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tracking during continuous speech

Martin Orf,1,2,4,* Malte Wöstmann,1,2 Ronny Hannemann,3 and Jonas Obleser1,2

SUMMARY

Selective attention modulates the neural tracking of speech in auditory cortical
regions. It is unclear whether this attentional modulation is dominated by
enhanced target tracking, or suppression of distraction. To settle this long-stand-
ing debate, we employed an augmented electroencephalography (EEG) speech-
tracking paradigmwith target, distractor, and neutral streams. Concurrent target
speech and distractor (i.e., sometimes relevant) speech were juxtaposed with a
third, never task-relevant speech stream serving as neutral baseline. Listeners
had to detect short target repeats and committed more false alarms originating
from the distractor than from the neutral stream. Speech tracking revealed target
enhancement but no distractor suppression below the neutral baseline. Speech
tracking of the target (not distractor or neutral speech) explained single-trial ac-
curacy in repeat detection. In sum, the enhanced neural representation of target
speech is specific to processes of attentional gain for behaviorally relevant target
speech rather than neural suppression of distraction.

INTRODUCTION

Selective attention refers to the neural filtering processes of prioritizing relevant objects over irrelevant dis-

tractions.1 Typically, attentional selection is quantified by the difference in the behavioral or neural

response to target versus distractor. However, such a difference can be driven by either target enhance-

ment, distractor suppression, or a combination of the two. Here, we investigated how the mechanism of

selective attention is represented in neural (electroencephalographic) activity, and we linked the trial-by-

trial neural responses to behavioral responses associated with different sub-processes of attention.

In the visual domain, single-cell studies have shown that attention operates when multiple stimuli compete

for access to neural representation. Distractors within a receptive field become suppressed, while attended

stimuli are enhanced.1 The mechanism of how selective attention is implemented at the level of neural net-

works is still in debate in attention research.2,3 It has been argued that an often-missing, predefined base-

line is needed to test whether the target exceeds the baseline (enhancement) and the distractor falls below

the baseline.4,5 In the visual modality Seidl et al.6 had implemented such a ‘‘neutral’’ baseline by assigning a

given class of stimuli as the never task-relevant, and therefore least distracting, category. They measured

brain activity in fMRI (functional magnetic resonance imaging) in response to natural scene photographs

that contained objects from a task-relevant (target) category, a task-irrelevant (distractor) category, and

a never task-relevant (neutral) category. In addition, distractor suppression was linked to attentional cap-

ture. A distractor requires capturing attention initially, followed by suppression.7–9

Speech is one of the most salient and behaviorally relevant signals in human environments, but for a long

time it was not possible to study the neural processing of time-varying natural stimuli like speech

quasi-continuously. Neuroscientists thus studied attention to short, isolated events due to the need for

temporally discrete event-related potentials (ERP).10 Recently, research has begun to investigate the elec-

trophysiology of attention to continuous speech.11–13 Electrophysiological responses in cortical regions

phase-lock to the temporal envelope of the speech signal.14 This linear relationship is well-captured by

the so-called temporal response function (TRF), which can be interpreted as a cortical impulse response,

in close analogy to the conventional ERP.15,16 The TRF can indicate a stereotypical, phase-locked brain

response to various acoustic features. The most often used feature is the low-frequency temporal
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Germany

2Center of Brain, Behavior
and Metabolism (CBBM),
University of Lübeck, Lübeck,
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envelope, also referred to as neural speech tracking.17 This neural speech tracking shows a robust and

often-reproduced differentiation of attended versus ignored speech.11,16,18–20 Thus, neural tracking is a

feasible approach to quantify the neural processing of several speech streams at the same time to reveal

the effect of attention.11,21,22 In addition, Fiedler et al.16 showed that late TRF components are associated

with cortical tracking of ignored speech and are differently modulated for varying signal-to-noise ratios.

These findings indicate that different components of the TRF are associated with different attentional pro-

cesses. In sum, a hitherto underutilized advantage of this approach is its ability to delineate two potential

sub-processes of attention: target enhancement vs. distractor suppression.5

What characterizes a distractor stream in such an experimental setup? First, the implementation of the

distractor stream was based on the phenomenon of negative priming, which describes the finding

that a distractor from the previous trial is harder to select on the next trial.23–25 It is assumed that a stim-

ulus and the response it elicits become integrated into so-called ‘‘event files’’ in memory.26,27 Therefore,

a specific stimulus automatically retrieves the response that was previously linked with this stimulus.28 In

this sense, the whole distractor stream in a given trial is distracting, since the same event that was pre-

vious task-relevant triggers a response, despite currently being task-irrelevant, and must be inhibited.

Second, it was shown that spatial statistical regularities influence selective attention on a longer timescale.

A location that contained a distractor with a higher probability is suppressed relative to other locations. In

this context, participants would learn about the location of the distractor stream and suppress it over

time.29

In the auditory modality, Hambrook and Tata30 investigated the mechanisms of distraction by increasing

the number of distractor streams in the auditory scene. Their results suggest that distraction is not an active

process but rather simply a loss of phase tracking of the target envelope. However, the attentional sub-pro-

cesses target enhancement and distractor suppression have been suggested but have rarely been probed

explicitly.16,31,32 Here, we adopted the rationale of Seidl et al.6 and implemented three auditory speech

streams, a target (task-relevant) stream, distractor stream (previously task-relevant), and—critically—a

neutral stream, which is never task-relevant. Larger target-vs-neutral tracking would indicate enhancement,

while smaller distractor-vs-neutral tracking would indicate suppression). In the context of the auditory

scence, the neutral stream can be conceived as a weaker distractor not as non-distractor. We operational-

ized the neutral stream as the never task-relevant stimulus. However, the neutral stream is not neutral in the

strongest sense: Like the distractor stream, it was associated with the attentional background since it had to

be ignored by the listener.21 In other words, the neutral stream was more similar to the distractor stream

than the target stream. Critically, it is conceivable that suppression is preceded by initial attentional cap-

ture of the distractor, indicated by larger distractor-vs-neutral tracking for early neural responses (see

Figure 1B).

However, a severe disadvantage of continuous speech paradigms thus far has been their typical lack of rich

behavioral data.33 Typically, comprehension questions are asked intermittently or afterward regarding the

content of the audio stream, which are insufficient to assess task-relevance of neural responses, especially

during a complex continuous speech paradigm.

In the present study, we use electroencephalography (EEG) to investigate neural responses in human par-

ticipants. We asked to what extent selective attention to speech is implemented in the human brain

through target enhancement versus distractor suppression, and whether enhanced tracking of target

speech or suppressed tracking of distraction would explain behavioral trial-by-trial indices of selective

attention.

To this end, we designed a new experimental paradigm with two key advances over previous neural

speech-tracking experiments (Figure 1A). First, a speech stimulus that was never relevant served as a

neurally and behaviorally ‘‘neutral’’ baseline, against which the processing of concurrent target speech

(relevant on a present trial) and distractor speech (relevant on other trials) can be contrasted.5,6 Second,

listeners had the task to continuously monitor and detect short repeats in the target stream34 and to ignore

short repeats in the distractor and neutral streams. This enabled us to contrast whether neural responses to

target, neutral, or distractor speech would independently explain trial-by-trial variation in attentional

performance.
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RESULTS

We recorded the electroencephalogram (EEG) from 19 young, normal-hearing participants (7 male and 12

female, mean age 21.9 years, range 18–27 years). They were presented with three continuously narrated

audio streams simultaneously (Figure 1A). On a trial-by-trial basis, they had to switch their attention be-

tween the same two audio streams. The to be attended audio stream was defined as the target stream,

the audio stream attended in the trial before as the distractor stream, and the never task-relevant audio

stream as the neutral stream. Participants had to detect any repetitions in the target stream as fast and

accurately as possible and ignore the neutral and distractor streams.

Here, we analyzed behavioral data in terms of signal detection theory. We tested whether selective atten-

tion is driven by an enhancement of the target, a suppression of the distractor, or a combination of the two

by investigating differential neural tracking of target versus neutral speech and distractor versus neutral

speech by slow (1–8 Hz) cortical responses.

Larger repeat-evoked responses in the target stream

Overall, participants were well able to detect repetitions in the target stream (mean accuracy: 69.8%G SEM

2.7%; response time: 735 ms G SEM 14.1 ms), but performance was clearly not ceiling up with up to 86%

(the highest score of single individual) correct responses (Figure 2A). In comparison, the false alarm rates

for the neutral (false alarm rate: 2.1%G SEM 3.4%; response time: 789 ms G SEM 44.7 ms) and distractor

streams (false alarm rate 2.9%G SEM 3.4%; response time: 801 ms G SEM 37.7 ms) were low. Jointly, the

number of hits and false alarms indicated that participants were attending to the cued target audio

streams. No significant differences in response times were observed (t = 2.20; df = 30; p > 0.05, for all

comparisons).

We also estimated regression-based TRFs phase-locked to repeat onset (Figure 2B). TRFs to repeats in the

target stream yield an auditory ERP-typical, biphasic response with an early positive deflection (0–170 ms)

and a later negative deflection (170–550 ms). Topographies show b-weights with the highest magnitude for

central channels. In contrast, the TRFs for the neutral and distractor streams did not show clear TRFs.

Figure 1. Experimental design and hypothetical results

(A) Simultaneously, we presented three different audio streams at different locations (�45�, 0�, 45�). Participants were
instructed to attend to the cued audio stream for the duration of a trial (currently task-relevant target). In the next trial,

another stream was cued, that became the target stream. The stream which was previously task-relevant became the

distractor stream. During the entire experiment, the cue alternated between these two streams. The task-irrelevant (never

cued) stream was defined as the neutral stream. We embedded short repeats in all three streams. Participants had to

detect repeats in the target stream and had to ignore repeats in the neutral and distractor streams. Further, participants

were instructed to process the content of the target audio stream.

(B) Hypothetical neural outcomes. While target enhancement (stronger target-vs.-neutral tracking; green) is expected for

early and late TRF components, earlier components are expected to show neural capture by the distractor, that is,

distraction (stronger distractor-vs.-neutral tracking; red) and later components are expected to show suppression

(reduced distractor-vs.-neutral tracking; yellow).
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Regression based ERPs indicated a different brain response to target versus neutral repeats, but no

different brain response to repeats in the neutral and distractor streams, which is in line with the observed

behavior in Figure 2A. For further neural analysis, we treated the magnitude of these TRFs in all three

streams as potential confounds and controlled for them statistically (for details see STAR Methods:

TRFs. The fact that the participant’s performance was off ceiling for detected repeats in the target stream

and had a low false alarm rate in combination with no TRFs to the distractor and neutral streams indicate

that the repeats did not pop out of the streams automatically. However, we label repeats ‘‘detected’’ in the

distractor and neutral streams (false alarms) only if they are followed by a response. We cannot exclude the

possibility that some repeats are detected but not followed by a response (response inhibition), even

though the TRF for false alarms indicates no pop-out.

Larger interference by distracting versus neutral speech

To better understand the contrast in behavior between the neutral and distractor streams, we analyzed the

behavioral data in terms of signal detection theory. Based on the hit rate and false alarm rates, two different

d’ could be calculated (Figure 2C). We calculated d’target-distractor to index the perceptual separation of

target versus distractor stream, and d’target-neutral to index the perceptual separation of target versus

neutral stream. Participants achieved a mean d’target–distractor of 2.46 G 0.1 (MGSEM) and a somewhat

higher mean d’target–neutral of 2.66 (G0.1).

A mixed model (supported by a Bayesian paired-samples t-test) with the regressor attention (target-dis-

tractor vs. target-neutral) confirmed this difference to be statistically significant (t = 3.01; df = 15; p =

0.009; BF10 = 8.1, supporting H1 over H0), indicating larger interference by the distractor than the neutral

speech stream.

Morphology of neural responses to target, neutral, and distractor speech

We analyzed the neural tracking response to the target, neutral, and distractor streams by investigating the

temporal, time-lagged relationship between the stimulus representation of each stream and the brain

signal. This relationship is captured by an impulse response, the so-called TRF (TRF; see STAR Methods).

Each component of the TRF is interpreted as a neural operation along the auditory pathway, analogous to

Figure 2. Behavioral results and TRFs to repeats

(A) Boxplots depict the proportion of detected repeats for the target (green), neutral (gray), and distractor stream

(orange). Scatter dots depict individual subject data.

(B) TRF to repeats in the target (green), neutral (gray), and distractor stream (orange). TRFs b-weights are averaged across

subjects (N = 19) and channels of interest (solid line). Shaded areas show the standard error for each time lag across

subjects. Topographic maps depict b-weights for an early time window (0–100 ms) and for a later time window (300–

400 ms) for the attended stream.

(C) The spaghetti plot shows the sensitivity index (d-prime) for target versus distractor streams and target versus neutral

streams. Dots depict individual data, with connection lines indicating data from the same subject. Shaded areas illustrate

the distribution of the data. Bayes factor visualization: probability pie charts show the ratio of the likelihood of H1(red) and

H0 (white) for pairwise comparisons.

ll
OPEN ACCESS

4 iScience 26, 106849, June 16, 2023

iScience
Article



the event-related potential.35,36 Here, we describe differences between the TRF for target, neutral, and dis-

tractor streams, followed by a statistical analysis of the neural tracking response.

As expected, the morphology of the TRF for the target stream showed the succession of P1-N1-P2

response components, and the TRFs for the neutral and distractor streams showed the succession of the

P1-N2 response components (Figure 3).

The early positive deflection P1 (0–80ms) appeared in the TRF for the target, neutral, and distractor streams

without any difference, indicating no attentional modulation. Topographies (located to fronto-central

regions), latencies, and polarity of the P1 component were in line with previously observed TRFs and audi-

tory-evoked potentials (AEPs) in the literature.

The later negative component N1 (80-150 ms) was prominent for the TRF of the target stream. The magni-

tude of N1 was increased (i.e., more negative) compared with the neutral and distractor streams.

The late positive deflection P2 (170–300 ms) was only present for the TRF of the target stream. In contrast,

we found a negative deflection N2 in the TRF for the distractor and neutral stream in about the same time

interval. This anti-polar relationship was also reported in previous studies.11,16 However, there was no

considerable difference in N2 for the TRF of the neutral stream versus the TRF of the distractor stream.

Neural tracking reflects target enhancement, not distractor suppression

Neural tracking reflects the strength of the representation of a speech stream in the EEG (see STAR

Methods for details). For neural tracking, we asked whether selective attention is driven by an enhancement

of the target, a suppression of the distractor, or a combination of the two. The most important finding of

this study resulted from the differential neural tracking of the target and neutral streams (target enhance-

ment; Figure 4B).

Figure 3. Temporal response functions (TRFs) of the target, neutral and distractor streams

TRF b-weights are averaged across subjects (N = 19) and channels of interest: Fz, Cz, CPz and Pz (solid lines). Shaded areas

show the standard error for each time lag across subjects. Topographic maps depict b-weights for time windows of the P1,

N1 and P2/N2 components for the three streams. 45�-plots show the single subject (N = 19) b-weights separately for

neutral versus target, neutral versus distractor and distractor versus target for the P1, N1, and P2/N2 components.

ll
OPEN ACCESS

iScience 26, 106849, June 16, 2023 5

iScience
Article



Analysis of the neural tracking (0–500 ms) revealed a difference between the target and neutral stream indi-

cated by a linear mixed model on the mean neural tracking (0–500 ms) and Bayesian t-test for target stream

versus neutral stream (t = 3.67; df = 32; p < 0.001; BF10 = 6.5, supporting H1 over H0) and between the

target and distractor stream (t = 2.78; df = 32; p < 0.05; BF10 = 2, weakly supporting H1 over H0). There

was no significant difference in neural tracking of the distractor versus neutral stream and also the Bayes

factor is not evidential (t = 0.88; df = 32; p = 0.383; BF10 = 1.6). If at all, the Bayes factor indicates the un-

expected finding that the distractor stream was tracked slightly better than the neutral stream (see Fig-

ure 4). Topographies revealed the strongest neural tracking for central and frontal channels.

Lastly, we analyzed the temporally resolved dynamics of target enhancement and distractor suppression

(Figure 4B). Unfolding neural tracking across time lags revealed differential tracking of the target and

neutral streams. Target enhancement of encoding target versus neutral speech was signified by one cluster

(136–232 ms; cluster p = 0.0044). We observed no significant clusters separating the neural response to

neutral versus distractor stream.

Altogether, these findings indicate that neural tracking in a continuous speech tracking paradigm reflects a

neural mechanism of target enhancement at the auditory cortical level, but no active distractor suppression.

Neural tracking of the target stream is associated with perceptual performance

To test the relationship between neural tracking and repeat detection performance, we modeled binary

responsebehavior (hit vs.miss) as a linear functionof neural tracking for the speech streams in the target, neutral

and distractor streams using a generalized linearmixedmodel (GLMM; see STARMethods for details). Further,

we also controlled for the different numbers of repeats in the target stream by adding trial number as a contin-

uous predictor into the model. We also included subject ID, the number of repeats (total experiment) and the

condition-to-location assignment (neutral front, left, right) as random intercepts into the GLMM.

Neural tracking of continuous speech of the target stream displayed a positive linear relationship with par-

ticipant’s performance (bGSEM = 0.077 G 0.029; z = 2.618; p = 0.009). The higher the tracking accuracy of

the target stream during a 20-s trial, the more likely participants detected repeats in that stream during that

trial. We observed no such linear relationship in the neutral (bGSEM = 0.017 G 0.029; z = 0.589; p = 0.556)

or in the distractor streams (bGSEM = �0.023 G 0.029; z = �0.806; p = 0.420; Figure 5A, left panel).

Figure 4. Neural tracking reveals target enhancement but no distractor suppression

(A) Neural tracking was computed based on the extracted TRFs and the envelopes of the attended (green), neutral (gray),

and distractor streams (orange). Spaghetti plot shows single-subject data averaged across channels of interest.

Connection lines between dots indicate the same subject. Bayes factor visualization: pie charts show probability of data

given H1(red) and H0 (white) for pairwise comparisons. Shaded areas depict distributions of the data.

(B) Unfolding neural tracking across time lags (-100–500 ms). Solid lines show the averaged neural tracking (encoding

accuracy; r) across subjects (N = 19) and channels of interest (topographic map). Shaded areas show the standard error for

each time lag across subjects. Cluster permutation test revealed two significant clusters between target and neutral (136–

232 ms) and between target and distractor (136–208 ms). Black bars indicate significant clusters. No significant clusters

between distractor versus neutral were found. Topographic maps depict average neural tracking (r) for the three streams

(0–500 ms).
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Note especially that the estimates for the target stream and distractor stream pointed in opposite direc-

tions (Figure 5A, left panel). We thus, used a Wald statistic to test if the two estimates differed significantly

from each other. The behavior-beneficial contribution of the neural tracking of the target stream was pos-

itive and differed significantly from (as per sign of the estimator, behavior-detrimental) neural tracking of

the distractor stream (ZWald = 2.44, p = 0.015). As to be expected, the smaller differences of neutral versus

target estimates (ZWald = �1.44, p = 0.147) and neutral versus distractor estimate (ZWald = 0.97, p = 0.332)

proved not significant.

To control for potential confounding of the speech tracking in the target stream by the neural response to

the to-be-attended repeats, we also included neural repeat tracking from all three streams in our model.

Unsurprisingly, we observed a positive linear relationship between participant’s performance and neural

repeat tracking (b = 0.246; SE = 0.023; z = 8.235; p < 0.001) in the target stream. This shows that stronger

neural responses to repeats in the target stream were associated with better behavioral detection of re-

peats. On the other hand, we observed no significant linear relationship between the tracking of a repeat

in the neutral (b=�0.018; SE = 0.028; z =�0.644; p = 0.520) or in the distractor stream (b= 0.034; SE = 0.029;

z = 1.197; p = 0.231; Figure 5A, right panel). For illustration only, we binned the data by the strength of

stream and repeat tracking into five bins (Figure 5B, right panel).

Control analysis I: Listeners process the content of competing speech streams

The behavioral outcome from the comprehension questions was not of major interest to us, since

the detection of repeats provides a much more reliable and finely resolved measure of behavioral

performance. However, one concern we aimed to alleviate was that participants might have been only de-

tecting repeats rather than listening to the speech content of the target stream at all; acoustic—phonolog-

ically processing the speech streams alone would probably be enough to identify the repeats. To further

explore the degree to which listeners processed the speech streams semantically, 15 multiple-choice

comprehension questions addressing all three streams were provided at the end of the study.

We used double iterative bootstrapping to estimate the 95% CI for the difference between the percentage

of correctly answered questions and the previously determined empirical chance level of 40% (N = 9

different participants only answering the questions without exposure to the full audio books; see STAR

Methods). By design, we were not able to differentiate between percentages of correctly answered ques-

tions in the target and distractor streams, as these switched their roles on a trial-by-trial basis. For instance,

some questions required processing on a timescale that exceeded the trial length of 20s, which meant that

some parts of the respective audiobook content belonged to the target and others to the distractor.

Figure 5. Brain–behavior relation

(A) Standardized estimates (fixed effects, with SE) for the prediction of binary response behavior (hit vs. miss) by speech

and repeat tracking for the target (green), neutral (gray), and distractor stream (orange).

(B) Colored dots and gray lines show single subject proportion correct scores; black dots and black line show the average

across (N = 19) subjects. For illustration, data were binned by stream/repeat tracking and normalization was done by

subtracting the mean of single subject data across all bins from each corresponding subject data bin. Inset shows the

model prediction for each bin.
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Hence, we combined the correctly answered questions from the target and distractor streams (50 G 2%,

mean G SEM, range: 30–67%).

This average response accuracy was significantly better than the empirical chance level (CI: 4.6–14.2% above

chance). The percentage of correctly answered questions of the neutral audio stream was closer to chance

(48G 3%, meanG SEM, range: 27–80%), but there remained a significant if slim difference against the empir-

ical chance level (CI: 0.9–14.6% above chance). The percentages of correctly answered questions did not differ

systematically for the target/distractor stream versus the neutral stream (CI: –3 – 6.3%).

Control analysis II: Condition-to-location assignment does not confound interference by

distracting speech and sub-processes of attention

In a further control analysis, we considered the possibility that the spatial condition-to-location assignment

could have an indirect effect on our behavioral and neural measures. Between subjects, we varied the po-

sition of the neutral sound stream (neutral: front/left/right). The different positions of the neutral stream

lead to a different assignment of the target and distractor streams. The spatial separation between the

target and distractor streams was 90� when neutral was presented at 0� and 45� when neutral was presented
at 45� or�45�. To control for the different spatial condition-to-location assignments, we included the factor

condition-to-location assignment as a covariate in our behavioral and neural analysis.

In our behavioral analysis, we observed a significant main effect of the factor condition-to-location assign-

ment (F = 4.47; df = 15; p = 0.03). This effect is mostly driven by a significant difference between the con-

dition-to-location assignment: neutral front versus neutral right (t = 2.96; df = 15; p = 0.01). In other words,

participants correctly detected more repeats when the neutral stream was presented in the front than the

neutral stream presented on the left or right. There was no significant difference between neutral front

versus neutral left (t = 1.29; df = 15; p = 0.22) and neutral right versus neutral left (t = �1.71; df = 15; p =

0.11). Importantly; however, the difference in sensitivity was independent of the spatial position of the

neutral stream: There was no significant interaction between the factors attention and condition-to-loca-

tion assignment (F = 1.44; df = 15; p = 0.268).

In our neural analysis, the main effect for the factor condition-to-location assignment was not significant

(F = 0.328; df = 16; p = 0.725). Importantly, the differences in neural tracking were independent of the

spatial position of the neutral streams. There was no significant interaction between the factors attention

and condition-to-location assignment (F = 0.88; df = 32; p = 0.482). In sum, between-subject differences in

the spatial condition-to-location assignment did not confound our results.

Control analysis III: Unfolding of neural filters (TRFs) across trial duration

To account for the possibility that attentional processes such as enhancement, capture, and suppression

unfold on different time scales over the trial duration and might cancel each other out, we divided the

20-s trial into 4, non-overlapping windows of 5 s each and estimated TRFs separately for each window

(Figure 6). Cluster permutation tests revealed that target enhancement is sustained across trial duration.

Importantly, we found no significant clusters for the distractor-vs.-neutral contrast (i.e., no evidence for

Figure 6. TRFs across trial duration

TRF b-weights are estimated in four separate 5 s time windows across the trial duration (20s), representing early to late

attentional processing during the trial. TRF b-weights are averaged across subjects (N = 19) and channels of interest: Fz,

Cz, CPz, and Pz (solid lines). Shaded areas show the standard error for each time lag across subjects. Cluster permutation

test show significant clusters between target and neutral speech tracking in each time window (green bars). No significant

clusters for distractor versus neutral speech tracking are observed.
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capture or suppression). Also, a temporally more finely resolved analysis revealed no evidence for distrac-

tor capture or suppression. This analysis further supports our finding that target enhancement (i.e., atten-

tional gain) is the dominant mechanism that modulates the neural phase-locked response to competing

speech in a cocktail party scenario.

DISCUSSION

The present study aimed to test whether human auditory cortex enhances targets or suppresses distractors

when implementing selective attention to continuous speech. To do so, we here have proposed a new,

three-stream continuous-speech design with an embedded psychophysical task. The most important re-

sults can be summarized as follows:

First, the paradigm is feasible to delineate different sub-processes of auditory attention, separating a task-

relevant target speech stream better from potentially neutral speech than from distracting speech. This

finding proved robust under analyses controlling for stream location relative to the listener.

Second, the neural results suggest that attention is implemented through enhancement of the target

stream. This lack of neural differentiation of tracking a distracting vs. tracking a neutral stream speaks

against mechanisms of ‘‘active’’ or below-baseline neural suppression of distractors at the level of human

auditory cortex as measured with EEG.

Third, in line with an enhancing neural attention mechanism, the momentary neural tracking of the target

but not the neural tracking of other, competing streams can predict the momentary likelihood that a

listener detects events in this target stream.

Neural tracking of speech implements enhancement, not suppression

As in previous studies,11,12,16,19,36–38 we found the strongest neural tracking for the target stream, which was

mainly due to enhanced N1 and P2 components of the cortical response. Notably, this improved tracking

could be due to increased sensory gain, but it could also be due to more precise temporal fidelity of the

target stream, or both.39 Critically extending these previous findings by implementing a neutral, task-irrel-

evant ‘‘baseline stream’’ in a three-talker paradigm, we were able to assign these previous findings to two

sub-processes of selective attention: target enhancement and distractor suppression. We found a signifi-

cant difference in neural tracking between target and neutral streams but no significant difference between

distractor and neutral streams.

We found that participants erroneously detected more repeats in distractor versus neutral speech, which

indicates attentional capture on the behavioral level. Despite this signature of capture in behavior, we

found neither suppression nor capture in the neural speech tracking response. In the visual modality, it

was shown that capture and suppression go together. A distractor can capture attention, followed by sup-

pression thereafter.9 We have addressed this issue by analyzing different time windows along the trial.

However, we found no evidence for distractor capture or suppression, analyzing early and late time

windows separately. But that does not mean that suppression is not implemented on the cortical level in

general. For instance, modulation of alpha oscillatory power is a potential neural mechanism that might

implement distractor suppression in a scenario with competing auditory streams.40

Neural tracking of ignored speech is modulated by signal-to-noise ratio (SNR), hearing loss, and perceptual

demand. Fiedler et al.16 showed that SNR manipulations of ignored speech led to differential modulation

of ignored speech and the resulting neural tracking. Also, hearing loss differentially affected neural

tracking of attended versus ignored speech.31 Recently, it was found that neural tracking of distracting

speech in noisy auditory scenes depends on perceptual demand.41 Here following a rationale established

before in visual neuroscience,6 we manipulated the attentional fate of ignored speech by varying listener’s

need to minimize or eliminate interference generated by the (previously task-relevant) distractors.

There is plenty of experimental evidence suggesting that selective attention is mainly enhancing the neural

SNR, thus effectively clearing or sharpening target representations in the visual and auditory

domain.1,20,22,42–46 In line with these findings, we show that the prioritization of the neural representation

of the target auditory input is mainly implemented by an enhancement of the target. In this respect, our

results are also notably in line with a recent visual EEG study on attentional suppression by Gundlach
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et al.4 Also, another recent study investigated whether exogenous attention led to facilitation of attended

information, suppressed unattended information, or both.47 Both studies found that attention rather oper-

ates on target enhancement than distractor suppression.

Generally, our study adds to the unsettled debate in attention research over neural implementations

of suppression. Even before the present study, evidence in the literature for distractor suppression

has been mixed, with some studies speaking to1,6,40,48 and others speaking against distractor

suppression.4,47,49

Classical theories of attention permit some form of distractor suppression,50,51 and there might well be

distinct types of distractor suppression as endpoints to a continuum. Also, from a neurocognitive vantage

point, distractor suppression does not need to be one single process and could be rather implemented via

multiple neural mechanisms.

Firstly, suppression could be driven by the current intention of the observer extracting statistical regular-

ities of certain features, such as location of a distractor over time, enabling the brain to learn to produce

suppression.5,29 In the long term (duration of the experiment), participants could learn based on statistical

regularities the location (same location of distractor stream), and the voice of the talker (same voice). Sec-

ondly, in the short term (every trial), participants are cued (current intention) to attend to one stream and to

suppress the distractor (negative priming). In principle, our paradigmmight initialize both of these types of

distractor suppression. While it is debatable whether the effect of our negative priming manipulation per-

sists over the whole trial duration (probably decreasing over time), learning and using statistical regularities

of the distractor over time should persist in the long term of the experiment. However, we found no signif-

icantly suppressed neural tracking of the distractor vs. neutral stream, which suggests that the neural

speech tracking response does not implement distractor suppression. Contrary to our hypothesis, results

hinted rather at a potentially stronger tracking of the distractor compared to the neutral stream although

this was not a statistically robust observation in the present data. For future studies, it is nevertheless impor-

tant to consider such an attentional capture of the distractor stream.52 In addition, participants could also

have left some residual attention to the distractor stream in terms of divided attention between the

currently relevant target stream and the previously relevant distractor stream, which led to the potentially

stronger tracking of the distractor compared to the neutral stream.53 However, given the high hit rate for

the target and the comparably low false alarm rate for the distractor stream, it appears rather unlikely that

participants used divided attention as a strategy at least over the entire trial duration.

Secondly, distractor suppression can be generally divided into proactive (processing before the distractor

appears) and reactive suppression (processing after the distractor has captured attention).40,54 The

amplitude of neural alpha oscillations (�10 Hz) related to top-down selective attention processes can be

modulated by target- and distractor-processing. Wöstmann et al.40 found that alpha power during the

anticipation of competing tone sequences implements distractor suppression independent of target

enhancement. In a behavioral study, it was shown that the intelligibility of the target is improved when

the masker is a familiar voice.55 Their findings suggest that the brain uses a prior model of the character-

istics of the distractor to actively suppress the distractor. In sum, the aforemetioned results speak to a pro-

active implementation of distractor suppression. But neural tracking is characterized by the time-lagged

neural responses which phase-lock to the stimulus. Due to this characteristic, neural tacking is rather suited

to investigate reactive suppression than proactive suppression. With respect to these distinguishable

sub-processes of distractor suppression, our results indicate that at least reactive suppression is absent

for auditory cortex responses in a multi-talker situation.

Auditory attention exploits statistical regularities to separate distracting versus neutral

speech

When considering how distracting versus neutral, task-irrelevant speech might be encoded neurally, a pre-

vious auditory study using also three streams had suggested that higher-order auditory areas provide an

object-based representation for the foreground, but the background remains unsegregated.21 At first

glance, our results are broadly in line with this conclusion, but note that Puvvada and Simon had not applied

any differential task manipulation to the two background speech streams, which we aimed to achieve here.

The here proposed experimental paradigm aimed to strike important compromises in studying the lis-

tener’s neurocognitive ability to separate target, distractor, and neutral speech.
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In contrast to trial-based designs, continuous speech paradigms often lack rich behavioral data. Usually,

comprehension questions regarding the content of the audio streams are asked to differentiate between

attended and ignored audio streams.16,56 Asking comprehension questions have some drawbacks.

Comprehension questions usually refer to a comparable long-time range. This limits the number of ques-

tions and thus the number of behavioral data that can be extracted from the experiment. Further, in our

paradigm participants had to switch their attention every 20s between two audio streams, which did not

allow us to strictly assign the question to attended or ignored parts of the audio streams. Hence, it was

insufficient solely to ask comprehension questions to investigate the listener’s cognitive ability to separate

target, distractor, and neutral speech on the behavioral level. More fine-grained behavioral data were

needed ideally without losing much of the ecological validity of natural speech.

We used short repeats in the audio streams to obtain rich behavioral data. In trial-based designs, partici-

pants are asked much more frequently to respond, which also ensures a steady engagement into the

listening task. Baldauf et al.34 also embedded short repeats in auditory objects, arguing that such a detec-

tion task requires the processing of the acoustic stream at the level of auditory objects. Such a repeat

detection task might thus be particularly suited to study object-based mechanisms of selective attention.

Adopting this approach here, we found that participants detected much more repeats in the target (hits)

than the neutral and ignored stream (false alarms).

Recall that, in our paradigm, participants had to switch attention between the same two streams while they

had to ignore the never-task relevant neutral stream. Importantly, we found a significantly larger behavioral

interference by distractor speech than by neutral speech, but what is the underlying mechanism? Our

results suggest that the neural fate of a stream on the previous trial has the potency to make it more dis-

tracting and captures attention on the text trial. This corresponds with the concept of negative priming.

Negative priming refers to the effect that the reaction to a stimulus that was previously ignored is more er-

ror-prone and slower.25 Classical negative priming designs consist of two main components: prime (trial N)

and probe (trial N+1). The prime presents a certain stimulus (or stimulus feature) as a distractor, which be-

comes the target in the probe trial. Negative priming has been studied in vision in a detailed manner.57,58

Although there are fewer studies that investigated negative priming in auditory selective attention, they

reported similar results.26 Nowadays most researchers agree that auditory negative priming (similar in

vision) is explained by inhibition and retrieval theories.26 Longer response times and higher error rates

are typically observed relative to a no priming condition.59–61 Notably, we did not present the same seg-

ments of the audio streams on two consecutive trials. Participants had to attend and ignore different seg-

ments of the audio streams in each trial, due to the ongoing structure of continuous speech. We assume

that it was rather the spatial location or/and the voice that was associated with negative priming and leaked

into the present trial, than the identity of the auditory stimulus. On the one hand, if a listener attended to a

specific feature of an auditory object, not only this specific feature is enhanced, but all features related to

the selected object.62 On the other hand, one could argue that this also holds for features concerning

negative priming and object suppression.

A more recent study varied randomly the location of the target and distractor and the speaker.63 They

demonstrated negative priming in auditory selective attention switching with the spoken material. In

sum, our new paradigm has proven feasible to utilize the negative priming phenomenon to unravel lis-

teners’ separation of distractor speech versus neutral speech.

Neural tracking of target but not distractor explains performance

Continuous speech paradigms often lack rich behavioral data. But only if we unravel the precise relation-

ship between brain and behavior can we reach a veridical understanding of cognitive processes, such as

selective attention.64 We embedded short repeats into the speech streams which served as a trial-by-trial

measure for behavior. In addition, this also enabled us to predict behavior from neural responses on a sin-

gle-trial level. We found that neural tracking of the target stream only predicted trial-by-trial variation in

repeat detection. Our results not only provide support to the functional relevance of neural speech

tracking,65 but significantly expand this by providing an explanation for the underlying sub-processes of

auditory selective attention, that is, enhancement of the target and not suppression of distractors predicts

performance. In addition, this finding supports the feasibility of our new continuous speech paradigm

since, we found a significant relation between the neural tracking of continuous speech and the repeat
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detection behavior. Further, the finding supports our previous findings since only target enhancement pre-

dicts behavior. Indicating that the prominent process of selective attention is target enhancement rather

than distractor suppression.

Limitations of the study

There are limitations regarding the operationalization of the neutral and distractor streams. First, the atten-

tional manipulation by their respective task-relevance6 of the distractor stream might not lead to an inter-

ference strong enough that distractor suppression was useful. Thus, it is possible that negative priming in

combination with the spatial and/or spectral separation of the audio streams was insufficient to activate the

need of distractor suppression in our study. Future studies could address this by varying for instance the

separation between the audio streams.41 The task may become more difficult with smaller spatial separa-

tion, which potentially activates distractor suppression.

Second, terminology can sometimes lead to conflicting theoretical inferences, as discussed recently.66 In

the context of theory-driven versus methodologically based terms, the term ‘‘neutral’’ initially falls under

the former category, as it makes some assumptions about participants’ cognitive or internal processing.

At first glance, one might expect a neutral stimulus to be one that does not elicit a natural response. For

example, in studies on emotion regulation, participants may be shown neutral images, such as pictures

of objects or landscapes, to serve as a baseline for comparison with emotionally arousing stimuli.67 In

studies on decision-making, the term ‘‘neutral’’ is used by reinforcement learning theorists to describe re-

sponses from the environment that neither increase nor decrease the probability of a behavior being

repeated.68 However, in our case, we use the term ‘‘neutral’’ in close analogy to Seidl et al.,6 who measured

brain activity in response to photographs containing objects from a task-relevant (target) category, a task-

irrelevant (distractor) category, and a never task-relevant (neutral) category. Here, the term ‘‘neutral’’ can be

considered as a placeholder for the task-irrelevant category, and it belongs to the group of methodolog-

ically based terms. However, the term ‘‘neutral’’ plays a special role here, as it refers not only to the never-

task-relevant stream but is also used as a control or baseline to separate target enhancement and distractor

suppression. In the context of auditory scenes, the neutral stream can be also conceived as a weaker dis-

tractor rather than a non-distractor. Thus, the neutral stream is not neutral in the strongest sense since, like

the distractor stream, it is associated with the attentional background, as it must be ignored by the

listener.21 Therefore, the neutral stream is more similar to the distractor stream than the target stream.

In sum, there are multiple definitions of the term neutral. We used the term neutral to describe the task-

irrelevant condition and as a baseline to measure target enhancement and distractor suppression. Since

even a task-relevant speaker in the cocktail party is not neutral in the strongest sense, future studies are

needed to investigate this in more detail. For instance, one could find more neutral, less distractor-like

sound objects, such as broadband noise, but this would of course come at the price of losing some spec-

ificity in the condition comparisons being performed.

In addition, our sample size (N = 19) could have been too small to detect small distractor suppression ef-

fects. Note; however, that any such distractor-suppression effect size would need to be put in perspective

to the considerable effect sizes of target enhancement we observed. So, the relative conclusion about

target enhancement vs. distractor suppression would remain. Thus, the conclusion stands that target

enhancement is the behaviorally and neurally more prominent sub-process of selective attention in a

continuous speech paradigm.

Conclusion

In attention research, previous paradigms have rarely aimed at conclusively separating mechanisms of distrac-

tor suppression from mechanisms of target enhancement. Using a new, psychophysically augmented contin-

uous-speech paradigm with three speech streams, our results demonstrate that the neural tracking of contin-

uous speech reflects target enhancement, not distractor suppression. These findings call for a refinement of

current models about enhanced neural responses to speech and should account for specific sub-processes

of selective attention, that is, the enhancement of targets rather than the suppression of distraction.
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13. Wöstmann, M., Fiedler, L., and Obleser, J.
(2017). Tracking the signal, cracking the code:
speech and speech comprehension in
non-invasive human electrophysiology. Lang.
Cogn. Neurosci. 32, 855–869. https://doi.org/
10.1080/23273798.2016.1262051.

ll
OPEN ACCESS

iScience 26, 106849, June 16, 2023 13

iScience
Article

http://refhub.elsevier.com/S2589-0042(23)00926-4/sref1
http://refhub.elsevier.com/S2589-0042(23)00926-4/sref1
http://refhub.elsevier.com/S2589-0042(23)00926-4/sref1
https://doi.org/10.1111/ejn.15309
https://doi.org/10.1111/nyas.14304
https://doi.org/10.1111/nyas.14304
https://doi.org/10.1093/cercor/bhab351
https://doi.org/10.1093/cercor/bhab351
https://doi.org/10.1016/j.pneurobio.2022.102269.&tnqh_x202c;&tnqh_x202c;&tnqh_x202c;&tnqh_x202c;
https://doi.org/10.1016/j.pneurobio.2022.102269.&tnqh_x202c;&tnqh_x202c;&tnqh_x202c;&tnqh_x202c;
https://doi.org/10.1523/JNEUROSCI.1693-12.2012
https://doi.org/10.1523/JNEUROSCI.1693-12.2012
https://doi.org/10.1002/ejsp.1882
https://doi.org/10.1002/ejsp.1882
https://doi.org/10.1037/0096-1523.30.1.180
https://doi.org/10.1037/0096-1523.30.1.180
https://doi.org/10.1016/j.tics.2017.11.001
https://doi.org/10.1016/j.tics.2017.11.001
http://refhub.elsevier.com/S2589-0042(23)00926-4/sref10
http://refhub.elsevier.com/S2589-0042(23)00926-4/sref10
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.1111/j.1460-9568.2009.07055.x
https://doi.org/10.1111/j.1460-9568.2009.07055.x
https://doi.org/10.1080/23273798.2016.1262051
https://doi.org/10.1080/23273798.2016.1262051


14. Luo, H., and Poeppel, D. (2007). Phase
patterns of neuronal responses reliably
discriminate speech in human auditory
cortex. Neuron 54, 1001–1010. https://doi.
org/10.1016/j.neuron.2007.06.004.

15. Crosse, M.J., Di Liberto, G.M., Bednar, A.,
and Lalor, E.C. (2016). The multivariate
temporal response function (mTRF) toolbox:
a MATLAB toolbox for relating neural signals
to continuous stimuli. Front. Hum. Neurosci.
10, 604.
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31. Petersen, E.B., Wöstmann, M., Obleser, J.,
and Lunner, T. (2017). Neural tracking of
attended versus ignored speech is
differentially affected by hearing loss.
J. Neurophysiol. 117, 18–27. https://doi.org/
10.1152/jn.00527.2016.

32. Vanthornhout, J., Decruy, L., and Francart, T.
(2019). Effect of task and attention on neural
tracking of speech. Front. Neurosci. 13, 977.

33. Hamilton, L.S., and Huth, A.G. (2020). The
revolution will not be controlled: natural
stimuli in speech neuroscience. Lang. Cogn.
Neurosci. 35, 573–582. https://doi.org/10.
1080/23273798.2018.1499946.

34. Marinato, G., and Baldauf, D. (2019). Object-
based attention in complex, naturalistic
auditory streams. Sci. Rep. 9, 2854. https://
doi.org/10.1038/s41598-019-39166-6.

35. Davis, M.H., and Johnsrude, I.S. (2003).
Hierarchical processing in spoken language
comprehension. J. Neurosci. 23, 3423–3431.
https://doi.org/10.1523/JNEUROSCI.23-08-
03423.2003.

36. Di Liberto, G.M., O’Sullivan, J.A., and Lalor,
E.C. (2015). Low-frequency cortical
entrainment to speech reflects phoneme-
level processing. Curr. Biol. 25, 2457–2465.
https://doi.org/10.1016/j.cub.2015.08.030.

37. Har-shai Yahav, P., and Zion Golumbic, E.
(2021). Linguistic processing of task-irrelevant
speech at a cocktail party. Elife 10, e65096.
https://doi.org/10.7554/eLife.65096.

38. Kraus, F., Tune, S., Ruhe, A., Obleser, J., and
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Nineteen young adults (12 female, 7 male), aged between 18 and 27 years (Ø 21.9) participated in the

present study. All participants had German as their mother tongue and reported normal hearing and no

histories of neurological disorders. We did not explicitly ask for race or ancestry, but the sample was drawn

from a broadly Caucasian student population. To verify normal hearing, we measured pure tone audiom-

etry within a range of 125 to 8,000 Hz. All participants showed auditory thresholds below 20 dB for the

tested frequencies. They gave written informed consent and received compensation of 10 V/hour. The

study was approved by the local ethics committee of the University of Lübeck.

METHOD DETAILS

Stimulus materials and spatial cue

We presented three different narrated book texts as audio, spoken by different male, professional talkers

(‘‘Michael Kohlhaas’’ by Heinrich von Kleist, ‘‘Pole Poppenspäler’’ by Theodor Storm, and ‘‘Das Wrack’’ by

Friedrich Gerstäcker). We chose audio streams that were fictional instead of fact-based, to minimise the

impact of variations in prior knowledge on a topic and a resulting possible bias to one of the audio streams.

All three audio streams overlapped in time, at an SPL (mixture) of about 65 dB(A), which matches normal

conversation levels.

The following processing steps of the stimuli were done using custom written code in MATLAB (Version

2018a Mathworks Inc., Natick, MA, United States). The sound files were sampled with 44.1 kHz and a
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16-bit resolution. The sound level was matched to the same long-term root-mean-square (rms) dB full scale

(dBFS) between the three audio streams. Silent periods were truncated to maximally last 500 ms.69

We embedded short repeats in the audio streams by pseudo-randomly selecting a 400-ms segment from

the original stream and repeating it directly thereafter.34 The first repeat was presented at least two sec-

onds after stimulus onset. Each repeat was included in the sound stream by a linear ramping and cross-

fading. The linear ramping was done by using a window of 220 samples (5 ms) of the end of the to be

repeated part (down ramp) and by using the first 220 samples (5 ms) of the repeat itself (up ramp). The

cross-fading was done by adding the down and up ramp together.

The onset time of each repeat was drawn randomly to avoid predictability of the repeat. To avoid that re-

peats occurring in the different streams overlap in time, the distance between two repeat onsets was at

least 2 seconds.

We further used a rms (root mean square) criterion (the rms of the repeat had to be at least the same as the

rms of the stream from which the repeat was drawn) to avoid undetectable repeats of low sound intensi-

ty.The cue was presented at the center of the screen (resolution: 1920x1080, Portable HDMI Screen, Wi-

maxit) in front of the participant (distance: 1 m). The cue (Figure 1A) consisted of three sub-triangles that

had a size of 1.3� and pointed to the three sound sources (front, left, and right). The background of the

screen (RGB: 127, 127, 127), the cued sub-triangle (RGB: 204, 204, 204), and the not cued triangles (RGB:

115, 115, 115) were kept in different shades of gray to keep the contrast low. The bright triangle indicates

the to-be-attended position. Since the cue and the fixation cross were presented at the same time as the

auditory stimuli, we ensured that the possible interference between visual and auditory neural responses

was as small as possible. To this end, the change between the fixation cross and cue was made smooth by

linearly fading in and fading out (50 ms each) the cue.

Experimental setup

The experiment took place in a laboratory space with eight loudspeakers (Genelec: Speaker 8020D,

Denmark) arranged in a circle with a radius of one meter. The loudspeakers were spaced at 45 degrees.

A chair was placed in the middle of the radial speaker array, face-aligned to the loudspeaker at position

0�. The three audio streams were presented over the three frontmost loudspeakers (-45�, 0�, and 45� in

the azimuth plane, elevation was not adjusted for participants’ height, ground-to-loudspeaker distance:

1,20 m, the five remaining speakers were not used in the present experiment). In advance, participants

were briefed about the experiment. Importantly, they were not briefed about the condition-to-location

assignment of the streams. Each participant was asked to keep their eyes open, focus on the center of

the screen, and sit as relaxed as possible. To avoid head motion, a chin rest was used. The height of the

chin rest was adjusted for each participant.

Experimental procedure

We created a new experimental paradigm to investigate the underlying neural mechanism of selective

attention (Figure 1). The experiment was designed using MATLAB (Version 2018a Mathworks Inc., Natick,

MA, United States) and Psychophysics Toolbox extensions.70–72 Participants were presented with three

concurrent audio streams. Each trial had a total duration of 20s and started with a cue. The cue indicated

which location to attend. The cue was presented for 500ms. After the cue, a fixation cross was presented for

the remaining trial duration (19.5 s). However, the auditory stimuli were presented simultaneously with the

cue and the fixation cross resulting in a continuous playback of the auditory stimuli without any breaks

between trials. Hence, the next trial started instantly after the trial before.

Each participant had to switch their attentional focus between the same two streams and locations. The

stream at the cued location was defined as target, the stream cued in the previous trial was defined as dis-

tractor. Crucially, this left one, never task-relevant stream and location for each participant, here defined as

neutral. Between participants, we implemented three condition-to-location assignments to avoid any

confound with the position of the neutral stream (neutral front (0�), neutral left (-45�) and neutral right

(45�). We aggregated across the three condition-to-location assignments to obtain our measures of inter-

est, i.e., neutral tracking of target, neutral and distractor. As the position of the neutral stream, the different

audio streams were almost balanced between the 19 participants (neutral front: n=7; neutral right n= 6;

neutral left n= 6).
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Participants had to detect short repeats in the target stream. Each trial contained 6 repeats, which were

randomly partitioned in the three streams (for procedure details see section: stimulus materials and spatial

cue) Before data collection, participants were familiarized with the experiment. During instruction, it was

emphasized to respond as fast and accurately as possible to a repeat in the target stream, but also to listen

to the content of the target stream. To familiarize participants with the repeats, we presented them a single

sentence with one repeat included. They had to give oral feedback if they were able to detect the repeat.

Further, we presented them with 6 training trials corresponding to the main experiment but using different

audio streams. The main experiment consisted of 180 trials divided in 4 blocks, resulting in a total duration

of 60 min. After each block, participants were able to take a rest. The total number of repeats was 360 per

stream across the experiment.

We asked participants 15 multiple choice questions (with four possible answers, each) about the content of

each audio stream at the end of the experiment. To avoid participants attending to the to-be-ignored

audio stream, we did not ask the questions after every block. The order of the questions and the possible

answers were randomized between participants.

Data acquisition and pre-processing

EEG was recorded using a 24 electrodes EEG-cap (Easycap, Herrsching, Germany; Ag–AgCl electrodes

placed according to the 10-20 International System) connected to a SMARTING amp (mBrainTrain,

Belgrade, Serbia). This is a mobile EEG system, which transfers the signal via Bluetooth to a recording com-

puter.73,74 EEG activity was recorded with the software Smarting Streamer (mBrainTrain, version: 3.4.2) at a

sample rate of 500 Hz. During recording, electrode FCz served as online reference and impedances were

kept below 20 kU. No data loss was reported during the sessions.

Offline, EEG preprocessing was done using MATLAB (Version 2018a Mathworks Inc., Natick, MA, United

States), built-in functions, custom-written code, and the Fieldtrip-toolbox.75 EEG-data were re-referenced

to the average of the electrodes M1 and M2 (left and right mastoids) and high- and low-pass filtered be-

tween 1 and 100 Hz (two-pass Hamming window, FIR). An independent component analysis (ICA) was

computed on each participants’ EEG data. M1 andM2 were removed before ICA. ICA components related

to eye blinks, eye movement, muscle noise, channel noise and line noise were identified by visual inspec-

tion and removed. On average, 8.37 of 22 (SD = 3.13) components were rejected. Components not asso-

ciated with artifacts were back projected to the data. Clean EEG data were further processed. Hence, EEG

data were low-pass filtered again at 10 Hz (two-pass Hamming window, FIR). Afterwards, EEG data were

resampled to 125 Hz and segmented into epochs corresponding to the trial length of 20s.

Extraction of the speech envelope

The temporal fluctuations of speech were quantified by computing the onset envelope of each audio

stream.76 First, we computed an auditory spectrogram (128 sub-band envelopes logarithmically spaced

between 90-4000 Hz) using the NSL toolbox.77 Second, the auditory spectrogram was summed up across

frequencies resulting in a broadband temporal envelope. Third, the onset envelope was obtained by

computing the first derivative of this envelope and zeroing negative values to obtain the half-wave rectified

first derivative. Finally, the onset envelope was down sampled to match the target sampling rate of the EEG

analysis (125 Hz). Compared to the envelope, using the onset envelope shifts the envelope in time. Impor-

tantly, the TRF obtained by using the onset envelope as a regressor has the most similarity to a classical

ERP.76

Temporal response functions (TRFs)

The deconvolution kernel or impulse response, which describes the linear mapping between an ongoing

stimulus to an ongoing neural response, is called the temporal response function (TRF). We used a multiple

linear regression approach to compute the TRF.15 More precisely, we trained a forward model using the

onset envelopes16 of the target, distractor, and neutral speech to predict the recorded EEG response. In

this framework, we analysed time lags between –100 and +500 ms between envelope changes and brain

response.

To account for the EEG variance attributable to the detection and processing of the behaviourally relevant

repeats and corresponding evoked brain responses, we also included all onsets of the repeats in the three

streams and the button press in the model as nuisance regressors, represented by stick functions. The
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onsets of the repeats are independent of the speech envelope regressors by design, since these were

almost randomly (constraint of SNR threshold) added into the speech streams.

To prevent ill-posed problems and overfitting, we used ridge regression to estimate the TRF.15 Lambda (l)

is the ridge parameter for regularization. We estimated the optimal ridge parameter that optimized the

mapping between stimulus and response by leave-one-out cross-validation for each participant. First,

the stimuli are segmented in M-trials and different ridge values (l = 20,21, .220) are predefined. In this

approach, a separate model for each l is calculated. Second, the trials are mixed, and each time one trial

is left out. This trial is used as a test set, while the M-1 trials are used as a training set. Then, the models are

averaged over the trials and convolved with the data from the matching test set to predict the neural

response. This is done for every predefined l. Computing the MSE between the predicted estimate

and the original data provides a validation metric that enables to select the l with the lowest MSE. We

used the ridge value with the lowest MSE (specific for each subject) for the TRFmodel that jointly contained

the target, distractor, and neutral onset envelopes as regressors.

TRFs were estimated based on the trials in the experiment. Participants had to switch their attention trial-

wise between two of the streams. Hence, the trials enable the assignment of target, distractor, and neutral

onset envelopes. The time window in which the stimulus and response are cut to estimate the TRF is

referred to as a "trial." To avoid any conflicts with the cue, the first second of each trial was cut off in the

EEG signal and the envelope onsets. One model was trained on 180 trials, incorporating multiple predictor

variables: the onset envelope for target, distractor, and neutral streams; and the stick functions for the re-

peats and button presses. Resulting in a single TRF for each predictor variable that predicts a separable

response component. Similar to the TRF approach, we estimated TRFs for the embedded repeats, but

wemodelled repeats as a stick function based on the repeat onset. Importantly, TRFs for the three streams,

TRFs for repeats in the three streams, and button presses were estimated in the same model with the same

regularization.

Neural tracking

Neural tracking quantifies how strongly a single stream is represented in the EEG signal. TRFs were used to

predict the EEG response. The neural tracking (r) was calculated by correlating the predicted andmeasured

EEG responses using Pearson correlation.We predicted the EEG signal on single trials using the leave-one-

out cross-validation approach (see above). The r-values that resulted were averaged across trials and par-

ticipants. We obtained the neural tracking accuracy over TRF time lags by using a sliding-time window of

time lags (size: 48 ms, 6 samples) with an overlap of 24 ms (3 samples) for the prediction.16,38,69,78 For every

window position, the neural tracking was calculated, resulting in a time-resolved neural tracking. We used

the term "stream tracking" which refers to the neural tracking of the envelope onsets, and "repeat

tracking," which refers to the neural tracking of the repeat onsets. To obtain the repeat tracking, we

used the same pipeline as for the speech tracking procedure (see above), with the exception that we esti-

mated neural tracking based on the onsets of repeats (instead of the speech onset envelope), which we

modelled as stick functions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioural data analysis

We evaluated participants’ behavioural performance in two ways. We analysed the proportion of detected

repeats and, as a control, the proportion of correctly answered content questions.

We analyzed the detection of repeats in terms of signal detection theory. Button presses to repeats in a

time window (150-1500 ms) after repeat onset were considered in this analysis. A button press following

a repeat in the target stream was assigned as hit. Button presses following repeats in the distractor stream

and in the neutral stream were assigned as separate types of false alarms. To differentiate between false

alarms to repeats in the neutral versus distractor stream, we calculated sensitivity (d’) between hit rate

and false alarms to distractor repeats [d’target vs distractor = z(hit rate) – z(false alarm rate distractor)] and

hit rate and false alarms to neutral repeats [d’ target vs neutral = z(hit rate) – z(false alarm rate neutral)]. For

this signal-detection analysis of repeats, we excluded one participant who did not respond to any repeats

in the distractor stream.
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A challenge in creating multiple-choice comprehension questions is to provide multiple (here: four)

response options that cannot be solved based on prior knowledge or the possibility of excluding some

of the response options. Hence, participants’ actual guess ratemight be considerably higher than the theo-

retical chance level of 25 %. Thus, in a pilot experiment, we presented the multiple-choice comprehension

questions to N=9 different participants who had not listened to the audio streams at all. This resulted in a

new, ‘empirical’ chance level of 40 % (G 3.9 % S.E.M). In the following, we tested the proportion of correctly

answered questions in the main experiment against this empirical chance level.

Neural data analysis

A study16 investigated the attentional effects of neural tracking in a comparable continuous speech para-

digm by recording the EEG of N = 18 participants. It is reasonable to expect that similar effect sizes will be

observed in a replication of auditory attention effects with the same sample size. The present study is sup-

posed to detect neural tracking effects with at least medium to large effect sizes (Cohen’s d R 0.7) and a

power of 80 % (two-sided, within-subject tests, Alpha = 0.05) for N = 18 subjects.

We also used different statistical procedures to answer different questions. To answer the main research

question (outlined in Figure 1B), we used generalized mixed models (jamovi 1.6, R 4.0). This approach

enables us to include and jointly model factors that potentially influence behaviour and the neural

response. These included at least the factor condition-to-location assignment (neutral front, left, or right)

and the subject as a random intercept to account for between-participant variability.To determine statis-

tically significant differences in behavioural sensitivity (outcome measure), we included target versus dis-

tractor and target versus neutral as categorical predictors in the model.

To determine statistically significant differences in neural tracking (outcome measure), we included the

target, neutral, and distractor streams as categorical predictors in the model. In both models, we included

the factor condition-to-location assignment as a covariate and the random intercept (subject ID) into the

model. Bayesian t-tests were calculated to obtain Bayes factors to quantify evidence for the null hypothesis.

(JASP Team, 2022).

For quantifying the brain-behaviour relations, we used a generalized linear mixed-effects model (repeat

detected or not; binomial distribution, with logit link function), since we predicted a binary outcome.

The predicted outcome variable was the binary response to the detection of a single repeat in the target

stream (Hit = 1; Miss = 0). We included the encoding accuracies for the target, neutral, and distractor

streams as continuous, z-scored, fixed-effects predictors in our model. We assigned repeat tracking

(trial-based) to each repeat within a trial. To again control for potential confounding between stream

tracking and repeats, we also included repeat tracking similar to stream tracking in our model. Beside

the factors condition-to-location assignment and subject as random intercepts, we also included the

number of repeats during the total experiment and the number of repeats within a trial, as well as the trial

number as a random intercept, into the model.

Statistical analysis on time series

We were looking for time points in time-resolved neural tracking that might differ between subjects (target

enhancement: neutral vs. target, and active suppression: neutral vs. distractor). To answer this question, we

used an established two-level statistical analysis, more specifically a cluster permutation test implemented

in Fieldtrip.75 Data from 22 channels was used in this analysis. As a test statistic at the single-subject level,

we used one sample t-tests to test the time-resolved neural tracking to the target, neutral, and distractor as

well as the neutral-target, neutral-distractor, and target-distractor difference against zero. At the group

level, clusters were defined by the resulting t-values and a threshold that was set to t-values that corre-

sponded to p < 0.05 for at least three neighboring electrodes. Each observed cluster is compared to

5000 clusters with a permutation distribution. The permutation distribution was generated by randomly as-

signing the time-resolved neural tracking data to conditions. The Monte Carlo method was used to correct

for multiple comparisons. The relative number of Monte Carlo iterations in which the summed t-statistic of

the observed cluster is exceeded is indicated by the cluster p-value.79
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