pain, orthostatic intolerance, brain fog, and exac-
erbation of symptoms following mental or physical activity [1,2]. Even though ME/CFS
patients exhibit a wide range of symptoms, standard blood tests ordered by physicians
usually have values in normal ranges, leading to misdiagnoses of depression or other
psychiatric illness by individuals not familiar with the disease. Objective biomarkers are
therefore urgently needed to facilitate diagnosis, apply appropriate treatments, and avoid
counterproductive recommendations, by monitoring the efficacy of experimental drugs or
other therapies, as well as provide information that might reveal underlying causes of the
disease.

A number of molecules have been measured in plasma or serum in attempts to
identify biomarkers. Cytokines were among the first to be monitored, but metabolomic
and proteomic studies have followed as technology has improved [3–11]. Likewise, a
number of abnormalities have been observed in immune cells, ranging from altered energy
metabolism to reduced activity [12–17]. While these assays demonstrate that the illness
has a biological basis, they are usually more suited for a research laboratory than for a
diagnostic service. Being able to identify the illness with a small number of biomarkers
present in blood or other readily obtainable bodily fluids would facilitate the development
of a widely available test.
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We decided to carry out a pilot study on a carefully selected small population of
ME/CFS cases and controls to take advantage of an aptamer-based proteomic assay to
measure an unusually large number of plasma proteins. Our encouraging results indicate
that this approach is a promising method to identify biomarkers that could aid in diagnosis.
More importantly, it unveils key aspects of biology that are disrupted in patients suffering
from ME/CFS.

2. Materials and Methods
2.1. Cohort and Blood Sampling

The patient cohort selected for this study consists of 20 females diagnosed by Susan
Levine (M.D.), an ME/CFS specialist located in New York City (NYC). All patients fulfilled
the Fukuda criteria [18]. She selected 20 healthy controls with similar age and BMI from
the same location.

The blood collection protocol was identical to the one described in Germain et al.
(2020) [19] and the same survey data was collected and compiled to evaluate the clinical
status of both cohorts.

2.2. Proteomics Data Acquisition and Handling

Plasma, thawed once for aliquoting purposes, was shipped on dry ice to SomaLogic,
Inc. in Boulder, CO (www.somalogic.com), where the samples’ relative protein abundance
was measured using the SOMAscan Assay. We were provided with data that was expressed
in continuous relative fluorescence units, which are derived from the hybridization of Slow
Offrate Modified Aptamers (SOMAmer®) reagents to a custom DNA microarray after they
were exposed to our individual plasma samples.

There were two datasets that had different levels of standardization performed by
SomaLogic. One of them included all the steps and is the dataset used throughout most of
this manuscript. In brief, normalization steps are used to remove hybridization variation
within a run, biases within a run, intensity difference between runs, assay difference
between runs, and finally references are used for the final normalization. The second
one had a somewhat fewer normalization steps applied and Table S2 is the only analysis
derived from the second dataset.

Aptamers were available to measure 5284 protein abundances, of which, 4979 are
for detection of human proteins, another 252 belong to 13 distinct organisms spanning
the tree of life, and 53 were used as varying controls and references. The aptamers were
designed to detect 4790 unique proteins, with 203 targeted to two or more parts of a
same protein. The experiment was set up on two separate plates with the required buffer,
calibrator and quality control (QC) wells. Each plasma sample was split into three dilutions
to account for natural human plasma protein abundance, 4022 proteins were measured
at 20% dilution, 797 at 0.5% dilution, and 160 at 0.005% dilution. Finally, a total of 248
proteins were “flagged” based on SomaLogic’s acceptance criteria. Those proteins, when
they were significantly different between cohorts, were nevertheless included in our final
report, as this is an exploratory study and including them results in a marginal decrease of
the significance for our statistical tests.

2.3. Data Analysis

A nonparametric Wilcoxon rank-sum test was chosen to test for significant differences
between each cohort, since numerous variables failed the Shapiro test of normality. The
false discovery rate (FDR) was controlled for multiple testing by using the Benjamini–
Hochberg (BH) correction method and reported as q-values.

Analyses solely based on fold-change as well as a volcano plot analysis failed due to
the presence of severe outliers for a few variables. As those outliers were not consistent
with a specific subject, it is not possible to eliminate them and while the Wilcoxon rank-sum
test is able to circumvent such values due to its design, any analysis solely relying on
fold-change data input was not included in our analysis. Nevertheless, fold changes are
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included in our results to illustrate both the range and the direction of the differences for
the proteins discussed.

Protein functional interactions were assessed using the online tool and database,
STRING 11.0 (https://string-db.org). Both the “Multiple proteins” and the new “Proteins
with Values/Ranks” menus were used to query the database and the enrichment of our
dataset for certain pathways in Homo sapiens.

The receiver operating characteristic (ROC) curves were obtained through the in-
dependent statistical module (Biomarker Analysis) provided by MetaboAnalyst 5.0 (
www.metaboanalyst.ca. No filtering was performed, the 100 top ratios were computed and
included. Finally, the data was log-transformed and auto-scaled before the ROC curves
were generated.

Functional annotation clustering was investigated using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.8 (https://david.ncifcrf.gov).

Correlation calculations were performed using R.

3. Results
3.1. Population Statistics

The population described in Table 1 is exclusively female, equally divided between
controls and patients (20 each). As displayed, both cohorts were similar for age and BMI
(t-test p = 0.43 and 0.57, respectively). Additional elements displayed in Table 1 depict
relevant symptoms endured by the ME/CFS cohort as well as their intensity based on two
distinct but complementary scales, namely the Bell scale and the more detailed 36-Item
Short Form Survey (SF-36). Both SF-36 metrics are significantly different between cohorts
with a t-test p < 0.0001. The observed gap between cohorts undoubtedly represents the
burden of illness in the patient community.

Table 1. Details of the population statistics.

Gender (n) Female
Controls ME/CFS

20 20

Age Mean +/− SD 46 +/− 13.3 49.2 +/− 11.8
Median (min-max) 50.5 (27–66) 52 (27–68)

BMI
Mean +/− SD 23.2 +/− 3.4 24 +/− 5.1

Median (min-max) 21.8 (18.1–29.3) 22.6 (16.8–37.4)

Type of onset Gradual NA 35%
Sudden NA 65%

Gut symptoms * 5% 55%

Positive tilt table test ** (n = 12) ND 67%

Bell’s disability scale ***

10–20 0 7
30–40 0 7
50–60 1 6

90–100 19 0

SF-36 ***
Physical component

summary (PCS) 55.4 +/− 5.9 27 +/− 8.6

Mental component
summary (MCS) 53.6 +/− 9.6 37.6 +/− 11.8

* Subjects reporting either irritable bowel syndrome (IBS), ulcerative colitis, or Crohn’s disease. ** A tilt test had
previously been performed on 12 of the ME/CFS patients, and eight were positive. *** Higher scores represent
better health. NA: not applicable. ND: not determined.

3.2. Nine Proteins Are Significantly Higher in ME/CFS Patients

Out of the 4979 aptamers used, 391 proteins were found significantly different at
a threshold of p < 0.05 (Supplementary File 1) and nine were significantly different at a
threshold of both p < 0.05 and q < 0.05. Of the latter, all are higher in patients compared
to controls (Figure 1 and Table 2). We consulted several databases (www.uniprot.org,
https://ibioguide.advaitabio.com, https://string-db.org) that describe human plasma

https://string-db.org
www.metaboanalyst.ca
www.metaboanalyst.ca
https://david.ncifcrf.gov
www.uniprot.org
https://ibioguide.advaitabio.com
https://ibioguide.advaitabio.com
https://string-db.org
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proteins in order to determine what is currently known about the proteins found to have
accumulated at different levels.
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Figure 1. Box plot distribution of logged values for the proteins significantly different between
controls and patients through Wilcoxon rank-sum testing with p < 0.05 and q < 0.05 displayed in
Table 2. Controls (C) are shown in red and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
(ME/CFS) patients (P) in blue. The yellow diamond represents the mean.

RNase1 (Figure 1a) is a secreted endoribonuclease and favors the cleavage of double-
stranded over single-stranded RNA. RNase 1 forms a tight 1:1 complex with RNH1,
resulting in its inhibition but RNH1 is not part of our dataset.

RABP2 (Figure 1b) is a cytosol-to-nuclear shuttling protein, facilitating access of
retinoic acid (vitamin A) to the nuclear receptors. This protein is also associated with
increased circulating low-density lipoprotein cholesterol (LDL-C).

AIF1L (Figure 1c) is described only as an actin-binding protein promoting actin
bundling.

PXDN (Figure 1d) is secreted into the extracellular matrix where it is involved in
its formation. It also participates in H2O2 metabolism and peroxidative reactions in the
cardiovascular system. Ca2+ and heme b are both cofactors of PXDN. PXDN is induced by
TGFB1 in fibroblasts and upregulated in apoptotic cells. TGFB1 was found slightly lower
in patients for our population (FC = 0.97, Supplementary File 1). PXDN also blocks the
binding of interleukin-1 (not measured in our dataset) to its receptor complex.
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Table 2. Proteins significantly different between controls and patients through Wilcoxon rank-sum testing with p < 0.05 and
q < 0.05 of Supplementary File 1.

Protein Full Name UniProt EntrezGene Fold Change p-Value q-Value

RNase1 Ribonuclease pancreatic P07998 RNASE1 (6035) 1.47 0.00002 0.035

RABP2 Cellular retinoic acid-binding
protein 2 P29373 CRABP2 (1382) 1.47 0.00002 0.035

AIF1L Allograft inflammatory factor
1-like Q9BQI0 AIFL1 (83543) 1.25 0.00002 0.035

PXDN Peroxidasin homolog Q92626 PXDN (7837) 1.39 0.00005 0.038

Ephrin-A4 Ephrin-A4 P52798 EFNA4 (1945) 1.16 0.00005 0.038

TIMD3 Hepatitis A virus cellular
receptor 2 Q8TDQ0 HAVCR2 (84868) 1.1 0.00006 0.038

MXRA7 Matrix-remodeling-associated
protein 7 P84157 MXRA7 (439921) 1.14 0.00006 0.038

TNF sR-I Tumor necrosis factor receptor
superfamily member 1A P19438 TNFRSF1A (7132) 1.28 0.00007 0.038

IL-18 BPa Interleukin-18-binding protein O95998 IL18BP (10068) 1.24 0.00007 0.038

Fold change represents the ratio from group means of patients/controls.

Ephrin-A4 (Figure 1e) is a member of the ephrin family, a ligand ephrin receptor
protein-tyrosine kinase crucial for migration, repulsion, and adhesion during neuronal,
vascular, and epithelial development. This is achieved by the creation of contact-dependent
bidirectional signaling between adjacent cells, a mechanism also involved in immune cell
sensing.

TIMD3 (Figure 1f) is a receptor implicated in modulating innate and adaptive immune
responses, promoting immunological tolerance. Among many functions, TIMD3 regulates
macrophage activation, inhibits-helper type 1 lymphocytes (Th1), attenuates TCR-induced
signaling in CD8+ cells, and suppresses NK cell-mediated cytotoxicity.

MXRA7 (Figure 1g) has been found to be mostly expressed in ocular tissues with some
evidence for its role in neovascularization and healing.

TNF SR-I (Figure 1h) is a membrane-bound receptor for tumor necrosis factor alpha
(TNF-α) as well as a soluble receptor when proteolytically processed, and plays a role in
cell survival, apoptosis and inflammation.

Finally, IL-18 BPa (Figure 1i) inhibits IL-18 activity by binding to it, inhibiting the early
Th1 cytokine response which tends to produce proinflammatory responses. Elevated levels
of this protein are detected in the intestinal tissues of patients with Crohn’s disease.

To summarize, two proteins (PXDN and MXRA7) are involved in the extracellular
matrix, while AIF1L plays a role in the cytoskeleton. Four of the proteins (Ephrin-A4,
TIMD3, TNF SR-I, and IL-18 BPa) can be linked to the immune response, with TIMD3 and
IL-18 BPa having an inhibitory role, while only the soluble form, but not the membrane-
bound form, of TNF sR-I has an inhibitory role.

3.3. Additional Proteins Emerging from a Relaxed q-Value Threshold

If we relax the multiple testing threshold to q < 0.15, an additional eight proteins are
classified as significantly different between ME/CFS patients and controls (Table S1 and
Figure S1). All of these proteins exhibit p-values lower than 0.05.

Only one of them, CFTR, is lower in patients compared to controls (Figure S1g). CFTR
is a chloride and bicarbonate ion channel located mainly in epithelial tissues, where it
controls ion and water exchanges. Homozygous mutations in this gene cause cystic fibrosis.
ROR1 is a cell surface receptor modulating neurite growth in the central nervous system,
associated with B-cell chronic lymphocytic leukemia in case of increased expression. Both
DCP1A and BAMBI are involved in the TGF-beta signaling pathway, while PPIC assists
protein folding.
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When we perform the same statistical analysis on the less standardized dataset pro-
vided, we have to increase the threshold to q < 0.2 to find four proteins significantly
different between ME/CFS patients and controls (Table S2). Once again, all four are higher
in patients compared to controls, with PPIC and ROR1 already present in Table S1 and
Figure S1. DR6 is in the same family as TNF sR-I and is required for both normal cell
body death and axonal pruning while it negatively regulates T-cell responses and cytokine
release. Ephrin-A5 is in the same family as Ephrin-A4 (Table 2) and has been shown to be
involved in various biological processes including cell–cell adhesion, cytoskeletal organi-
zation, axon fasciculation, brain development, and glucose-stimulated insulin secretion
through pancreatic islet cell communications.

3.4. Protein–Protein Association Analysis Points Both to the Ephrin Family and Immune Metabolism

We used the STRING tool and its extensive database to identify changes in functional
interactions of proteins between both cohorts.

Our first query included the complete dataset along with the respective log p-value
for each protein. The output of this query is based on rank testing and detects statistically
enriched distribution of values in large lists of proteins. The functional enrichment analysis
output outlined in Table 3 is clearly restricted to the proteins belonging to the family of
ephrin receptors and ligands. The enrichment score is relatively high and the false discovery
rate below 0.05. The largest pathway described, also inclusive of all others, is attached to the
term “EPHA-mediated growth cone collapse” (Figure 2), with 28 proteins, of which 17 were
measured in our dataset. Among those, the proteins with the lowest p-values (Table S3 and
Figure S2) include four Ephrin type-A receptors and three Ephrin ligands, with EFNA4 and
EFNA5 already mentioned in Table 2 and Table S2, respectively. The abundant interactions
between these proteins and a few others are displayed in Figure 2 and include known
and predicted interactions as well as others such as text mining, coexpression, and protein
homology. Ephrin receptors are the largest known family of receptor tyrosine kinases (RTK)
and mediate innumerable and essential processes in humans from embryonic development
to adult tissue homeostasis through interactions with membrane-bound ephrin ligands. As
both the receptors and the ligands are membrane-bound, cell–cell interaction is required
for signaling to occur.

Table 3. STRING output of detected functional enrichments resulting from the submission of the complete dataset along
with the associated log p-value for each protein.

Term ID * Term Description Enrichment Score Genes Mapped Pathway Size False Discovery (afc)

HSA-3928663 EPHA-mediated growth cone collapse 2.26367 17 28 0.00051

CL:416 Ephrin receptor activity, and Ephrin 2.07704 20 23 0.00038

CL:420 Ephrin receptor activity, and Ephrin 2.72701 13 16 0.00038

IPR031328 Ephrin 3.36604 7 9 0.0049

IPR019765 Ephrin, conserved site 3.36604 7 9 0.0049

IPR001799 Ephrin receptor-binding domain 3.36604 7 9 0.0049

IPR034252 Ephrin-A ectodomain 5.24701 4 6 0.0049

* Term IDs come from several functional enrichments. CL refers to local STRING network cluster; HSA to Reactome Pathways; IPR to
INTERPRO Protein Domains and Features. An additional 37 “Reference publications” are omitted but can be easily retrieved by interested
parties using data from Supplementary File 1, namely, columns “EntrezGeneSymbol” and the logged values of column “p-value”.

Three other proteins, namely, FYN, RhoA and LYN interact with all the proteins
from the Ephrin family and all play an important role in countless aspects of cell–cell
communication (Figure 2). Noteworthy is the fold change of these three proteins, which is
inverted compared to the Ephrin family proteins, and is significantly higher in ME/CFS
patients compared to controls (p < 0.15, Table S3 and Figure S2).

Our second query was limited to the 391 proteins with a p < 0.05 (Supplementary
File 1) and therefore relied on STRING’s normal gene set-based analysis instead of the
initial rank-based analysis. Here the input was the UniProt ID for each of the 391 proteins.
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As the output is lengthy and the results are easily repeatable using Supplementary File 1,
the results mentioned below are not illustrated.
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Figure 2. Graphical display of the EPHA-mediated growth cone collapse network (HSA-3928663)
from https://string-db.org. Each bubble represents a node, with filled nodes having some known
or predicted 3D structure. The halo color is based on the rank of the protein in the sorted set of
input, log p-values in our case, with grey being less significant and darker blue being increasingly
significant between controls and ME/CFS patients. Edges represent protein–protein interactions;
known from curated databases (turquoise), known experimentally (purple), predicted from gene
neighborhood (dark green), predicted from gene fusions (red), predicted from gene co-occurrence
(dark blue); from text mining (light green), from coexpression (black) and from protein homology
(light blue).

Many of the pathway descriptions from the varied functional enrichments of the
network generated using this limited dataset still include the Ephrin signaling pathway.
Other highly abundant pathways are centered around cell-to-cell communication and more
particularly for regulation and activation of the different cell types of the immune system. If
we focus on the Reactome Pathways as we did for the initial query, the pathway descriptions
include “Immune system”, “Cytokine signaling in immune system”, “Platelet activation,
signaling and aggregation”, “Platelet degranulation”, “Neutrophil degranulation”, and
“Innate immune system” to only name a few. Other recurring aspects also centered around
cell–cell communication are linked to cell adhesion, with adherens junctions, axon guidance
and extracellular matrix organization.

3.5. High Levels of Prediction Are Achieved Using Univariate ROC Curve Analysis

A receiver operating characteristic (ROC) curve analysis was performed on the whole
dataset to assess the ability to differentiate controls from ME/CFS patients. The areas
under the curve (AUC) is used as a summary to represent the ability of a variable, in our
case the abundance of a protein, to distinguish a healthy subject from a patient suffering
from ME/CFS. AUCs are reported in Table 4 and Supplementary File 2, with higher AUCs
indicating a better performance of the model to distinguish between the two groups.

Initially, we considered only proteins on their own (left two columns of Table 4). The
top nine AUC values, higher than 0.85, were the same proteins as the ones significantly
different between controls and patients (Table 2). Such a level of distinction between
controls and patients is clearly illustrated in Figure 1, where the values of only a few
subjects are overlapping with the box plot area (interquartile range—IQR) of the opposite
cohort. Additional AUC values for individual proteins are reported in Supplementary File
2, starting at line 110.

https://string-db.org
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We attained higher AUC values when protein ratios are computed for each protein
pair, regardless of biological relevance, and for each subject before running the same type
of analysis with this newly expanded dataset. The highest observed AUC was almost at
0.95 for the protein pair FXN-HAVCR2 and 97 pairs had a higher AUC then RNase1 and
RABP2; the details for the first nine are displayed in the four columns to the right of Table 4,
while the remaining ones can be found in Supplementary File 2.

Table 4. Proteins significantly different between controls and patients through Wilcoxon rank-sum
testing with p < 0.05 and q < 0.05 of Supplementary File 1.

Protein AUC Protein Ratio EntrezGene UniProt AUC

RNase1 0.87 FRDA/TIMD3 * FXN/HAVCR2 * Q16595/Q8TDQ0 0.95

RABP2 0.87 Layilin/CLC4D * LAYN/CLEC4D * Q6UX15/Q8WXI8 0.94

AIF1L 0.87 RNase1/EKI1 RNASE1/ETNK1 P07998/Q9HBU6 0.94

PXDN 0.86 BMPER/TNF sR-I BMPER/TNFRSF1A Q8N8U9/P19438 0.93

Ephrin-A4 0.86 EphA5/CFTR * EPHA5/CFTR * P54756/P13569 0.93

TIMD3 0.85 TIMD3/CFTR HAVCR2/CFTR Q8TDQ0/P13569 0.93

MXRA7 0.85 VIGLN/EphA5 HDLBP/EPHA5 Q00341/P54756 0.93

TNF sR-I 0.85 Keratin-16/CFTR * KRT16/CFTR * P08779/P13569 0.93

IL-18 BPa 0.85 P5CR2/Layilin PYCR2/LAYN Q96C36/Q6UX15 0.92
* Ratios with potential biological relevance.

The genes encoding FXN and HAVCR2 were both found to be differentially expressed
during the immune response of mice CD4+ T-cells [20]. While HAVCR2 was mentioned
in Table 2, Fraxatin (FDRA, FXN) is a mitochondrial protein with an in vitro ferroxidase
activity which promotes the biosynthesis of heme as well as the assembly and repair of
proteins containing iron-sulfur clusters.

Considering the second pair, Layilin (LAYN) is a receptor for hyaluronate and is a
critical gene regulating T-cell function. CLEC4D, is the C-type lectin domain family 4
member D protein which drives the maturation of antigen-presenting cells and shapes
antigen-specific priming of T-cell toward effector T-helper 1 and T-helper 17 cell subtypes.
Therefore, it seems that the expression ratio of this pair of proteins has biological sense.

On the other hand, the RNASE1-ETNK1 pair does not seem to be relevant biologically.
Indeed, RNase1 is a ribonuclease as described in Table 2 and ETNK1 is ethanolamine kinase
1, an enzyme functioning in the first committed step of the phosphatidylethanolamine
synthesis pathway. Similarly, the link between BMPER, a protein inhibiting bone morpho-
genetic and TNFRSF1A (Table 2) would not be an obvious one.

On the contrary, the EPHA5-CFTR pair has some experimental evidence linked to
the hypoglycemic response from the ventromedial hypothalamus [21]. They are part of
the regulation of neurotransmitter release to adapt the response to varying blood glucose
concentrations. Both are already mentioned in Table 2 and Table S1.

Although we found HAVCR2 and CFTR cited together in a 2019 paper related to
pancreatic cancer [22], their ratio does not seem biologically meaningful. Likewise, we
could not find any link between EPHA5 and HDLBP (Vigilin), which is a protein that plays
a role in cell sterol metabolism.

CFTR and KRT16 (Keratin, type I cytoskeletal 16) have been cited together in relation
to airway epithelial cells, although the genes were both upregulated along with those
of other proteins such as KRT5 in vitro [23]. Other studies focused on various epithelial
cells also mention both proteins and their link with tight junctions required for epithelium
formation. In our dataset, CFTR is lower in patients (Figure S1) while KRT16 is slightly
higher (Supplementary File 1).

Finally, PYCR2 is a Pyrroline-5-carboxylate reductase 2 that catalyzes the last step in
proline biosynthesis. Although its primary function in erythrocytes may also be to generate
NADP+, we were not successful in finding any known link between PYCR2 and Layilin
briefly described above.
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As can be seen from this brief description, we were able to provide putative rationales
for four of the nine ratios from Table 4. All four ratios are of critical interest as they allow
an extremely high level of distinction between controls and patients within our population
(AUCs in Figure 3 and Table 4). The detailed values of the four ratios are displayed in Figure 3
where it can easily be seen that most of the values are distinct between cohorts with only three
subjects (circled in green) crossing the calculated mean and median of the other cohort. A
t-test shows that the differences between cohorts for those four ratios are significantly different
with p-values lower than 0.000003 and even lower using a Wilcoxon test.
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Figure 3. Box plot distribution of the log of the protein ratios displayed in Table 4. Controls (C) are shown in red and
ME/CFS patients (P) in blue. The values of the ratios for the three circled green subjects are above (or below) the median
and mean of the other cohort. The yellow diamond represents the mean. The corresponding ROC curves are paired with
each box plot and include the optimal cutoff (in red) along with the area under the curve (AUC). Protein abundance values
are comparable within ratios, with a minimum of ≈200 for FXN and a maximum of ≈3200 for HAVCR2.

3.6. Highly Enriched Clusters Include Ephrin-Related Pathways and Glucose

Functional annotation clustering explores the biological meaning behind big datasets
such as the one we are manipulating here. The first 3000 UniProt identifiers with the lowest
p-values were submitted to the DAVID Bioinformatics Resources 6.8 online tool and the
analysis was restricted to GeneOntology Direct categories. The results with enrichment
scores higher than five are reported in Table 5, and most GO term q-values are significantly
lower than a stringent threshold of q < 0.05.

The second cluster mainly relates to the regulation of the Janus kinase (JAK) activity,
which transduces cytokine-mediated signals via the JAK-STAT pathway. The STAT (Signal
Transducer and Activator of Transcription) proteins are transcription factors involved in
immunity, proliferation, apoptosis, and differentiation.

All three GO terms in the third cluster are biological processes centered around
glucose, with GO_061621 being the process that begins conversion of glucose to glucose-
6-phosphate; GO_0006096 being reactions and pathways breaking down a carbohydrate
into pyruvate; GO_0006094 the reverse reactions that form glucose from noncarbohydrate
precursors including pyruvate, amino acids and glycerol.
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The fourth cluster revolves around signaling involved in axon guidance as well as cell
migration, and function intrinsically with the ephrin-Eph signaling pathway in repulsion
or attraction of a cell membrane to a neighboring cell.

Finally, and similarly, the fifth cluster is linked to the ephrin-Eph signaling pathway.
The phosphatidylinositol 3-kinases (PI3K) and its downstream signaling are extremely
complex and nested in very diverse cellular functions central to cell proliferation as well as
neural long-term potentiation.

Table 5. Details of the functional annotation clustering results with an enrichment score above five.

Annotation Cluster Enrichment Score GO Term Protein Count p-Value q-Value

1 14.3

CC_GO:0005913 Cell–cell adherens junction 113 4.46 × 10−18 6.72 × 10−16

MF_GO:0098641 Cadherin binding involved in cell-cell
adhesion 98 1.59 × 10−14 3.49 × 10−12

BP_GO:0098609 Cell–cell adhesion 90 2.46 × 10−12 9.64 × 10−10

2 6.5

BP_GO:0038083 Peptidyl-tyrosine autophosphorylation 24 2.06 × 10−9 3.93 × 10−7

MF_GO:0004715 Nonmembrane spanning protein
tyrosine kinase activity 22 1.21 × 10−6 0.00009

CC_GO:0031234 Extrinsic component of cytoplasmic side
of plasma membrane 26 0.00001 0.0004

3 5.5

BP_GO:0061621 Canonical glycolysis 17 1.65 × 10−7 0.00002

BP_GO:0006096 Glycolytic process 18 3.70 × 10−6 0.0003

BP_GO:0006094 Gluconeogenesis 19 0.00006 0.003

4 5.1

BP_GO:0050919 Negative chemotaxis 21 1.37 × 10−8 2.17 × 10−6

MF_GO:0045499 Chemorepellent activity 18 2.85 × 10−8 2.81 × 10−6

BP_GO:0048843 Negative regulation of axon extension
involved in axon guidance 15 8.89 × 10−6 0.0007

MF_GO:0030215 Semaphorin receptor binding 13 0.00005 0.002

BP_GO:0071526 Semaphorin-plexin signaling pathway 16 0.00006 0.003

MF_GO:0038191 Neuropilin binding 10 0.0001 0.004

BP_GO:0001755 Neural crest cell migration 16 0.003 0.07

BP_GO:0008543 Fibroblast growth factor receptor
signaling pathway 34 9.67 × 10−8 0.00001

5 5

BP_GO:0048015 Phosphatidylinositol-mediated signaling 40 1.22 × 10−7 0.00002

MF_GO:0046934 Phosphatidylinositol-4,5-bisphosphate
3-kinase activity 28 1.26 × 10−7 0.00001

MF_GO:0005088 Ras guanyl-nucleotide exchange factor
activity 41 2.52 × 10−7 0.00002

BP_GO:0014066 Regulation of phosphatidylinositol
3-kinase signaling 32 3.27 × 10−7 0.00004

BP_GO:0046854 Phosphatidylinositol phosphorylation 32 0.00003 0.002

MF_GO:0005104 Fibroblast growth factor receptor binding 12 0.0002 0.006

MF_GO:0016303 1-phosphatidylinositol-3-kinase activity 13 0.03 0.35

BP_GO:0036092 Phosphatidylinositol-3-phosphate
biosynthetic process 14 0.04 0.46

Within GO term, CC, MF, and BP stand for cellular component, molecular function, and biological process, respectively.

3.7. Protein–Protein Correlations Are Highly Disrupted in the Patient Cohort

We explored the potential protein interaction disruptions between each cohort by
calculating each protein–protein interaction within each cohort. We then subtracted the
correlation value of ME/CFS patients from controls and sorted the output to find the most
contrasting correlations between cohorts. Out of the almost 25 million possible correlations,
we selected for the ones that were below −1 (15,505) or above 1 (17,464) for a total of 32,969
disrupted correlations (0.1%).

The lowest value was at −1.66 for the pair C3-ZPBP2 (correlation in controls equals
−0.86 and q = 0.0003 versus correlation in ME/CFS patients equals 0.8 and q = 0.0003).
Al-though the Zona pellucida-binding protein 2 is described as being implicated in sperm–
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oocyte interaction during fertilization, the lower expression of this gene in peripheral
blood cells is associated with a reduced risk of asthma in females but not males. In mice,
the loss of this protein impacts airway hypersensitivity and lung lipid metabolism in a
sex-dependent manner. On the other hand, C3 plays a central role in the activation of the
complement system. The complement system is part of the immune system and promotes
inflammation to clear microbes and damaged cells. Some of the proteins that are part of
this response act as chemoattractant for neutrophils in chronic inflammation, induce the
contraction of smooth muscles, increase vascular permeability, and cause histamine release
from mast cells and basophilic leukocytes.

The highest value was at 1.54 for the pair NSDHL-IMPAD1 (correlation in controls
equals 0.85 and q = 0.0005 versus correlation in ME/CFS patients equals−0.69 and q = 0.03).
Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL) is involved in
cholesterol biosynthesis and inositol monophosphatase 3 (IMPAD1) may play a role in the
formation of skeletal elements; two visibly different pathways.

Going through every interaction found to be disrupted in ME/CFS patients compared
to controls would distract from the purpose of this analysis. Instead, the principal con-
clusion is the number of significantly altered interactions that disproportionately affect a
few proteins (Table 6). Indeed, CILP2 and CGA FSHB have over 7% of their total inter-
actions inverted in our ME/CFS cohort compared to the control cohort. Moreover, while
most interactions are affected by inverting either negative or positive interactions, C3 is a
protein that has an equal number of inverted negative and positive correlations. Figure 4
illustrates this point for 12 proteins, six for each kind of correlation, where we can clearly
see the flipped correlations between Figure 4a,c. The overlay corroborates the variation
between cohorts while exhibiting the value overlaps between cohorts (Figure 4b). These
changes demonstrate the extent of the changes in the plasma proteome of ME/CFS patients
compared to controls.

Table 6. Proteins with inverted correlations between the control and the ME/CFS cohorts.

Protein Negative Correlations in Controls
Positive Correlations in ME/CFS Protein Positive Correlations in Controls

Negative Correlations in ME/CFS

CGA FSHB 347 (349) CILP2 381 (386)

FIS1 281 (340) CASC4 301 (308)

TNXB 251 (331) TMEM9 285 (287)

CGA LHB 226 (230) ENO3 280 (296)

RNF215 211 (242) VWA2 267 (291)

RCN3 209 (306) AMN 222 (240)

RNF215.1 202 (242) CLIC5 200 (205)

C3 195 (359) CACNA2D3 193 (200)

GRB14 194 (218) OBP2B 183 (190)

FIGF 144 (271) THSD7A 174 (231)

BRD2 129 (132) C3 164 (359)

ANTXR1 124 (166) TTC9B 157 (257)

C1orf210 105 (182) LAMC2 143 (151)

IGFBP1 101 (134) PIANP 129 (133)

TTC9B 100 (257) TRAPPC3 129 (181)

Numbers in parentheses are the total from both types of inverted correlations.

Our correlation analysis included the clinical data that was collected, but no significant
correlations with protein amounts were detected.
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4. Discussion

The plasma proteomics dataset investigated here is remarkable for ME/CFS as it
allows an extensive probing of protein abundance differences between 20 ME/CFS patients
compared to 20 healthy controls. The quantification of plasma proteins whose abundances
vary over nine orders of magnitude, achieved by the SOMAmer technology, segregates
highly abundant proteins such as albumin, globulins and fibrinogen, which typically
account for up to 99% of blood proteins, from the numerous other proteins of lower
abundance, which account for another 4773 unique proteins in our dataset. Such a large
dataset coupled with an exploratory sized cohort calls for concessions in the analysis and
interpretation of results, a balance we have tried to achieve by combining stringent with
more relaxed statistical analyses as well as some exploratory tools such as pathway and
correlation analyses.

4.1. Most Significantly Different Proteins Are More Abundant in the Plasma of ME/CFS Patients

The classic statistical approach, using a Wilcoxon test and multiple testing correction,
highlighted nine proteins at a low false discovery rate (FDR) of q < 0.05, with one group
linked to cellular structure through the cytoskeleton and the extracellular matrix, and
a second group linked to the immune system. Of the three proteins related to cellular
structure, AIF1L is involved in the cytoskeletal apparatus as an actin-bundling protein [24].
Al-though lower levels of AIF1L have been linked to poor prognosis during breast cancer,
AIF1L overexpression in a cell line, similar to what is observed for our ME/CFS cohort
(Table 2 and Figure 1), suppressed cell spreading and altered cell shape [25]. The same study
predicted a potential role of AIF1L in tight junctions, cell junctions, and focal adhesion,
while showing that its overexpression was correlated with decreased RhoA expression,
something we also observe in our ME/CFS patient cohort (Figure S2). However, FAK1
(focal adhesion kinase 1) was not concomitantly reduced and instead slightly higher
in our patient cohort, short of any further comparison to breast cancer. The human
protein atlas (HPA, www.proteinatlas.org) puts most of AIF1L proteins in the kidney and
urinary bladder, where it is involved in the stabilization of podocyte morphology and focal

www.proteinatlas.org
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adhesions through the actomyosin machinery [26]. AIF1L is also present in many other
organs, including male and female reproductive tissues, brain, lungs, the digestive tract,
the skin, as well as adipose and soft tissues.

High expression of the extracellular matrix protein PXDN has been linked to prolifera-
tion, invasion, and migration of ovarian cancer cell lines, potentially causing an association
with poor prognosis in ovarian cancer [27]. PXDN contains a heme-peroxidase domain that
allows for its crosslinking activity of collagen IV, a structure crucial to basement membrane
synthesis [28]. The basement membrane provides cell and tissue support and acts as a
platform for complex signaling. The review article by Peterfi and Geiszt [28] also points
to PXDNL, the peroxidasin-like protein homolog to PXDN, exclusively localized in the
cell–cell junctions of cardiomyocytes. PXDNL is an antagonist to PXDN when associated
in a complex and while our dataset shows higher level of PXDN in the blood of ME/CFS
patients, it also displays less PXDNL (p = 0.02 and q = 0.5, Supplementary File 1). PXDN
has been shown to be increased in the heart after cardiac stress or myocardial infarction
after activation by elevated levels of TGF-β1 [29].

The third protein, MXRA7, is ubiquitous to many organs including the brain, en-
docrine tissues, lungs, the pancreas, male and female tissues, as well as muscle tissues and
the skin. It is hypothesized that MXRA7 is involved in injury recovery, neovascularization
and wound healing [30]. A more recent study shows a high expression of MXRA7 in
the basal layer of the human epidermis. The absence of the protein in the mouse model
leads to a skin disorder similar to psoriasis, indicating its inhibitory role in skin prolifera-
tion [31]. MXRA7 is activated by a few proinflammatory Th1/Th17-type cytokines [32,33].
Other groups have described MXRA7 as necessary to alleviate acute liver injury [34] and a
regulator of stem cell differentiation in bone marrow [35].

The four proteins related to the immune system included TIMD3, with high level of
protein in bone marrow and lungs, according to HPA; IL-18 BPa, also with high levels in
bone marrow; Ephrin-A4 and TNF sR-I seem ubiquitous to all organs. If we focus on the
blood atlas from HPA, three of them (TIMD3, TNF sR-I and IL-18 BPa) are secreted into the
blood and are present at high levels in almost all immune cells, except TIMD3 and TNF
sR-I are not detected in B-cells. In contrast, none of the proteins in the cellular structure
group are thought to be regularly secreted into the blood.

TIMD3 is highly expressed in T-cells and myeloid dendritic cells, implicating a role
in both innate and adaptive immunity, with loss-of-function mutations leading to au-
toimmune disorders in 20% of patients, resulting from uncontrolled immunological ac-
tivation [36]. Additionally noted by Dixon et al. [36] is the high expression of TIMD3 in
‘exhausted’ T-cells in cancers and chronic viral infections, although the associated upregu-
lation of the expression of PD-1 (programmed cell death protein 1) was not observed in
our patient cohort (p = 0.6 and q = 0.9, Supplementary File 1). Nevertheless, high TIMD3
expression inhibits effector T-cell responses and the infiltration of T lymphocytes in adipose
tissues, partially increasing the inflammation around adipose tissues in patients [36].

TNF sR-I dysfunction has mainly been described as resulting from mutations dis-
rupting the activity of the protein, leading to the autosomal dominant autoinflammatory
syndrome known as TNFR1-associated periodic syndromes (TRAPS) [37]. The underlying
mechanism specifically impacts CD4+ conventional T-cells and Tregs, leading to inflam-
mation [38]. Only membrane bound receptors play a role in cell survival, apoptosis, and
inflammation, while its soluble form can capture free tumor necrosis factor alpha (TNF-α),
henceforth inhibiting inflammation. The level of TNF ligand is not different between
cohorts in our dataset (p = 0.8, q = 1, Supplementary File 1).

IL-18 BPa prevents the binding of the proinflammatory cytokine IL-18 to its receptor,
and in the process reduces both T-helper type 1 and 2 immune responses and overall
inflammatory response [39]. IL-18 levels are comparable in our dataset between the control
cohort and ME/CFS patients (p = 0.8, q = 1, Supplementary File 1), which separates this
cohort from Crohn’s disease patients, where both IL-18 and IL-18 BPa are higher in patients
compared to healthy controls [40]. The increase in IL-18 BPa was not the result of increased
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IFNγ [41], which is slightly lower in the ME/CFS cohort (p = 0.1, q = 0.7, Supplementary
File 1). IL-18 BPa is strongly upregulated during inflammation, including malignancies
such as cancer but also by some viral infections, with some viruses having evolved the
capability to express active viral forms of IL-18 BPa [41].

While none of the other proteins highlighted in Table 2 have ever been linked to
ME/CFS in plasma, cytokines such as TNF-α and IL-18, and by association the proteins
involved in their metabolism, have been the focus of several studies [4,14,42]. Unfortunately,
studies of different cohorts of ME/CFS cases and controls from different investigators are
divergent in findings concerning cytokine levels.

Understanding the significance of the membrane-bound Ephrin-A4 presents a chal-
lenge because it is involved in a myriad of cellular processes. The ephrin receptor signaling
pathway will be discussed at greater length below. It is, however, noteworthy that EFNA4,
EFNA5 as well as TNFRSF1α were among the upregulated proteins of a correlation network
uniquely associated with the regulation of actin filament process, ephrin receptor signaling,
and regulation of muscle system processes in a heart failure study [43]. Furthermore,
almost all the other proteins of that network were upregulated in our ME/CFS patient
cohort (Supplementary File 1).

Finally, even though we did not include RNase1 (Table 2) in either group, it is reported
by HPA to be highly expressed in dendritic cells and classic monocytes as well as secreted
to the digestive system. Of the remaining proteins present in Tables S1 and S2, DCP1A is
the only one highly expressed in all immune cells, while DR6 is specific to dendritic cells.

CFTR is another gene that currently has a modest link with ME/CFS when gene-
expression data was used in an attempt to select potential FDA-approved drugs that can
be repurposed as putative treatments for ME/CFS [44]. CFTR is part of the identified
gene module “M46-recycling pathway of L1”, linked to the drug Ivacaftor, which is used
to increase the ion-function of the activated cell-surface CFTR channel in individual ho-
mozygous for a particular CFTR mutation [45]. Ivacaftor therapy changes blood monocyte
transcriptional profiles and plasma chemokines in patients with cystic fibrosis [46]. Ad-
ditionally, CFTR was highlighted in two of the four ratios (Figure 3c,d) we selected as
having some biological significance. As displayed in Figure S1g, CFTR is one of the few
proteins we are discussing that is lower in our ME/CFS patients cohort compared to healthy
controls. CFTR is a member of the ATP-binding cassette (ABC) transporter superfamily
and functions as a chloride and bicarbonate ion channel. Individuals heterozygous for
CFTR mutations, who have reduced CFTR activity, are at greater risk for a number of
disorders common in cystic fibrosis patients [47]. CFTR regulates many mechanisms in
epithelial physiology, such as maintaining epithelial surface hydration and regulating
luminal pH [48]. As summarized by Saint-Criq and Gray [48], CFTR plays a fundamental
role in regulating secretion and absorption throughout the body, including airways, the
gastrointestinal and reproductive tracts, sweat and salivary glands. Additionally, its role in
luminal pH is an important arbiter of epithelial barrier function and innate defense [48].
The KRT16 and CFTR proteins have been cited together and several studies linked to
airway-specific markers [23,49]. KRT16 is part of the keratin family, filament proteins
responsible for the structural integrity of epithelial cells and is present in bone marrow,
skin, lungs, and the proximal digestive tract according to HPA. Moreover, KRT16, along
with several other proteins from the same large family, has already been found to be signif-
icantly different in the cerebrospinal fluid of a primarily male ME/CFS cohort compared to
healthy controls [50]. The EPHA5 and CFTR proteins are both implicated as functioning in
the ventromedial hypothalamus (VMH) at the level of synaptic neuron-glia in response to
hypoglycemia by enhancing glutamatergic neurotransmission [21]. There are drugs either
available or being developed for cystic fibrosis; ones that might improve CFTR function in
individuals with reduced levels may be worth further investigation in ME/CFS patients
whose levels are low.
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Overall, protein ratios enhance the distinction between ME/CFS patients and controls
(AUC = 0.95) compared to individual proteins, for which we obtained similar values as
previously reported in various studies [9,11].

4.2. Much Evidence Implicates Disrupted Ephrin-Eph Signaling in Our Dataset

The Eph proteins from the superfamily of transmembrane tyrosine kinase receptors as
well as their membrane-tethered ephrin ligands appear, directly or indirectly, in many of
our figures and tables (Figures 1–3 and Figure S2 and Tables 2–5, Tables S2 and S3). This
protein family promotes cell–cell signaling and coordinates a myriad of developmental
processes including neural map ordering. Its importance extends into adulthood where
family members regulate neuronal plasticity, homeostatic events, and disease processes [51].
Kania and Klein [51] also describe how ephrin-Eph signaling (1) modulates the cytoskeleton
through RhoA (shown in Figure 2 and Figure S2), (2) affects neural development through
either repulsion or adhesion leading to axon repulsion, synapse formation, axon tract
formation, axon pruning, cell migration, with obvious considerable consequences, (3)
functions in tissue separation in all organs, including the brain and blood vessels to name a
few. The proteome of ME/CFS patients’ cerebrospinal fluid has led to conclusions centered
around axonal guidance pathways, also linked to the ephrin-Eph signaling pathway, along
with an interest in the complement pathways, with C3 being one of them, which has a
protein correlation network that is severely disrupted in our dataset (Table 6) [52].

It is recognized that ephrin-Eph signaling cascades are redeployed in adults to control
the cytoskeleton and therefore cellular morphology, cell–cell signaling, stem cell niche
maintenance, neuronal synaptic stability as well as energy metabolism [51]. The latter is
derived from pancreatic islet β-cells and the regulation of insulin secretion, controlling a
fundamental process underlying energy metabolism. Indeed, the Human Protein Atlas
reported CFTR as being highly expressed in the pancreas and the liver. Finally, Kania and
Klein [51] conclude with links between Eph-ephrin signaling and disease, with a robust
decade of research connecting the pathway to tumor growth, pathological angiogenesis,
and malignant cell migration, but also to neurological disorders such as lateral sclerosis or
Alzheimer’s disease. The connection with neurological problems may be significant in the
context of ME/CFS due to the common symptom of cognitive dysfunction.

Other substantial roles of the ephrin-Eph signaling pathway lie in immunity as out-
lined throughout an extensive review covering stem cell fate, immune cell activation,
immune cell trafficking, and again some disease pathogenesis such as cancer, atheroscle-
rosis, fibrosis, diseases of the central nervous system, and infectious diseases [53]. A
more recent review details how genetically diverse viruses utilize Eph receptors for vi-
ral entry [54], including Epstein–Barr virus, which has a controversial association with
ME/CFS [55,56]. Nevertheless, a recent study focused on circulating extracellular vesicles
in ME/CFS patients finds evidence for many aspects in which the ephrin-Eph pathway is
involved, including PI3K, mentioned during our cluster analysis, actin skeletal regulation
and focal adhesions [57].

The concurring evidence from the analysis of our dataset highlights the ephrin-Eph
signaling pathway as a central component disrupted in our 20 ME/CFS patients compared
to the 20 healthy controls. When we review the extensive literature on an extensive super-
family of ligand and receptors, it is easy to link many of the symptoms endured by patients
to the numerous processes controlled through the complex ephrin-Eph signaling pathway.
As featured in Figure 2, all of the proteins gravitating around RhoA on the ephrin side
are part of the ephrin-A class, which are anchored to the membrane by a glycosylphos-
phatidylinositol linkage, whereas those in the ephrin-B class are transmembrane proteins.
Nevertheless, there is some cross-recognition between classes with ephrin-B3 able to bind
to EphrA4 and ephrin-A5 to EphB2 [58]. The other group of proteins in Figure 2 are all
related to myosin regulation in both smooth muscle and non-muscle cell contraction, cell
polarity, actin polymerization, focal adhesions, and motility, according to the HPA. If the
association of this pathway with ME/CFS is replicated in a larger cohort, this pathway
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may become a target for experimental therapy for ME/CFS. Agents inhibiting the usage of
the ephrin-Eph pathway for viral entry are known, but have been studied only in vitro as
yet [54].

The plasma origin of our dataset must be kept in mind when interpreting protein
differences and especially pathway analysis, specifically when primarily known to be
resident in specific tissues and organs. Nevertheless, proteins from a variety of tissues can
be detected in plasma and have been able to serve as biomarkers, either resulting from
secretion, cell damage or senescence. Furthermore, proteins that may be secreted from
circulating immune cells can provide insight into the functioning of the immune system in
the two cohorts. To our knowledge, an association with the ephrin-Eph pathway has not
previously been reported in ME/CFS, highlighting the importance of methods that allow
analysis of many proteins exhibiting wide variations in concentration.

5. Conclusions

We used assorted tools to explore the largest proteomics dataset in ME/CFS to date,
spanning nine orders of magnitude of plasma protein abundance. While our cohort was
small in this exploratory study, we nevertheless were able to detect proteins with levels
that were either significantly different or strongly affected in the patient cohort compared
to the controls. We identified nine proteins with individual classifiers greater than 0.85
between ME/CFS subjects and controls as well as nine protein ratios with classifiers above
0.92. As is practice, a diagnostic test for ME/CFS would not be used on subjects who are
not complaining of fatigue or malaise; these protein differences must be tested against
other fatiguing illness that might be confused with ME/CFS—such as depression, cancer,
or chronic Lyme disease, to name a few. Such studies will be needed to determine how the
sensitivity and specificity are affected by excluding individuals who do not exhibit fatigue
or malaise.

Overall, these encouraging results illustrate the power of large-scale studies to investi-
gate a disease whose molecular basis still remains opaque.

6. Patents

A provisional patent application (U.S. Serial No. 63132722) concerning the data has
been filed by Cornell University.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-738
2/9/1/6/s1, Figure S1: Box plot distribution of logged values for the proteins significantly different
between controls and patients through Wilcoxon rank-sum testing with p < 0.05 and 0.05 < q < 0.15
of Supplementary File 1, also displayed in Table 3. Controls (C) are shown in red and ME/CFS
patients (P) in blue. The yellow diamond represents the mean. * BAMBI was “flagged” based on
SomaLogic’s acceptance criteria. Figure S2: Box plot distribution of logged values for the proteins
associated with HSA-3928663 from Table 3 and Table S3 with p < 0.15. Controls (C) are shown in red
and ME/CFS patients (P) in blue. The yellow diamond represents the mean. Table S1: List of proteins
significantly different between controls and patients through Wilcoxon rank-sum testing with p < 0.05
and 0.05 < q < 0.15 of Supplementary File 1. Table S2: List of proteins significantly different between
controls and patients through Wilcoxon rank-sum testing with p < 0.05 and q < 0.2. Table S3: List
of proteins associated with HSA-3928663 from Table 3 with p < 0.15. Supplementary File 1: List of
proteins with p-values, q-values, fold changes of patients/controls (FC) and log2(FC). Supplementary
File 2: List of AUC values from protein ratios and single proteins above 0.75.
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