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Abstract

SARS-CoV-2 causes the current global pandemic coronavirus disease 2019. Widely-avail-

able effective drugs could be a critical factor in halting the pandemic. The main protease

(3CLpro) plays a vital role in viral replication; therefore, it is of great interest to find inhibitors

for this enzyme. We applied the combination of virtual screening based on molecular dock-

ing derived from the crystal structure of the peptidomimetic inhibitors (N3, 13b, and 11a),

and experimental verification revealed FDA-approved drugs that could inhibit the 3CLpro of

SARS-CoV-2. Three drugs were selected using the binding energy criteria and subse-

quently performed the 3CLpro inhibition by enzyme-based assay. In addition, six common

drugs were also chosen to study the 3CLpro inhibition. Among these compounds, lapatinib

showed high efficiency of 3CLpro inhibition (IC50 value of 35 ± 1 μM and Ki of 23 ± 1 μM). The

binding behavior of lapatinib against 3CLpro was elucidated by molecular dynamics simula-

tions. This drug could well bind with 3CLpro residues in the five subsites S1’, S1, S2, S3, and

S4. Moreover, lapatinib’s key chemical pharmacophore features toward SAR-CoV-2 3CLpro

shared important HBD and HBA with potent peptidomimetic inhibitors. The rational design

of lapatinib was subsequently carried out using the obtained results. Our discovery provides

an effective repurposed drug and its newly designed analogs to inhibit SARS-CoV-2 3CLpro.

Introduction

The coronavirus disease 2019 (COVID-19) has become pandemic [1, 2] and has been spread-

ing rapidly around the world [3]. This highly contagious virus is caused by coronaviruses
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responsible for the severe acute respiratory syndrome (SARS). Remarkably, infected people

with COVID-19 can be asymptomatic or symptomatic with a high fever, difficulty in breath-

ing, pneumonia, and multi-organ failure, which can be fatal [4–6]. This leads to strong motiva-

tion for global computational and experimental researchers to develop anti-SARS agents. The

SARS-CoV-2 chymotrypsin-like cysteine protease (3CLpro), also called the main protease

(Mpro), has become a potential therapeutic target for antiviral therapy due to its critical role in

viral replication and infection process [7]. The virus’s life cycle begins with the virus’s spike

protein attaching to the ACE2 receptor on host cells. The viral envelope fuses with the host cell

membrane, and the viral DNA is released into the cytoplasm. The viral genome (+ssRNA) is

translated into a large polypeptide (PP) chain. The newly formed PP chain is autoproteolyti-

cally cleaved by 3CLpro encoded by the viral genome, to produce several non-structural pro-

teins (NSPs) necessary for viral replication. 3CLpro cleaves the PP chain into 11 NSPs making

this protease one of the major targets for drug development against SARS-CoV-2. The 3CLpro

is active in a homodimer form consisting of the A and B protomers [8]. The monomeric struc-

ture reveals three domains: I (residues 8–101) and II (residues 102–184) are mainly β-barrels,

while domain III contains α-helices (residues 201–306). The active site is the cleft between

domains I and II. The H41/C145 catalytic dyad found in the active site of SAR-CoV-2 3CLpro

is similar to other 3CLpro in that C145 functions as the nucleophile in the proteolytic process

with the recognition sequence Leu-Gln#Ser-Ala-Gly, where the arrow is the cleavage site

[9, 10].

Several inhibitors which target SAR-CoV-2 3CLpro have been developed. The peptidomi-

metic inhibitors N3 [11], 13b [12], and 11a [13] bind to the 3CLpro active site and interact with

the catalytic dyad [14]. Besides, masitinib (IC50 of 2.5 μM and Ki of 2.6 μM) and boceprevir

(IC50 of 8.0 μM and antiviral activity in Vero E6 cells with EC50 of 15.57 μM) are found to

exhibit the 3CLpro activity effectively [15, 16]. For binding patterns at the molecular level,

C145, H163, and H164 residues are essential for masitinib binding [15], while H41, G143,

C145, H164, and E166 residues are involved for boceprevir binding [16]. Two approved drugs

(disulfiram and carmofur) and four clinical trials compounds (ebselen, tideglusib, shikonin,

and PX-12) inhibit the SARS-CoV-2 3CLpro with IC50 of 0.67–21.4 μM have been reported

[11]. Baicalin and baicalein showed potent antiviral activities in the Vero E6 cells with the IC50

values of 6.41 ± 0.95 μM and 0.94 ± 0.20 μM, respectively [17]. Some preclinical compounds,

GC-376 (IC50 of 0.03 μM and EC50 of 2.07 μM), calpain inhibitor II (IC50 of 0.97 μM and EC50

of 0.49 μM), and calpain inhibitor XII (IC50 of 0.45 μM and EC50 of 3.37 μM) also showed

3CLpro inhibition as well as SARS-CoV-2 antiviral activity [18]. Additionally, Pfizer’s inhibi-

tors PF-00835231 (Ki of 0.27 nM) [19] and PF-07304814 (Ki of 174 nM) [20] continue to be

evaluated in the clinical trials phase 2/3. The PF-00835231 is well stabilized within the 3CLpro

active site by forming hydrogen bonds with H41, C145, H164, E166, and Q189 residues [19].

In November 2021, Pfizer announced the SARS-CoV-2 3CLpro inhibitor, paxlovid (PF-

07321332; ritonavir), in phase 2/3. In non-hospitalized high-risk adults with COVID-19, this

drug was found to lower the probability of hospitalization or death by 89% compared to the

placebo studied [21, 22]. This PF-07321332 can inhibit the 3CLpro function by covalently

bound to catalytic residue C145 [23]. To enhance the bloodstream levels of paxlovid, it is

administered in combination with a low dose of ritonavir as a pharmacokinetic enhancer [21].

Virtual screening is one of the strategies to quickly develop new drugs using the existing

database for drug repurposing therapeutics. This strategy has been successfully applied in dif-

ferent diseases, such as hypertensive (captopril and aliskiren), liver cancer (nolatrexed, phase

III clinical trial), and glaucoma (dorzolamide); and it allows to discover of new therapeutic

agents in a fast way [24]. Likewise, virtual screening based on molecular docking strategy is

generally used as this method incorporates protein flexibility. Numerous virtual screening
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investigations of SAR-CoV-2 3CLpro inhibitors have been reported. For example, binifirate

and bamifylline were identified from the SuperDRUG2 database through energy-optimized

pharmacophore hypothesis (E-pharmacophore) based virtual screening and Glide docking by

using X77 inhibitor as a template [25]. Additionally, the phytochemical compounds retrieved

from the PubChem database were screened considering the PHASE screen score, by which six

lead compounds, 44256891, 44256921, 102452140, 131751762, 131831710, and 139031086,

were obtained [26]. Five natural compounds with pharmacokinetic characteristics (daidzin,

phloretin, rosmarinic acid, higenamine hydrochloride, and naringenin chalcone) were

screened from the ZINC database using the LUDI-based pharmacophore model of N3, fol-

lowed by a molecular docking study with MolDock [27]. The small-molecule inhibitors of

3CLpro, including rottlerin (37 μM), amentoflavone (143 μM), and baicalein (208 μM) with

IC50 in the micromolar range were identified using molecular docking and ligand-based

screening [28]. The important residues involved in these compounds binding are E166, T190,

and Q189, whereas the catalytic residues H41 and C145 are crucial for amentoflavone and bai-

calein, respectively. Kuzikov et al. screened 8,702 compounds from the Drugs and Probes data-

base, clinical and preclinical compounds using combined structure-based virtual screening

and molecular docking [29]. They found that the thioguanosine (antimetabolite, IC50 of

6.3 μM), MG-132 (proteasome inhibitor, IC50 of 7.4 μM), bronopol (food biocide, IC50 of

0.4 μM), and myricetin (JAK1 inhibitor, IC50 of 0.22 μM) can inhibit the 3CLpro activity. In

addition, myricetin inhibits the 3CLpro by covalently bound to the catalytic Cys145 residue.

Furthermore, telaprevir, a hepatitis C virus (HCV) protease inhibitor, forms hydrogen bonds

with H163 and E166 residues at the S1 pocket of SAR-CoV-2 3CLpro with enzyme-based assay

(IC50 = 11.47 μM) [30].

In this work, the combination of molecular docking of FDA-approved drugs was used to

find a new potent anti-SARS-CoV-2 3CLpro (Fig 1) from DrugBank [31]. The three crystal

structures of 3CLpro in complex with N3, 13b, and 11a were used as templates. The screened

compounds and common drugs were then selected to investigate the 3CLpro inhibition by

enzyme-based assay. Finally, the binding patterns, intermolecular interactions, and binding

affinities of the most potent compounds with 3CLpro were studied by all-atom molecular

dynamics (MD) simulations for 500 ns and the solvated interaction energy (SIE) method. Fur-

thermore, the binding of potent peptidomimetic inhibitors in previous work and the most

potent compounds within the active site of SAR-CoV-2 3CLpro derived from MD simulations

were investigated using the pharmacophore model. Based on the protein-ligand design, the

most potent compound was used as a model to design and improve binding efficiency against

3CLpro. The information obtained could be helpful in the development of new anti-SARS-

CoV-2 3CLpro drug candidates.

Materials and methods

Computational details

Molecular docking. The three crystal structures of SARS-CoV-2 3CLpro with the peptido-

mimetic inhibitors bound, i.e., N3 (6LU7 [11]), 13b (6Y2F [12]), and 11a (6LZE [13]) were

used to find the drugs repurposed for treatment of COVID-19 by molecular docking study.

The validation of the docking study was carried out by re-docking all inhibitors (N3, 13b, and

11a) into the substrate-binding cleft of the three SAR-CoV-2 3CLpro structures. The 2,418

FDA-approved drugs from the DrugBank database [31] were considered. Their protonation

states were automatically altered by the FlexX software LeadIT version 2.3 [32]. Each known

inhibitor N3, 11a, or 13b was selected as the docking center, and the sphere of a 10-Å radius

around the ligand was created for docking compounds with 100 docking poses. The resulted
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docking pose with the lowest binding energy was selected for analysis. The results from dock-

ing were visualized by Accelrys Discovery Studio 2.5 [33] and UCSF Chimera 1.15 [34].

Molecular Dynamics (MD) simulations. According to the experimental study, the potent

inhibitor lapatinib against SARS-CoV-2 3CLpro from the 6LU7 model was investigated by all-

atom MD simulations for 500 ns in the periodic boundary condition using AMBER20 [35].

Subsequently, the ligand was optimized at the HF/6–31(d) level of theory using the Gaussian09

program. The ligand’s restrained ESP (RESP) charges converted from the electrostatic poten-

tial (ESP) charges were generated using the parmchk module. The protein and ligand were

treated with the AMBER ff14SB force field [36] and generalized AMBER force field version 2

(GAFF2) [37], respectively. All missing hydrogen atoms were added using the tleap module

and then were minimized by the 1000 iterations of steepest descent (SD) followed by 4,000

iterations of conjugated gradient (CG). The TIP3P model was used to soak the system in the

cubic box (12 Å from the protein surface). The water molecules were minimized using the 500

SD iterations followed by 1000 CG iterations, while the remaining system was restrained using

a 500 kcal/mol2�A2 force constant. Subsequently, the whole complex was fully minimized with-

out any restraint using 1000 iterations of SD followed by 2500 iterations of CG.

The short-range cutoff of 12 Å was used to consider non-bonded interactions, whereas

Ewald’s method was adopted for long-range electrostatic interactions [38]. The pressure was

controlled using the Berendsen method [39]. The SHAKE method was applied to constrain all

Fig 1. The virtual screening scheme of molecular docking of SAR-CoV-2 3CLpro inhibitors from the crystal structures of potent peptidomimetic

inhibitors (N3, 13b, and 11a) using the DrugBank database. The screened compounds were selected, and the common drugs were later included for testing

the SAR-CoV-2 3CLpro inhibitory activity by enzyme-based assay.

https://doi.org/10.1371/journal.pone.0269563.g001
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covalent bonds involving hydrogen atoms [40]. The simulated models were heated to 310 K

for a relaxation duration of 100 ps. A Langevin thermostat controlled the temperature with a

collision frequency of 2.0 ps. The time step was set as 2 fs [41–44], while the MD trajectories

were saved every 10 ps. Finally, a 500-ns unconstrained NPT simulation of lapatinib/SARS-

CoV-2 3CLpro complex at 310 K was carried out. The structural dynamics properties, including

the distance between the center of mass (Cm) of the drug and the Cm of active site residues,

intermolecular hydrogen bonding, the number of contact atoms, root mean square deviation

(RMSD), interaction energy including electrostatic and van der Waals interactions, radius of

gyration (Rg), principal component analysis (PCA) and root mean square fluctuation (RMSF)

of the lapatinib/3CLpro complex were calculated by the CPPTRAJ module [45]. With a set of

100 snapshots derived from the last 100-ns, the protein-ligand binding pattern was character-

ized by the MM-GBSA per-residue decomposition free energy (DGbind) calculation with the

MMPBSA.py [46], while the binding free energy of the complex was predicted by solvated

interaction energy (SIE) approach [47] implemented in AMBER20.

Protein-ligand pharmacophores. The MD trajectories at equilibrium state (2,000 frames)

of lapatinib/SARS-CoV-2 3CLpro complex from the last 100 ns (401–500 ns) and the SARS-

CoV-2 3CLpro complexes with three known inhibitors (N3, 11a, and 13b) from the last 20 ns

(81–100 ns) in our previous work [14] were used to create pharmacophore features using

LigandScout 4.4.2 program combined with the KNIME analysis platform [48, 49]. Note that all

solvated waters and counterions were removed from MD trajectories. First, the information

on complex structure and trajectory were loaded into the “PDB reader” and “DCD trajectory

reader”, respectively. The pharmacophore features between inhibitor(s)/SARS-CoV-2 3CLpro

were then generated using the "Pharmacophore creator” node in the KNIME program with

default parameters. Subsequently, the obtained pharmacophore models were clustered and

aligned by chemical features using “Pharmacophore clustering”. The similar pharmacophore

models of each system were removed, and subsequently, unique pharmacophore models were

clustered to a representative pharmacophore model (RPMs). These RPMs in each system were

attained from the “Pharmacophore writer” node.

Experimental details

3CLpro inhibition assay. The activity assay for 3CLpro was carried out as previously

described [50]. SARS-CoV-2 3CLpro was expressed and purified using a method as previously

reported for SARS-CoV-1 3CLpro [51]. 3CLpro was used at 0.2 μM for all experiments. Enzy-

matic activity was measured as the initial rate of cleavage of the fluorogenic substrate E

(EDANS)TSAVLQSGFRK(DABCYL), which measured the excitation and emission wave-

length at 340 and 490 nm, respectively. For the initial screen of inhibitory activity, enzymatic

activity was measured in the presence and absence of a 100 μM inhibitor. The initial rate in the

absence of an inhibitor was used for normalization. For IC50 determination, the initial rate of

substrate (25 μM) cleavage was measured when lapatinib was present at various concentra-

tions. The IC50 value was fitted with GraphPad Prism 8. The Ki value was calculated using the

Cheng-Prusoff equation [52] with the previously reported Km value (51 μM) [50].

Results and discussion

Virtual screening

The strategy of therapeutic repurposing is currently widely employed to find possible COVID-

19 treatments. The practice of repurposing drugs reduces the cost, time, and risk of drug devel-

opment. To search for repurposing drugs against SARS-CoV-2 3CLpro, molecular docking was

applied on the 2,418 approved drugs from 9,294 Drugbank compounds [31] using the three X-
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ray structures of this enzyme in complex with the peptidomimetic inhibitors N3, 13b, and 11a

initially reported for SARS-CoV-2 3CLpro in according to our previous work [14]. Only 2,135

compounds were docked successfully into the binding pocket of 3CLpro, while their binding

energies were plotted and compared in Fig 2 and S1 Table. The predicted binding affinity of

screened compounds showed a consistency phenomenon in all three protein structures. Note

that some screened compounds against SARS-CoV-2 3CLpro from our studies, such as masiti-

nib (DB11526), conivaptan (DB00872), imatinib (DB00619), flupenthixol (DB00875), pentox-

yverine (DB11186), and boceprevir (DB08873), were found to inhibit SARS-CoV-2 infection

in A549 human lung cells and also 3CLpro activity [15, 30, 53].

By considering the binding energy relative to its template, the top 60 compounds ranked

with reference compounds or known inhibitors (N3, 13b, and 11a) are shown in Fig 3. The

binding energies of the top 60 compounds were in the range of -30.53 to -43.85 kcal/mol for

the 6LU7 model, -27.81 to -43.14 kcal/mol for the 6LZE model, and -26.64 to -37.30 kcal/mol

for the 6Y2F model. The key binding residues of these compounds against the SARS-CoV-2

3CLpro compared to the three inhibitors are shown in Fig 4. It was found that most screened

drugs interacted with the residues H41, M49, L141, C145, M165, L167, P168, and R188 via van

der Waals (vdW) interaction and formed hydrogen bonds with N142, G143, E166, Q189 resi-

dues. Since some compounds are not readily commercially available, a randomly available

selection of compounds with higher binding affinity than the reference compounds from the

three docking results was made further to investigate the SARS-CoV-2 3CLpro inhibition in
vitro enzyme-based assay. Our selected drugs/inhibitors and descriptions are summarized in

Table 1. These were an anti-cancer agent (lapatinib), anti-inflammatory drug (sulfasalazine),

and antibiotic (cefradine). In addition, common drugs include two anti-cancer agents (AZD-

7762, and GSK-690693), diuretics drug ((S)-indapamide), coenzyme ((6S)-5,6,7,8-tetrahydro-

folic acid), and two HIV-1 protease inhibitors (ritonavir and lopinavir) were also used to per-

form SARS-CoV-2 3CLpro inhibition.

Fig 2. Binding energy (kcal/mol) of approved drugs against three X-ray structures of SARS-CoV-2 3CLpro (PDB entry codes: 6LU7, 6LZE, and 6Y2F)

derived from molecular docking.

https://doi.org/10.1371/journal.pone.0269563.g002
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In vitro testing for 3CLpro inhibition

The compounds (100 μM) were screened for 3CLpro inhibitory activity using rutin at the same

concentration as a positive control [50] (Fig 5A). For selected compounds, cefradine did not

show inhibitory activity against 3CLpro, while sulfasalazine inhibited 3CLpro to a similar range

to rutin. The AZD-7762, GSK-690693, (S)-indapamide, and (6S)-5,6,7,8-tetrahydrofolic acid

from common drugs did not inhibit the 3CLpro. In addition, ritonavir and lopinavir also did

not show inhibitory activity as previously reported [54]. Co-administration of ritonavir helps

to slow down PF-07321332 metabolism by cytochrome enzymes, providing for increased cir-

culating concentrations of the main drug has been reported [55]. Intriguingly among tested

compounds, lapatinib almost wholly abolishes the 3CLpro activity at 100 μM. Thus, lapatinib

was further investigated (Fig 5B). The IC50 value of lapatinib was 35 ± 1 μM. Furthermore, the

calculated inhibitory (Ki) constant value was 23 ± 1 μM. Lapatinib was previously used to treat

SARS-CoV-2 infected Vero cells [56] and A549 human lung cells [15]. It was found that lapati-

nib can inhibit SARS-CoV-2 infected cell viability with the value of 31.1 μM for Vero cells [56]

and 1.6 μM for A549 cells [15]. Our results suggested that lapatinib could inhibit 3CLpro,

resulting in a reduction of viral replication. Moreover, the selected compounds (lapatinib,

cefradine, and sulfasalazine) and common drugs (AZD-7762, GSK-690693, (S)-indapamide,

(6S)-5,6,7,8-tetrahydrofolic, ritonavir, and lopinavir) interacted with the substrate-binding res-

idue M165 of SARS-CoV-2 3CLpro via vdW interaction in correspondence to rutin binding

(S1 Fig). Hydrogen bonds with the residues N142 and E166 stabilized the binding of lapatinib,

cefradine, and sulfasalazine.

Mechanism of action of lapatinib

To investigate how lapatinib showed potential SAR-CoV-2 3CLpro inhibition at the molecular

level, the binding of this repurposed drug at the 3CLpro active site was investigated by 500-ns

MD simulation (Fig 6). The distance between the center of mass (Cm) of the drug and the Cm

of active site residues, number of intermolecular H-bonds (# Hbonds), and number of atom

contacts (# atom contacts) with the drug molecule along the simulation time was analyzed and

plotted in Figs 6A–6C. It was found that the distance between the Cm of lapatinib and the Cm

of active site residues (S2 Fig) was relatively stable. In addition, the #Hbonds (2.43 ± 0.80) and

#atom contacts (22.07 ± 6.03) of the lapatinib within the binding site were detected along with

the simulation. Furthermore, the RMSD analysis of SAR-CoV-2 3CLpro and lapatinib was also

performed (Fig 6D). Lapatinib was quite stable at the active site from the beginning to the end

of the simulation, supported by the MD snapshots of the lapatinib/SARS-CoV-2 3CLpro com-

plex along with the simulation (S3 Fig). In Fig 6E, the vdW interaction (-52.28 ± 5.36 kcal/

mol) seems to be more crucial than electrostatic (Elec) interaction (-32.24 ± 7.96 kcal/mol). In

addition, the radius of gyration (Rg, Fig 6F) of the protein in chain A with lapatinib binding

was more compact than the protein in chain B (without lapatinib bound). In this study, the

last 100 ns (from 401 to 500 ns) of the simulation was extracted to investigate the essential

binding residues for lapatinib binding, using MM/GBSA per-residue decomposition energy

calculation. The residue contributions in terms of DGresidue
bind are plotted in Fig 7A.

Lapatinib was likely stabilized by the SAR-CoV-2 3CLpro residues in the five essential pock-

ets: (i) N142 and C145 residues at S1’ site, (ii) F140 and L141 residues at the S1 site, (iii) H41

Fig 3. Binding energy heatmap (kcal/mol) of top 60 screened compounds against three X-ray structures of

SARS-CoV-2 3CLpro (PDB entry codes: 6LU7, 6LZE, and 6Y2F) resulted from molecular docking. The compounds

in the blue and green highlight are the reference compounds used for screening and the selected compounds for

enzyme-based assay, respectively.

https://doi.org/10.1371/journal.pone.0269563.g003
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Fig 4. Heat map of the top compounds interacting with SARS-CoV-2 3CLpro derived from Fig 3 relative to the known inhibitors

derived from LigPlot version 2.2.

https://doi.org/10.1371/journal.pone.0269563.g004
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and H163 residues at the S2 site, (iv) M165 and E166 residues at the S3 site, and (v) Q189 resi-

due at the S4 site. The 3CLpro subsites S1, S2, and S4 are shaped into well-formed binding

pockets, whereas S1´ and S3 are located on the protein surface with no defined shape (9). In

addition, the quinazoline scaffold at the P1’ position (S4 Fig) hydrophobically interacted with

V609 at the C-terminal of chain B, while this drug was destabilized by S307. The chlorophenol

ring at the P2’ position and the quinazoline scaffold at the P1’ position highly interacted with

L141 and N142 (DGresidue
bind of -3.33 and -2.51 kcal/mol). In contrast, a previous report showed lit-

tle interactions from MD simulations of these residues with the peptidomimetic inhibitors 13b

and 11a (14). In addition, the 1-(3-fluorobenzyloxy)-2-chlorobenzene at P2’ position was feasi-

bly inserted into the S3 pocket, resulting in strong occupancy within the binding site by show-

ing the high binding with M165 and E166 (DGresidue
bind of -1.93 and -2.05 kcal/mol). In

correspondence with previous reports [14, 16, 57], these residues provided high hydrophobic

interactions with N3, 13b, and 11a, boceprevir, and telaprevir. Importantly, lapatinib inhibits

3CLpro activity by interacting with the catalytic dyad H41 and C145 (DGresidue
bind of -0.58 and -0.79

kcal/mol). Both residues play a vital role in the hydrolytic process, in which C145 functions as

a nucleophile and H41 acts as a base catalyst. The partial negative charge produced at the sub-

strate peptide bond is stabilized by an oxyanion hole formed by the backbone of C145 (18).

The inhibition by interaction with the catalytic residues are commonly found in SAR-CoV-2

3CLpro inhibitors, for example, PF-07304814 and PF-07321332, which are currently in phase 1

and 2/3 clinical trials, respectively [21, 58], masitinib [53], baicalein [59], and rutin [50]. In

addition, hydrogen bond formation is essential for biological systems. The hydrogen bond

occupation in Fig 7B demonstrates that the quinazoline scaffold at the P1’ position forms the

hydrogen bonds with the N142 residue (N3H—N142@H) at 91.67%. The amine group in P1’

positions of lapatinib showed a strong hydrogen bond with E166 residue (N4H—E166@OE) at

98.95%, in agreement with the peptidomimetic inhibitors N3, 13b, and 11a from MD study

[14]; and other inhibitors PF-07321332 [21], boceprevir [16], herbacetin and morin [60] in

previous reports. Moreover, the last 100 ns trajectories were used to study the protein motion

by PCA and RMSF analysis. The first ten PC mode values revealed the accumulated variances

of chain A (holo form) and chain B (apo form) in Fig 7C. With a higher distribution in 2D pro-

jection on the first PC, lapatinib binding at the active site of SAR-CoV-2 3CLpro could enhance

the percentage of variances of PC1 from 11.70% in chain B to 52.01% in chain A. This finding

supported how the active site in chain B flipped away to the upper site with a high amplitude

Table 1. The selected compounds and common drugs for SAR-CoV-2 3CLpro inhibitory activity assay.

Name Drug activity

Selected compounds

Lapatinib (DB01259) • Breast cancer

• Lung cancer

Cefradine (DB01333) • A semi-synthetic cephalosporin antibiotic

Sulfasalazine (DB00795) • Treatment of inflammatory bowel diseases

Common drugs

AZD-7762 (DB12242) • Treatment of cancer, solid tumors, and advanced solid malignancies.

GSK-690693 (DB12745) • Treatment of tumor, cancer, and lymphoma

(S)-Indapamide (DB07467) • Diuretics

(6S)-5,6,7,8-tetrahydrofolic acid

(DB02031)

• Parent compound of a variety of coenzymes that serve as carriers of one-

carbon groups in metabolic reactions

Ritonavir (DB00503) • HIV protease inhibitor

Lopinavir (DB01601) • HIV-1 protease inhibitor used in combination with ritonavir to treat HIV

infection

https://doi.org/10.1371/journal.pone.0269563.t001
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Fig 5. In vitro enzymatic studies. (A) Relative activity of 3CLpro in the presence of 100 μM of compounds and (B)

inhibition of 3CLpro by lapatinib at various concentrations.

https://doi.org/10.1371/journal.pone.0269563.g005
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(Fig 7D), resulting in the open conformation. In chain A, the active site conformation changed

to accommodate and stabilize the lapatinib binding, i.e., the mobility of the active site residues

was relatively lower. The reduction of protein motion upon the ligand binding was supported

by RMSF analysis (Fig 7E).

The binding affinity of the lapatinib/SAR-CoV-2 3CLpro complex was predicted by the sol-

vated interaction energy (SIE) approach, using the 100 snapshots of the last 100-ns. It was

found that the vdW interaction (-57.47 ± 0.49 kcal/mol) plays an important role for molecular

complexation rather than Elec interaction (-13.61 ± 0.30 kcal/mol). The vdW interaction was

the main force found in this work, consistent with other previously reported inhibitors, such

as PF-07321332 [21], bamifylline [61], saquinavir, aclarubicin, and GRL-142 [62]. Although

the binding affinity of lapatinib (-9.20 ± 0.06 kcal/mol) is to some extent overestimated in

comparison with experimental data (DGexp of -6.32 kcal/mol converted from IC50 value), it is

in the same range as the peptidomimetic inhibitors (DGbind of -9.92, -9.68, and -10.35 kcal/mol

for N3, 11a, and 13b) [14]. Our finding suggests that lapatinib has the potential to be used to

combat COVID-19.

Pharmacophore models of potent inhibitors

Pharmacophore models are a set of steric and electronic features common to a series of active

compounds with a specific biological target. The hydrogen bond donor (HBD), hydrogen

bond acceptor (HBA) abilities, positively and negatively charged groups, and hydrophobic and

aromatic regions are typical features [63–65]. In this work, the structure-based pharmaco-

phore, which is specialized to detect ligand-protein interactions [66], was applied to the MD

trajectories of the repurposing drug lapatinib within SAR-CoV-2 3CLpro. The 2D and 3D phar-

macophore models of the first representative frame of lapatinib at 401 ns, and peptidomimetic

inhibitors (N3, 13b, and 11a from previous work [14]) at 81 ns, and RPMs derived from MD

Fig 6. Dynamics analysis of lapatinib with SARS-CoV-2 3CLpro. (A) Distance between the Cm of lapatinib and the Cm of SARS-CoV-2 3CLpro active site

residues, (B) # H-bonds, (C) # atom contacts, (D) RMSD plot for protein backbone (CA, C, O, and N atoms) and lapatinib, (E) interaction energy, and (F)

radius of gyration (Rg) of 3CLpro in each chain plotted along with the 500-ns MD simulation.

https://doi.org/10.1371/journal.pone.0269563.g006
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trajectories of lapatinib-3CLpro complex (401–500 ns) and peptidomimetic inhibitor(s)-3CLpro

complex (81–100 ns) are depicted in Fig 8. In addition, the ratio of pharmacophore occur-

rences with> 70% is shown and further discussed in Fig 9.

Hydrogen bonding, HBD or HBA, and hydrophobic interactions were the critical chemical

pharmacophore features of all inhibitors binding to SAR-CoV-2 3CLpro, while the halogen

bond donor (XBD) feature was only detected in the lapatinib system. There were 100, 47, 67,

Fig 7. Key binding residues and protein motions of SARS-CoV-2 3CLpro/lapatinib complex. (A) Binding free energy contribution per residue (DGresidue
bind ) for

lapatinib binding derived from the last 100 ns, colored from dark red to green according to the highest to lowest free energies. The residues with DGresidue
bind � −0.5

kcal/mol and� 0.5 kcal/mol are labeled. The key residues are colored according to their DGresidue
bind values. The representative structure was taken from the last MD

snapshot. Noted that the quinazoline scaffold of lapatinib highly interacted with L141 at the S1 site (DGresidue
bind of -3.33 kcal/mol). Their percentages of hydrogen

bond occupation are shown in (B). (C) 2D projection of MD trajectories on the first two PC modes and PCA scree plot, (D) PC1 porcupine plot of the holo and

apo forms, where the arrowhead and length represent the direction and amplitude of motion, respectively, and (E) RMSF plot of 3CLpro in each chain.

https://doi.org/10.1371/journal.pone.0269563.g007
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and 50 RPMs for lapatinib, N3, 13b, and 11a, respectively. In the case of the repurposing drug,

lapatinib showed hydrophobic interactions with T25, L27, M49, and M165, similar to the N3

and 13b. This drug revealed a high appearance of hydrogen bonding with the substrate-bind-

ing residues N142 (93%) and E166 (90%) and high hydrophobic interaction with V609 (92%

and 85%) in chain B of 3CLpro. The strong hydrogen bonding with E166 residue was also

observed in the three peptidomimetic inhibitors (N3, 13b, and 11a) and the previously

reported potent inhibitor X77 against SAR-CoV-2 3CLpro (6W63.pdb) [67]. In contrast, a

hydrogen bond with N142 was found only for the lapatinib system. Interestingly, lapatinib

could form XBD with H163 substrate-binding residue (66%).

Fig 8. The pharmacophore models of lapatinib and peptidomimetic inhibitor(s) in complex with SAR-CoV-2

3CLpro. The 2D and 3D pharmacophore models of the first representative frame of lapatinib at 401 ns, and

peptidomimetic inhibitors N3, 13b, and 11a at 81 ns, where RPMs derived from MD trajectories of lapatinib-3CLpro

complex (401–500 ns), and peptidomimetic inhibitor(s)-3CLpro complex (81–100 ns) are illustrated on the right

column. The green arrow, red arrow, purple arrow, and yellow color sphere (or circle in 2D) are pharmacophore

features of hydrogen bond donor (HBD) and acceptor (HBA), halogen bond donor (XBD), and hydrophobic

interaction properties, respectively.

https://doi.org/10.1371/journal.pone.0269563.g008
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For peptidomimetic inhibitors, the chemical pharmacophores of N3 consisted of HBD with

E166, Q189, and T190, HBA with E166, and hydrophobic interactions with T25, M49, M165,

and A191, in correspondence to the previous reports of pharmacophore generated from the

co-crystal structure (6LU7.pdb) [27, 68]. Similar to N3, the 13b also had HBA with E166 and

hydrophobic interactions with T25, L27, M49, and M165. Other key features of 13b were HBD

with H164 and HBA with G143, S144, and C145. In 11a, a high HBD was found with E166,

and there were two HBAs with C145 and E166. No strong hydrophobic interaction of 11a in

the active site was obtained. Moreover, both N3 and 11a could bind to the active site compara-

ble to 13b by binding to the E166 substrate-binding residue at the P3 site corresponding to the

crystal structures [11–13]. The H41 and C145 catalytic dyad residues are located between

domains I and II in the cleft. The residue C145 functions as a nucleophile in the first step of

the hydrolysis process, assisted by the catalytic base H41 [10]. Inhibitors or drugs that can

interact with these residues will inhibit the activity of SAR-CoV-2 3CLpro. The 13b and 11a

Fig 9. Interaction map of four inhibitors against SAR-CoV-2 3CLpro derived from 401–500 ns MD trajectories for lapatinib 81–100 ns, and MD

trajectories for peptidomimetic inhibitors N3, 13b, and 11a. The abbreviations of H, HBA, and HBD represent the pharmacophore features of hydrophobic

interaction, hydrogen bond acceptor, and hydrogen bond donor properties. The numbers in the blue box are the percentage of appearance in each interaction

per residue.

https://doi.org/10.1371/journal.pone.0269563.g009
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showed a high HBA appearance with the catalytic residue C145 (88%); however, no hydropho-

bic interaction of 11a was detected. Therefore, among peptidomimetic inhibitors (N3, 13b,

and 11a), 13b showed the highest binding efficiency against SAR-CoV-2 3CLpro as described

previously [14]. Pharmacophore modeling is widely used in virtual screening to identify com-

pounds with the desired biological effect [69]. The pharmacophore models obtained from

these four systems can be further utilized for antiviral drug screening to combat COVID-19

infection disease.

Rational drug design against SAR-CoV-2 3CLpro

The rational drug design based on lapatinib structure derived from MD simulation and phar-

macophore model results was conducted to enhance the ligand-binding ability toward SAR--

CoV-2 3CLpro. Some functional groups of lapatinib should be modified as given in Fig 10A: (i)

rearrangement of halogen within the aromatic ring (e.g., ortho, meta, or para position) or

changing other types of the aromatic ring (e.g., aniline or pyridine) in the P2’ site to increase

Fig 10. Rational design of lapatinib against the SARS-CoV-2 3CLpro. (A) 2D structure of lapatinib and designed lapatinibs, (B) predicted binding affinity of

the designed compounds A-H against SARS-CoV-2 3CLpro in comparison with lapatinib using LigandScout 4.4.2 program, (C) the binding free energy per

residue of modified lapatinib, compound F/SARS-CoV-2 3CLpro complex, and its hydrogen bond interactions (D). The results were obtained from one

snapshot of the complex after system minimization.

https://doi.org/10.1371/journal.pone.0269563.g010
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the hydrophobic interaction with catalytic residues H41 and C145, (ii) enhancing the nonpolar

moieties (e.g., methyl, ethyl or propyl group) at the quinazoline core of lapatinib in the P1’ site,

which interacts with L141 and V609 residues, and (iii) changing the furan ring in the P1 site

(e.g., imidazole, pyrrole, or oxazole) to increase the hydrophobic interaction with V609 resi-

due. However, the core quinazoline (P1’ site) and benzene ring with Cl atom side chain (P2’

site), which forms hydrogen bond and halogen bond interactions, should be retained (Figs 5E

and 6). Besides, the (methylsulfonyl)ethanamine in the P2 site located at the solvent-exposed

region can be removed (Fig 7A and 7B).

The representative structure (one snapshot) of lapatinib derived from the last 100 ns MD

simulation was used as a model for modification. The lapatinib derivative(s)/SAR-CoV-2

3CLpro complex was structurally minimized based on the MMFF94 force field by LigandScout

4.4.2 program. Subsequently, these complexes’ binding affinities were obtained and compared

to lapatinib. We found that the binding affinities of the newly designed compounds A to H

showed binding (−17.51 to -24.22 kcal/mol) with 3CLpro stronger than lapatinib (−17.09 kcal/

mol) (Fig 10B). Among novel lapatinib derivatives, the compounds E (−24.22 kcal/mol) and F

(−24.21 kcal/mol) gave binding affinities against 3CLpro at a similar level. Compound F was

selected to study the binding pattern by MM/GBSA decomposition free energy calculation

(Fig 10C). The hydrophobic interactions of compound F with catalytic residues H41 (-1.60

kcal/mol, deep pink), and C145 (-1.25 kcal/mol, light pink), and L141 (-4.17 kcal/mol, green)

were significantly enhanced as proposed. Furthermore, hydrogen bond formation of the qui-

nazoline core (N atom) with both residues N142 and E166 remained (Fig 10D).

The physicochemical properties and drug-likeness properties (S2 Table) of lapatinib and

potent designed lapatinibs, compounds E and F were predicted using the SwissADME (www.

swissadme.ch/) [70]. The obtained result revealed that lapatinib was not acceptable for Lipinski

[71] and Ghose [72] rules in similar to compounds E and F. Lapatinib complies with the crite-

ria of the MDDR’s rule [73], while both potent designed lapatinibs are found to accept Veber’s

[74] rule. Additionally, this drug and potent designed lapatinibs were not classified as Pan-

assay interference compounds (PAINS) [75]. Therefore, these derivatives could be further

developed as SARS-CoV-2 3CLpro inhibitors.

Conclusions

In this work, the combination of virtual screening based on molecular docking and experi-

mental testing of repurposed drugs was successfully applied to discover SAR-CoV-2 3CLpro

inhibitors. The 2,135 compounds were obtained from in silico screening. Subsequently, three

screened compounds and four common drugs were selected to test for 3CLpro inhibition.

Among these compounds, lapatinib showed the highest 3CLpro inhibition with the IC50 and

inhibitory (Ki) constant of 35 μM and 23 μM, respectively. In addition, our results revealed

how lapatinib inhibits 3CLpro at the molecular level by molecular dynamic simulations. The

binding affinity of lapatinib against 3CLpro was predicted by SIE calculation, showing a good

agreement with the IC50 value. The van der Waals interactions were the major contributor to

lapatinib binding to 3CLpro. The residues in five pockets of 3CLpro that are important for lapa-

tinib binding include (i) N142 and C145 residues at S1’ site, (ii) F140 and L141 residues at the

S1 site, (iii) H41 and H163 residues at the S2 site, (iv) M165 and E166 residues at the S3 site,

and (v) Q189 residue at the S4 site. In addition, this drug was also stabilized by hydrogen bond

formations with N142 and E166 residues. The critical chemical pharmacophore features of

lapatinib binding within SAR-CoV-2 3CLpro were found to be HBD, HBA, XBD, and hydro-

phobic interactions. Lapatinib’s rational design was also performed. To improve lapatinib

binding ability with S1’ and S2 sites of 3CLpro, the halogen inside the aromatic ring (meta
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position) at the P2’ site of the drug molecule should be rearranged. Enlarging the nonpolar

moiety (ethyl or propyl group) in the quinazoline core of lapatinib should be enhanced hydro-

phobic interactions with the S1 site. Our theoretical findings will lead to the syntheses of a

series of new compounds together with experimental testing in the future. These findings sug-

gest that a combination process of in silico screening and experimental studies are beneficial

for identifying candidate drugs for the development of potent SAR-CoV-2 3CLpro inhibitors.
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