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Abstract: Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for
erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells
(EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral
capsid has been reported to act as a major determinant of viral tropism for erythroid precursor
cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that
recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC
in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely
cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-
related pathways. Our data suggest that high levels of circulating B19V during acute infection can
cause endothelial damage, even without active replication or direct internalization into the cells.

Keywords: parvovirus B19; endothelial cells; VP1u; endothelial stress

1. Introduction

The Human parvovirus B19 (B19V) is a widespread human pathogen that belongs to
Erythroparvovirus genus of the Parvoviridae family. B19V is a small non-enveloped DNA
virus, of which the capsid is 20-28 nm in diameter and carries a 5.5 kilobase length genome
encoded in a single-stranded DNA molecule [1]. The icosahedral B19V virion consists
of two structural proteins—VP1 (83 kDa) and VP2 (58 kDa)—which differ only by the
227 amino acids at the N-terminal region of the VP1-protein, which is called the VP1-unique
region (VP1u). Each capsid is composed of 60 capsomers: VP2 is the major capsid protein
and constitutes approximately 95% of the total virus particle [2].

B19V infection typically causes erythema infectiosum (also known as the fifth disease),
most commonly affecting children [3]. Nevertheless, the age-dependent increase in B19V
seropositivity among the general population indicates that B19V actively infects adults [4].
During B19V infection, a drop in reticulocyte numbers and a reduction in hemoglobin
is observed [1]. These observations are attributed to the remarkable tropism of B19V to
human erythroid progenitor cells (hEPCs) from the bone marrow and liver [5–7]. Only a
few megakaryocyte–erythroid lineage-derived cell lines are permissive to B19V infection
in vitro, with the UT7/Epo-S1 cell line being the most commonly used to study B19V
infection [8]. The major factors that determine B19V tropism are erythrocyte P antigen, a
glycosphingolipid globoside (Gb4Cer) which has been identified as the primary cellular
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receptor of B19V [9]. The Gb4Cer-interacting region was identified in the shared C-terminal
region of capsid proteins VP1 and VP2 [10]. Ku80 [11] and α5β1 integrin [12] were proposed
to act as co-receptors for B19V.

Recent studies have identified the immunodominant VP1u region as a novel deter-
minant of B19V tropism towards erythroid lineage cells, which is required for the virus
binding and internalization [13] through the N-terminal 29 amino acids of the VP1u via in-
teraction with a yet-unknown cellular receptor [14]. Furthermore, it has been demonstrated
that recombinant VP1u could be used as a model to study B19V internalization [13–15].
Nevertheless, despite strictly defined tropism towards hEPCs, the persistence and active
replication of B19V have been observed in EC. The B19V genome was found in placental
EC and linked to hydrops fetalis [16] in the cardiac endothelium of patients with acute my-
ocarditis or chronic inflammatory cardiomyopathies [17–19], or even found in multiorgan
endothelium causing endothelialitis [20]. These observations indicate that EC could be a
natural target for B19V infection and/or persistence.

The interaction between B19V and EC remains poorly characterized and understood.
It was reported that EC in vitro are not permissive for B19V replication, or only a few
cells get infected [21]. However, endothelial B19V infection in vitro can be significantly
enhanced by the presence of anti-B19V human antibodies, which actively enhance the
virus internalization [22]. Moreover, co-infection with adenovirus leads to a substantial
augmentation of B19V structural and non-structural proteins in individually infected
EC [23]. However, no studies so far have addressed the question of whether VP1u alone
can be efficiently internalized by the EC of another species besides the human.

Thus, in this work, we evaluated the effect of the recombinant VP1u region of B19V
on EC of different species and origins. We showed that in vitro VP1u can be internalized
by rats’ EC of pulmonary trunk blood vessels (PTEC), and is poorly internalized by human
umbilical vein endothelial cells (HUVEC). Furthermore, the molecular consequences of
VP1u on EC cell cultures were investigated. The expression and phosphorylation of
transcription factor activation protein-1 (AP-1) components (c-Fos and c-Jun) and mitogen-
activated protein (MAP) kinases in response to recombinant VP1u protein were determined.
Our results suggest that, whether it is efficiently internalized into cells or not, VP1u induces
a stress signaling cascade, which could lead to endothelial activation.

2. Materials and Methods
2.1. Cell Cultures

PTECs were isolated from Wistar rats’ pulmonary trunk blood vessels using the
outgrowth method [24]. The approval to use laboratory animals for stem cell research
was issued by the Lithuanian State Food and Veterinary Service (approval number G2-17,
2014/11/11). The obtained primary cell culture was maintained in Iscove’s Modified
Dulbecco’s Medium (IMDM) (Gibco, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (FBS) (Gibco, Carlsbad, CA, USA) and antibiotics: 100 U/mL penicillin
and 100 mg/mL streptomycin (Gibco, Carlsbad, CA, USA). The cells were detached with
0.25% trypsin and 1 mM EDTA mixture in PBS. HUVEC (C-003-5C) (Gibco, Carlsbad, CA,
USA), and were cultured on 0.1% gelatin-precoated T-75 culture flasks or well plates in
Medium 200 (Gibco, Carlsbad, CA, USA). The media were supplemented with Large Vessel
Endothelial Supplement (LVES) (Gibco, Carlsbad, CA, USA) and antibiotics: 100 U/mL
penicillin and 100 mg/mL streptomycin. The HUVEC were passaged at ~70–80% con-
fluence, the monolayer was dissociated with 0.05% trypsin/EDTA (Gibco, Carlsbad, CA,
USA), and cells of up to 5–6 passages were used for the experiments. Both cell cultures
were maintained at 37 ◦C in a humidified atmosphere containing 5% CO2.

2.2. PTEC Characterization

The PTEC immunophenotyping was performed by flow cytometry. The cells were
detached with 1 mM EDTA solution prepared in PBS (Gibco, Carlsbad, CA, USA), and
3 × 105 PTEC were used for each surface marker analysis. The cells were washed twice
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with 1 % bovine serum albumin (BSA) (Invitrogen, Carlsbad, CA, USA) in PBS and then
incubated with primary monoclonal antibodies: CD13, CD14, CD44, CD45, CD54, and
CD90 (Table S1, Supplementary Materials) at 4 ◦C for 30 min. The cells were washed
twice with 1% BSA in PBS and then incubated with goat anti-mouse secondary antibody
conjugated with R-phycoerythrin fluorescent dye (PA1-84395, Thermo Scientific, Waltham,
MA, USA), diluted 1:25 in 1% BSA prepared in PBS at 4 ◦C for 30 min. The cells were washed
twice and analyzed using the BD FACSCanto™ II system (BD Biosciences, San Jose, CA,
USA), measuring 10,000 cells. For the determination of the background fluorescence, the
PTEC samples were labeled with anti-mouse isotype controls (ab18413, Abcam, Cambridge,
UK). The data were analyzed using Flowing Software (version 2.5.1) (Turku Bioscience,
Turku, Finland).

2.3. Immunocytochemistry

The cells were seeded at a density of 3 × 105 cells/mL and, after 24 h, they were fixed
with 4% paraformaldehyde (Carl Roth, GmbH, Germany) in PBS at RT for 10 min, with mild
agitation (25 rpm). Then samples were rinsed twice with 0.05% Tween-20 (Sigma-Aldrich,
Darmstadt, Germany) in PBS and permeabilized with 0.2% Triton X-100 (Sigma-Aldrich,
Darmstadt, Germany) in PBS at RT for 5 min. Next, the cells were blocked with 3%
BSA (AppliChem, GmbH, Germany) and 10% FBS prepared in PBS for 30 min. After
the blocking, the cells were incubated with primary antibodies (Table S2, Supplementary
Materials). All of the primary antibodies were prepared in blocking solution, and the cells
were incubated with them at RT for 1 h. Then, the samples were washed three times for
5 min with 0.05% Tween-20 solution, and were incubated with secondary goat anti-mouse
Alexa Fluor 488-conjugated antibodies (Invitrogen, Carlsbad, CA, USA) prepared in PBS in
the dark at RT for 1 h. After that, the samples were washed three times for 5 min with PBS
at RT. Additionally, the cells were stained with 5 µg/mL 4′,6-diamidino-2-phenylindole
(DAPI) (Merck Millipore, Burlington, MA, USA) prepared in PBS in the dark at RT for
5 min. Finally, the specimens were washed three times for 5 min with PBS and visualized
with a fluorescence microscope (Olympus IX51) (Olympus Europa SE & Co. KG, Hamburg,
Germany). The images were processed using ImageJ (1.8.0_112) (National Institutes of
Health, Bethesda, MD, USA).

2.4. Tube Forming Assay

Matrigel (Geltrex, A1413202, Thermo Fisher Scientific, Waltham, MA, USA) was
thawed overnight at 4 ◦C, and 36 µL was pipetted into 96-well plate. The matrix was gelled
by holding the plate at 37 ◦C for 30 min. After this, 1× 105 cells/mL PTEC were suspended
in serum-free IMDM with antibiotics, and 100 µL of this cell suspension was transferred
into the 96-well plates coated with Matrigel. Subsequently, the cells were incubated for
24 h at 37 ◦C in a humidified 5% CO2 atmosphere, and the tube formation process was
periodically observed under a light microscope.

2.5. Acetylated Low-Density Lipoprotein Uptake

PTEC (7 × 105 cells/mL) was suspended in IMDM growth medium and seeded
into the wells of a 6-well plate (3 mL per well); the plates were incubated at 37 ◦C
overnight. The next day, the medium was replaced with a growth medium containing
10–15 µg/mL fluorescently-labeled acetylated low-density lipoprotein (Ac-LDL) (Alexa
Fluor® 488 AcLDL, Thermo Fisher Scientific Inc., Waltham, MA, USA), and the cells were
incubated at 37 ◦C for five hours. The uptake of the Ac-LDL by PTEC was evaluated using
fluorescence microscopy and flow cytometry.

2.6. VP1u Purification

Recombinant VP1u (residues 3–229, UniProtKB/Swiss-Prot: P07299.1) was used in this
work. The VP1u and green fluorescent protein-tagged VP1u (GFP-VP1u) were produced in
an endotoxin-deficient ClearColi® (Lucigen, Middleton, WI, USA) E. coli strain, as described
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earlier [25]. For the VP1u expression, the pETTrx vector was used. VP1u connected to
thioredoxin A (Trx) was affinity-purified from the supernatant on a column containing
Ni-NTA-agarose resin. The Trx-VP1u was then cleaved with Tobacco Etch Virus (TEV)
protease following the separation of the VP1u from Trx with a second Ni-NTA-agarose
resin column. The further purification and concentration of the VP1u were performed
on the Phenyl FF column. For the expression of the GFP-VP1u fusion protein, ClearColi®

cells were transformed with pETmGFP plasmid containing a VP1u nucleotide sequence
(residues 3–229). The GFP-VP1u was purified as VP1u, but after the first Ni2+ affinity
column, the protein was further purified by gelfiltration on a Superdex® 75 column, and a
final polishing step and concentration was performed on a Q Sepharose® column.

2.7. Phospholipase A2 Catalytic Activity Assay

The phospholipase enzymatic activity was assessed with a phospholipase A2 (PLA2)
assay kit (Cayman Chemical, Ann Arbor, MI, USA). The 1,2-dithio analog of dihep-
tanoylphosphatidylcholine was used as a substrate in this reaction. After thioester’s hydrol-
ysis with PLA2 activity containing protein, the free thiol group at the sn-2 position reacted
with 5,5′-dithio-bis-(2-nitrobenzoic acid) and generated a product—5 thio-2-nitrobenzoic
acid, which can be detected by measuring the optical density at 412 nm.

2.8. Internalization of Recombinant GFP-VP1u

The PTEC and HUVEC (3 × 105 cells/mL) were harvested and incubated with recom-
binant GFP-VP1u at 4 ◦C for 1 h. Next, the cells were transferred to a temperature of 37 ◦C
for 1 h, and then washed twice with PBS. The non-internalized GFP-VP1u was removed by
trypsinization at 37 ◦C for 4 min, and then the cells were further washed twice with PBS.
The internalized GFP-VP1u was assessed by fluorescence microscopy (Olympus IX51) and
flow cytometry (BD FACSCanto II, BD Biosciences, San Jose, CA, USA). GFP was used as
the negative control.

2.9. Cell Viability Assay

The cell metabolic activity was measured by an MTT (3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide) assay. PTEC and HUVEC were seeded at 3 × 105 cells/mL;
after 24 h, VP1u at concentrations of 50, 100 and 200 µg/mL was added to fresh media and
left to incubate at 37 ◦C with 5% CO2 overnight. After the incubation, the growth media
were removed, and the cells were rinsed once with PBS. In total, 0.2 mg/mL MTT (Sigma-
Aldrich, Darmstadt, Germany) was dissolved in the media and added to cells, and was
then incubated for 1 h at 37 ◦C. Then, the MTT solution was discarded, and water-insoluble
formazan was dissolved in dimethyl sulfoxide (DMSO) (Carl Roth, GmbH, Germany) with
gentle shaking at RT for 10 min. The results were quantified using a spectrophotometer
Varioskan Flash (Thermo Fisher Scientific, Waltham, MA, USA), reading absorbance at
570 nm.

2.10. Real-Time qPCR

Cells were seeded (6 × 104 cells/mL) in 24-well plates, and after 24 hours, at predeter-
mined time points, 100 µg/mL VP1u prepared in fresh media was added. After 1, 2, 4, 6,
12 and 24 h of VP1u exposure, the cells were lysed and the RNA was extracted according
to the manufacturer’s protocol using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA).
The RNA pellets were dissolved in 0.1 mM EDTA, and their concentrations and purity
were determined by a NanoPhotometer P300 (Implen, Inc., Westlake Village, CA, USA)
reading at 260 and 280 nm. The RNA’s transcription into cDNA was performed using a
High-Capacity cDNA Reverse Transcription Kit (4368814) (Applied Biosystems, Waltham,
MA, USA) according to the manufacturer’s instructions. The RT-PCR was performed using
the Power SYBR® Green PCR Master Mix (2x) (Thermo Fisher Scientific, Waltham, MA,
USA). The total volume of the reaction was 20 µL, and 0.5 µL of the prepared cDNA at the
final concentration of 5 ng was used. The selected primers were purchased from Metabion
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International AG (Planegg/Steinkirchen, Germany), and the final concentration of 200 nM
in the reaction was used (Table S3, Supplementary Materials). The mRNAs for the c-Fos
and c-Jun expression were quantified by real-time RT-PCR using Bio-Rad CFX96 qPCR
system (Bio-rad, Hercules, CA, USA). The initial enzyme activation step started at 95 ◦C for
10 min. The reaction proceeded with 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min for gene
amplification. The relative gene expression levels were obtained using the ∆∆Ct method.
The results were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
transcript and the untreated cell controls.

2.11. Western Blot

The cells were lysed in ice-cold lysis buffer (10 mM Tris HCl pH 7.4 (Carl Roth,
GmbH, Germany), 50 mM NaCl (Carl Roth, GmbH, Germany), 5 mM EDTA, 50 mM NaF
(Sigma-Aldrich, Darmstadt, Germany), 1% Triton X-100 (Sigma-Aldrich, Darmstadt, Ger-
many)) and supplemented with protease and phosphatase inhibitors: aprotinin (1 mg/mL)
(Thermo Scientific, Waltham, MA, USA), PMSF (1 mM) (Thermo Scientific, Waltham, MA,
USA), and Na3VO4 (1 mM) (Carl Roth, GmbH, Germany). The protein concentration was
estimated by a Bradford assay (Thermo Scientific, Waltham, MA, USA); equal amounts of
protein were separated by SDS-PAGE on 12% polyacrylamide gels and transferred onto
PVDF membrane (Carl Roth, GmbH, Germany) (semi-dry transfer, 10% methanol). The
membranes with transferred proteins were blocked with 5% BSA dissolved in TBST (5 mM
Tris HCl pH 7.5, 0.1% Tween 20, 154 mM NaCl (Carl Roth, GmbH, Germany)) for 1 h
at room temperature (RT). The primary antibodies diluted in 5% blocking solution were
applied at 4 ◦C overnight (Table S4, Supplementary Materials). After the incubation, the
membranes were washed three times for 3–5 min in TBST, and then incubated with sec-
ondary antibodies at RT for 1 h. Next, the membranes were washed 3 times for 3–5 min in
TBST and incubated with Pierce ECL Western Blotting Substrate (32106, Thermo Scientific,
Waltham, MA, USA) for 3 min. The protein expression was visualized in a ChemiDoc XRS+
Molecular Imager (Bio-rad, Hercules, CA, USA) using Image Lab Software. The Western
blot images were quantified using the ImageJ program. GAPDH protein was used as a
loading control. The levels of the phosphorylated proteins were normalized to those of the
total proteins.

2.12. Statistical Analysis

All of the experiments were verified by at least three independent experiments. The
graphs and statistics were produced using GraphPad Prism version 6.00 (La Jolla, CA, USA).
A two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple-comparisons
test was performed for the cell viability assay. A one-way ANOVA with Bonferroni’s
multiple-comparisons test was used for the RT-qPCR and Western blot data analysis.
The data are represented as mean values ± standard deviation (SD). A value of p < 0.05
was considered to be statistically significant. The significant differences are marked with
symbols and explained below the figures.

3. Results
3.1. PTEC Isolation and Characterization

Given the close association of various human disorders with the presence of B19V
DNA in EC, the objective of our study was to elucidate the effect of B19V-VP1u on EC
cells more closely. We chose two EC cultures isolated from rats and humans for our work.
We isolated EC from the pulmonary trunk blood vessels of rats (PTEC) (Figure 1B) and
characterized the cells by assessing the expression of CD13, CD14, CD44, CD45, CD54 and
CD90 surface markers (Figure 1A). The PTECs were positive for CD54 and CD90 surface
markers, and were negative for CD13, CD14, CD44, and CD45. The expression of endothe-
lial surface marker CD31 was evaluated using immunofluorescence (Figure 1E). These cells
also showed angiogenesis potential (Figure 1C) and were able to uptake acetylated-low
density lipoprotein (Figure 1D). Taken together, isolated rat PTECs possess EC characteris-
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tics. Moreover, the PTEC cells were positive for B19V receptor P antigen (GB4Cer), and
the coreceptors Ku80 and a5b1-integrin (Figure 1F–I). The commercially available HUVEC
cell line was used as a human EC system in this study. Periodic examination for CD31
and CD54 surface markers expression (Figure 1J,K) allowed these cells to be used up to six
passages without signs of differentiation.
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3.2. Evaluation of Recombinant VP1u

The expression of the B19V-VP1us was carried out in an endotoxin-deficient ClearColi®

(Lucigen) E. coli strain (Figure 2A,B) (Figure S1, Supplementary Materials). Two high-purity
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proteins were produced. The predicted molecular masses (from the DNA sequences) corre-
sponded to the SDS-PAGE results: untagged VP1u, 25.3 kDa; GFP-tagged VP1u, 54.8 kDa.
The purified proteins also showed PLA2 enzymatic activity (Figure 2C). The measured enzy-
matic activities of the same molar concentration of VP1u (m = 46 ng; Mr = 25301.99 g/mol)
and GFP-VP1u (m = 100 ng; Mr = 54813.24 g/mol) were 29.7 ± 4.1 nmol×min−1×mL−1 and
26.0 ± 5.2 nmol×min−1×mL−1 (the specific activities were 2.9 ± 0.4 nmol×min−1×mg−1

and 6.2 ± 1.2 nmol×min−1×mg−1), respectively.
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3.3. Cell Viability after VP1u Exposure

During B19V infection, up to 1014 viral particles/mL can be found in human blood [26,27].
Thus, for the cytotoxicity study, we chose VP1u concentrations corresponding to acute-
phase infection levels of B19V particles: 50, 100 and 200 µg/mL of VP1u. Surprisingly,
200 µg/mL of the VP1u increased the PTEC proliferation, whereas HUVEC had no impact
on the cell viability (Figure 3A). The increased proliferation potential in PTEC suggested
that VP1u could induce stress, which can be followed by the EC activation.

3.4. GFP-VP1u Uptake by the ECs

The ECs were exposed to PLA2 enzymatic activity containing GFP-VP1u recombinant
fusion protein, and their internalization potential was evaluated (Figure 3B–D) (Figure S2,
Supplementary Materials). GFP-VP1u bound to the surface of PTEC and was subsequently
endocytosed and dispersed throughout the cytoplasm (Figure 3C). The same uptake pro-
cess was evaluated by flow cytometry (Figure 3B), and a fluorescence intensity shift of 94%
was recorded. The observed uptake of recombinant VP1u is in good agreement with the
presence of the known B19V receptors and coreceptors in PTECs, and confirms the function-
ality of the VP1u preparations. Surprisingly, the uptake of VP1u by non-human primary
EC suggests that VP1u is not a determinant of B19V species tropism. In the case of HUVEC,
GFP-VP1u was poorly uptaken. Flow cytometry showed a fluorescence intensity shift of
just 12.8%, and the GFP-VP1u uptake by HUVECs could not be detected microscopically.
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3.5. The Effect of VP1u on the Expression and Activation of c-Fos and c-Jun Proto-Oncogenes

In order to assess the molecular consequences of VP1u exposure on ECs, we tracked
the changes in the transcription factor AP-1 components c-Jun and c-Fos, which are known
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to participate in the early cellular events of the stress response (Figure 4A). Our results
indicate that VP1u exposure in both studied EC cultures leads to an early upregulation
of c-Fos mRNA levels. However, the changes of the c-Jun mRNA levels were not as
strongly affected by VP1u exposure. In PTEC, a slight upregulation of the c-Jun transcript
levels was observed during the first hours after VP1u exposure, while in the HUVECs,
the changes were observed only 2–6 h post exposure compared to the untreated control.
The ECs’ exposure to VP1u also induced changes in their c-Fos and c-Jun phosphorylation
(Figure 4B,C). The early phosphorylation of the c-Fos protein was detected in both cell
lines, while the early increase in c-Jun phosphorylation was more pronounced in HUVECs.
Our results indicate that ECs’ exposure to VP1u induces cellular stress, and that the AP-1
complex is likely to participate in these processes.
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Figure 4. Evaluation of the activation protein-1 (AP-1) components (c-Fos/c-Jun) in EC after exposure
to 100 µg/mL VP1u. (A) RT-qPCR analysis of the c-Fos and c-Jun mRNA levels in EC at different
time points. The data were normalized to GAPDH and presented as a fold change ± SD over the
untreated control. (B) The abundance of c-Fos and c-Jun proteins in EC. (C) Quantification of the
total and phosphorylated proteins at different times of VP1u exposure. The results are presented as
mean ± SD. p ≤ 0.05 (*), p ≤ 0.01 (#), p ≤ 0.001 ($) vs. control (C1).
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3.6. The Effect of VP1u on the Relative Abundance of Stress Response Proteins

PTEC exposed to a 100 µg/mL concentration of VP1u showed increased prolifera-
tion potential and changes in the levels of the early response transcription factor AP-1
constituents c-Fos and c-Jun. Usually, the AP-1 complex in cellular stress conditions is
activated through the MAP kinases pathway [28]. Thus, we evaluated the expression of
the two main kinase families of this pathway: JNK and ERK. The cells were treated with
VP1u at a final 100 µg/mL concentration, and the expression kinetics of these proteins
were assayed (Figure 5A,B). VP1u affected the kinetics of both the JNK and ERK proteins.
The PTEC fraction of the phosphorylated JNK and ERK forms was significantly increased
in the early hours after exposure. Meanwhile, in HUVEC, the phosphorylation of JNK was
delayed. These findings show that these MAP kinases participate in VP1u-induced stress
signaling in both studied EC systems.
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Altogether, the mRNA profiling of the early response molecules and the stress-
associated protein expression data indicate that both of the studied EC lines respond
to the VP1u treatment at a molecular level, although our recombinant VP1u demonstrates
different internalization potentials in these cell cultures.

4. Discussion

B19V possesses strict species and cell type tropism, efficiently infecting only human
erythroid progenitor cells [5,7,9,13–15,29]. However, the clinical and experimental data
indicate that B19V can infect or persist in EC [16,17,20,30]. The isolated VP1u region
of the B19V capsid has been shown to be an adequate model for B19V virus tropism
and internalization studies [13–15]. However, the interaction of B19V and EC is poorly
understood. In this work, we studied the effects of VP1u on EC isolated from rat pulmonary
trunk blood vessels (PTEC) and human umbilical vein endothelial cells (HUVEC).

For this study, we produced untagged and GFP-tagged VP1u in the endotoxin-
deficient ClearColi® (Lucigen) E. coli strain, which ensured that the cellular effects gener-
ated by the recombinant protein samples are due to VP1u, and that they are not caused by
the lipopolysaccharides (LPS) present in the recombinant protein preparations. As little as
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15 pg/mL of LPS can induce significant cytokine production in antigen-presenting cells,
such as EC, and recombinant protein samples contaminated with LPS are able to induce cel-
lular activation; thus, the results obtained in this way might be misleading [31,32]. At first,
the protein expression was performed in standard BL21 Star™ (DE3) E. coli strain; however,
the purified proteins had excessive LPS concentrations. Several targeted purification meth-
ods were assayed; nevertheless, we were not able to reach acceptably low LPS levels. Thus,
this problem was solved using the endotoxin-deficient ClearColi® (Lucigen) E. coli strain.
VP1u possess PLA2 enzymatic activity, which is important for the virus life cycle [30,33,34].
We used PLA2 enzymatic activity as a readout of our recombinant preparations. Both
recombinant proteins, VP1u and GFP-VP1u, showed comparable PLA2 enzymatic activities
(VP1u 2.9 ± 0.4 nmol×min−1×mg−1 and GFP-VP1u 6.2 ± 1.2 nmol×min−1×mg−1). Our
measured B19V PLA2 enzymatic activities of VP1u coincide with other studies [30,33,34].

Next, we evaluated the VP1u internalization potential in rat- and human-derived ECs.
PTECs were capable of internalizing VP1u efficiently, whereas HUVECs demonstrated only
marginal uptake. Our results agree with previous studies, indicating that HUVECs are
poor B19V hosts and deficient for B19V internalization without additional factors [21,22].
We observed that PTECs express all of the key B19V receptors and coreceptors that are also
found on HUVECs: Gb4Cer, Ku80, and integrin α5β1 [22,35]. Our results and previous
studies suggest that the expression of Gb4Cer, Ku80 and integrin α5β1 alone is not sufficient
for efficient B19V internalization [22,36]. It is compelling to speculate that PTEC cells
express an as-yet-unknown VP1u receptor, which is not present in HUVECs. Moreover, the
efficient VP1u internalization by PTECs suggests that VP1u cannot be considered the sole
determinant of cell and species tropism of B19V.

Finally, we investigated the consequences of VP1u exposure in EC. VP1u at concen-
trations corresponding to clinical viremia levels did not cause cytotoxicity in the studied
EC lines, but rather stimulated PTEC proliferation. The increased proliferation could be
the result of activated stress signaling pathways [37,38]. We measured the transcript and
protein levels of the immediate early genes c-Fos and c-Jun forming the AP-1 transcription
factor. AP-1 is a critical mediator of the early response to a variety of stimuli: cytokines,
growth factors, stress, and bacterial and viral infections [39–41]. AP-1 has been reported
to elicit an EC-specific inflammatory profile [42]. Furthermore, the expression of c-Fos
and c-Jun can directly cause the activation of human ECs [43], suggesting that these tran-
scription factors mediate the early response to the virus in EC. Exposure to VP1u caused a
time-dependent upregulation of c-Fos and c-Jun transcripts, as well as the phosphorylation
of c-Fos and c-Jun proteins in both of the studied EC cultures. The activation of mitogen
activated protein kinases (MAPK) signaling as a response to virus infection regulates the
activity of numerous genes through transcription factors such as c-Fos and c-Jun [28,44–46].
Thus, we investigated the phosphorylation levels of two major MAPKs—ERK and JNK—in
response to VP1u. We observed the time-dependent increase in phosphorylation of ERK
and JNK upon VP1u exposure in both cell cultures. This shows that, upon VP1u exposure,
both cell cultures undergo similar cellular stress induction processes independently of their
VP1u internalization. Noticeably, the stress response in PTECs was more rapid than that in
HUVECs. VP1u possesses PLA2 activity [47,48], which even without internalization could
elicit a cellular response [30,49,50]. It was demonstrated that the PLA2 enzymatic activity
can modulate the release of arachidonic acid and the precursor of eicosanoids of potent
inflammatory mediators [51]. Furthermore, in the clinical trial of the B19V vaccine, the
volunteers who received a virus-like particle vaccine possessing PLA2 activity experienced
immediate hypersensitivity in the site of the injection. This reaction was linked to the PLA2
activity of the VP1u [52]. Therefore, the PLA2 activity of VP1u could be at least partially
responsible for the induction of stress signaling pathways in EC in vitro, and could also be
relevant to the pathomechanism of B19V-associated endothelial damage in clinical settings.

Our research confirms that the known viral receptors and coreceptors cannot explain
the cellular and species tropism of B19V. More research is needed to determine the exact
mechanism of VP1u internalization and the cellular receptors required for it to occur. The
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current in vitro models used for B19V infection research require specific and complex
cellular conditions, which are challenging to implement. We demonstrate that rat PTEC cell
culture can be a promising model for further studies of B19V internalization mechanisms.

5. Conclusions

We showed that EC from rat pulmonary trunk blood vessels, but not HUVEC, can
efficiently internalize recombinant B19V VP1u. VP1u at the concentrations observed
during human acute infections was not cytotoxic to EC, but rather induced cellular stress
signaling pathways irrespective of the internalization potential. Thus, our data support the
hypothesis that high levels of circulating B19V during acute infection in humans can cause
endothelial damage even without active replication or internalization in EC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11040606/s1. Figure S1: Chromatograms of GFP-VP1u purification; Figure S2: GFP-
VP1u presentence in cells; Figure S3: Images of the original uncropped Western blots used for the
preparation of Figure 4; Figure S4: Images of the original uncropped Western blots used for the
preparation of Figure 5; Table S1: List of antibodies used for the cell characterization; Table S2: List of
the antibodies used for the immunocytochemistry; Table S3: Primer sequences of the genes analyzed
by real-time PCR; Table S4: List of the antibodies used in the Western blotting.
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