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Characterizing Exposure–Response 
Relationship for Therapeutic Monoclonal 
Antibodies in Immuno-Oncology and Beyond: 
Challenges, Perspectives, and Prospects
Haiqing Isaac Dai1,*,† , Yulia Vugmeyster1,† and Naveen Mangal1

Recent data from immuno-oncology clinical studies have shown the exposure–response (E–R) relationship for 
therapeutic monoclonal antibodies (mAbs) was often confounded by various factors due to the complex interplay 
of patient characteristics, disease, drug exposure, clearance, and treatment response and presented challenges in 
characterization and interpretation of E–R analysis. To tackle the challenges, exposure relationships for therapeutic 
mAbs in immuno-oncology and oncology are reviewed, and a general framework for an integrative understanding 
of E–R relationship is proposed. In this framework, baseline factors, drug exposure, and treatment response are 
envisioned to form an interconnected triangle, driving the E–R relationship and underlying three components that 
compose the apparent relationship: exposure-driven E–R, baseline-driven E–R, and response-driven E–R. Various 
strategies in data analysis and study design to decouple those components and mitigate the confounding effect 
are reviewed for their merits and limitations, and a potential roadmap for selection of these strategies is proposed. 
Specifically, exposure metrics based on a single-dose pharmacokinetic model can be used to mitigate response-
driven E–R, while multivariable analysis and/or case control analysis of data obtained from multiple dose levels in a 
randomized study may be used to account for the baseline-driven E–R. In this context, the importance of collecting 
data from multiple dose levels, the role of prognostic factors and predictive factors, the potential utility of clearance 
at baseline and its change over time, and future directions are discussed.

Analysis of the exposure response (E–R) relationship has long 
been an important tool for dose selection and optimization and 
regulatory decisions during all stages of drug development.1–3 In 
general, it is assumed that the E–R relationship is driven by the 
exposure and, therefore, a positive E–R correlation suggests that a 
higher exposure at a higher dose would lead to a better response. 
However, several recent reports from clinical studies with thera-
peutic monoclonal antibodies (mAbs) in oncology or immuno- 
oncology field have shown that this is not always true.4–9

An apparent E–R relationship for efficacy was observed for many 
therapeutic mAbs at the approved dose or at the dose studied in 
late-stage clinical development, including program cell death pro-
tein 1 (PD1) or program death-ligand 1 (PDL1) inhibitors, such 
as atezolizumab,10 avelumab,11,12 nivolumab,7 and pembrolizumab,8 
cytotoxic T-lymphocyte associated protein 4 (CTLA4) inhibitors 
ipilimumab13 and tremelimumab,5 anti-vascular endothelial growth 
factor (VEGF) antibody ramucirumab,6 anti-MET antibody rilo-
tumumab,14,15 human epidermal growth factor receptor 2 (HER2) 
receptor inhibitor trastuzumab,16 anti-CD-20 antibody obinu-
tuzumab,17 and tumor necrosis factor (TNF)-alpha inhibitors 
infliximab.18 The apparent E–R relationship sometimes triggered 
further clinical studies at a higher dose, yet an improved efficacy at a 

higher dose has not always been confirmed. For example, a positive 
exposure–efficacy relationship with tremelimumab was observed 
at 15 mg/kg every 12 weeks,19 but a later study with a higher dose 
intensity (10 mg/kg every 4 weeks for 24 week followed by 10 mg/
kg every 12 weeks) failed to confirm a better efficacy.5,20 Similarly, 
for trastuzumab, a postmarketing study at a dose higher than the 
approved dose did not confirm a better response.21 There was also 
confusion in the literature on whether a higher dose of nivolumab 
should be considered due to an apparent E–R relationship.22–24

Thus, the apparent E–R relationship for these therapeutic mAbs 
is not always informative and sometimes can be misleading. The 
phenomenon is not well understood and has created challenges 
regarding the dose selection and optimization of these agents. 
Current literature has shed some light on interpretation of these 
exposure–efficacy relationships for anticancer therapeutic mAbs 
by highlighting the confounding effect of baseline disease factors, 
disease progression, and modification in the E–R relationship.25 
However, several important questions need to be further clarified. 
For example, how are the factors in apparent E–R relationship 
related to each other? What are the common characteristics of 
the baseline disease factors that confound the E–R relationship? 
Does the confounded E–R relationship have broader implications 
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beyond efficacy end points and oncology? What are the mathemat-
ical principles for such confounding effects? With these questions 
in mind, an extensive literature review was conducted focusing on 
the interplay of various factors involved in the E–R relationship. 
In addition, current and emerging strategies in characterizing the 
E–R relationship were reviewed and then integrated into a poten-
tial roadmap for practical use.

THE CONFOUNDED E–R RELATIONSHIP FOR THERAPEUTIC 
MABS
Table 1 summarizes the apparent E–R relationship for selected 
therapeutic mAbs. Most of them are in the area of immuno-on-
cology and oncology for a wide range of targets including PD1, 
PDL1, CTL4, HERs, VEGF, and CD20. An example of a thera-
peutic mAb in therapeutic areas outside of oncology (infliximab, 
an antibody against tumor necrosis factor-alpha) is also included. 
As evident from Table  1, apparent exposure–efficacy relation-
ships were observed for these therapeutic mAbs regardless of ef-
ficacy end points (tumor response, progression free survival, or 
overall survival) or exposure metrics (minimum concentration 
(Cmin) or area under the curve (AUC)).

Several baseline disease conditions, such as Eastern Cooperative 
Oncology Group (ECOG) status, number of metastatic sites, base-
line tumor burden, cancer-related cachexia, lactate dehydrogenase 
(LDH), albumin, etc., were found to be the confounding factors 
for the E–R relationship. Specifically, severity of disease condi-
tion at the baseline were shown to be negatively associated with 
efficacy response, leading to an apparent positive E–R efficacy 
slope.4,8,25 In addition, clearance (CL) was also a strong covariate 
for efficacy and a confounding factor for the E–R relationship. A 
strong correlation was observed between baseline CL and patient 
survival in oncology studies.4,5,7,8,23,26 Once CL was included as a 
covariate, the correlation between exposure and survival dimin-
ished. It appears that CL is closely related to the baseline disease 
condition, such as cancer-related cachexia.8,27 It is conjectured 
that the elevated inflammation and proteolytic activity in can-
cer-related cachexia is responsible for the high CL.27,28 Under 
this hypothesis, CL would be reduced, and exposure would be in-
creased after treatment and disease modification over time. In fact, 
a decrease in CL and increase in exposure over time was observed 
after chronic treatment with PD-1/PD-L1 inhibitors. For exam-
ple, nivolumab,29 pembrolizumab,30 avelumab,31 atezolizumab,10 
durvalumab,32 and cemiplimab33 have been shown to reduce CL 
after multiple dosing (approximate reduction of 15–30%) com-
pared with that at the first dose in some tumor types, per popula-
tion pharmacokinetic (PopPK) analysis. This change in CL over 
time is different from the time-dependent induction or inhibition 
observed with small-molecule drugs in that the latter is not caused 
by treatment response (i.e., disease progression or disease modifi-
cation) other than direct effect on the metabolic enzymes and has 
not been reported to have any effect on the E–R relationship. Of 
note, the presence of time-varying CL seems to depend on the type 
of disease or tumor. For example, time-varying CL was observed 
for atezolizumab with non-small cell lung cancer10 but not with 
urothelial carcinoma,34 and only pronounced in Merkel cell carci-
noma for avelumab among various tumor types examined so far.31

The presence of time-varying CL further complicates the inter-
pretation of the observed E–R relationship for therapeutic mAbs. 
Simulation showed that even a subtle change in CL over time may 
lead to a biased E–R relationship and make a true flat relationship 
appear to be steep.35 Clinical data showed that apparent E–R rela-
tionships for these drugs were more pronounced when late-stage 
exposure metrics were used compared with those with early-expo-
sure metrics. For example, nivolumab pharmacokinetic (PK) expo-
sure at steady state was significantly correlated with efficacy, while 
PK exposure at the 1st cycle (C1) was not.4,7,29,36,37 Similarly, in the 
case of durvalumab, there was a trend (albeit not significant) of 
positive correlation between the steady-state exposure and efficacy, 
but not between the early exposure metrics and efficacy.38 For ce-
miplimab,33 only the first cycle exposure was used for E–R efficacy 
analysis and showed no apparent E–R relationship, while E–R for 
steady-state exposure metrics was not reported presumably due to 
the concern of confounding effect. Of note, sometimes the con-
founding was not fully mitigated by using C1, which likely reflects 
the confounding by baseline factors.9

Other observations on E–R relationship of these therapeutic 
mAbs are also worth noting. The apparent E–R relationships were 
shown to be steeper with data from a single dose level compared 
with data from multiple dose levels, and with univariable analysis 
compared with multivariable analysis (as summarized in Table 1). 
The E–R relationship for some safety end points with several ther-
apeutic mAbs seems to have a negative trend,10–12,39 but the mech-
anism is not well understood or explained.

Clearly E–R relationships for therapeutic mAbs in immuno-on-
cology/oncology are complex and involve multiple factors and 
mechanisms. A framework that could integrate all the elements 
would be valuable for understanding the confounding effects on 
the E–R relationship and for selecting appropriate strategies to ad-
dress them. At a minimum, such a framework would have three 
major elements: exposure (E), response (R), and various baseline 
factors (B) related to patient characteristics and disease condition.

A FRAMEWORK FOR THE E–R RELATIONSHIP
Logically, like the relationship between any two variables, the 
E–R relationship can only be a consequence of three funda-
mental interactions: (i) E causes the change in R, with E being 
the independent variable and R as the dependent variable; (ii) 
vice versa; or (iii) a third factor(s), B in this case, affects both E 
and R, i.e., both E and R are dependent variables. Among these 
three interactions, only the first one is typically considered im-
portant and the E–R relationship has been traditionally viewed 
as a one-way relationship in which R is driven by E. The other 
two interactions were generally not appreciated until recently 
with the observation of complex E–R relationships of therapeu-
tic mAbs in immuno-oncology, and ignoring them has some-
times led to biased interpretation. Thus, all three interactions 
should be considered in interpreting the E–R relationship. In 
this context, it is envisioned that three elements, B, E, and R, 
form an interconnected triangle and contribute to the E–R re-
lationship from their respective angles (Figure 1a). Further, it 
is conceived that apparent E–R relationship can be dissected to 
three components based on the causes: exposure-driven E–R, 
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response-driven E–R, and baseline-driven E–R. Yet, the latter 
two components are often falsely perceived as being driven by 
exposure (Figure 1b), which is explained with algebraic equa-
tions (Box S1). Mechanistically, E and B would affect R first, 
and subsequently R would affect E as illustrated in Figure 1c.

Effect of E on R and on the E–R relationship
Exposure-driven E–R is the true E–R relationship that is dictated 
by dose/exposure and is the basis for dose selection and optimiza-
tion. The underlying mechanism of exposure-driven E–R is that 
drug binds the drug target, leading to downstream pharmacody-
namic (PD) changes, and efficacy/safety response (Figure 1c). In 
addition to dose, “purely” PK-related baseline factors (BPK), de-
fined as factors that affect PK parameters only (having no asso-
ciation with response), are expected to affect the exposure-driven 
E–R relationship.

Effect of B on both E and R, and on the E–R relationship
Baseline factors are a medley of various baseline factors like dis-
ease status, patient intrinsic characteristic, demographic factors, 
etc. Some are the aforementioned “purely” PK-related (B-PK); 
some are “purely” response-related factors that affect response 
only; and others are the “shared” ones between exposure and re-
sponse (B-shared). For mAbs in immuno-oncology/oncology, can-
cer-related cachexia is considered as one of the most important 
disease-related “shared” baseline factors that could confound 
the E–R relationship.27,28,40 When B-shared affects both E and R 

(Figure  1c), an indirect relationship between exposure and re-
sponse can be established as described in Box S1 and is called 
baseline-driven E–R.

B-shared affects exposure by influencing PK parameters such as 
CL. For several immuno-oncology therapeutic mAbs, baseline dis-
ease conditions are shown to be positively associated with baseline 
CL31,32,36,41 (Figure 1c, component 2a). B-shared also affects R, such 
as efficacy (disease modification or progression), safety, or PD re-
sponse. Interestingly, while most apparent E–R slopes for efficacy 
end points are positive, a negative E–R relationship was observed 
for some safety end points with several therapeutic mAbs, but 
the mechanism is not well understood.10–12,39 This phenomenon 
could be explained with the framework as such: Subjects with se-
vere disease condition often have a higher rate of safety events and 
in the meantime are associated with a lower exposure (via increas-
ing CL for therapeutic proteins). This opposing effects by baseline 
disease condition on E and R (safety in this case) would lead to a 
negative E–R slope, as described mathematically in Box S2.

Based on their interaction with the treatment, baseline fac-
tors can be classified as prognostic or predictive factors.42–44 
During the treatment, baseline predictive factors either become 
PD factors (or drug target) or modulate PD factors (Figure 1c, 
component 2b). Thus, predictive factors can directly or in-
directly interact with drug treatment (via exposure) and lead 
to enhanced treatment response (disease modification) in the 
treatment group but may exacerbate the disease progression in 
the control group. For example, subjects with a high expression 

Figure 1  Framework for E–R relationship. (a) Concept of triangular relationship among baseline factors (B), exposure (E) and response (R): 
logically E–R relationship can only be a consequence of (i) E causing the change in R; (ii) vice versa; or (iii) a third factor(s), B in this case, 
affecting both E and R. (b) Perception of the relationship: Two of three putative components of apparent E–R relationship, response-driven 
E–R and baseline-driven E–R, are often falsely perceived as being driven by exposure as shown by dotted lines with arrows pointing from E to 
R. The false perception confounds the identification of the true E–R relationship (i.e., exposure-driven E–R). (c) Mechanism of the relationship 
with three major interactions being labeled with numbers: 1, E modulates PD (pharmacodynamic) factors leading to the change in R; 2a, B 
affects PK parameters such as CL (clearance) and subsequently E; 2b, baseline predictive factors either become PD factors during treatment 
or modulate PD factors, and thus may promote disease progression in control arm but enhance R in the treatment arm; 2c, baseline 
prognostic factors have similar effects on R in treatment and control arms; 3, R (disease modification or progression) changes PK parameters 
such as CL and subsequently E, forming a circle between E and R; Top box includes postbaseline dynamic variables and the bottom box has 
static factors (i.e., time-invariant) at the baseline; B-PK, B-response, and B-shared are the baseline factors associated with PK only, response only, 
and both, respectively.

REVIEW



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 108 NUMBER 6 | December 2020 1161

of PDL145,46 or MET mutations14 have shown to have better 
efficacy in the treatment arm (with anti-PD1/PDL1 or an-
ti-MET drugs), but have a lower response in the control arm 
compared with subjects with low expression in both arms. On 
the other hand, prognostic baseline factors do not interact 
with drug effect (exposure) and are expected to have a simi-
lar effect between the treatment group and the control group 
(Figure 1c, component 2c). For oncology indications, this dif-
ference translates to different effects on the hazard ratio (HR) 
between the control and treatment arms by two types of base-
line factors. Though both prognostic and predictive factors 
may confound the exposure-driven E–R, they should not be 
treated as the same in case control analysis, which is discussed 
in the next section.

Effect of R on E and on the E–R relationship
As mentioned above, it is believed that treatment response or 
lack of it (disease modification or progression) changes CL and 
exposure over time (Figure 1c) via affecting inflammation sta-
tus and proteolytic capacity, which is manifested as time-varying 
CL.27,29,31 Consistently, a higher exposure was observed in the 
responders than that in nonresponders with chronic dosing.29,31 
The E–R relationship in this case is driven by treatment response, 
and thus is called response-driven E–R. However, this relation-
ship is often perceived as if exposure were the driver (Figure 1b). 
Box S1 explains how this perception is formed mathematically. 
Of note, while exposure-driven E–R is related to exposure itself, 
the response-driven E–R is related to the change in exposure due 
to treatment response. It should also be noted that the interac-
tions are circular: When CL is affected by R, E will be changed, 
leading to a loop from E to PD, to R, to CL and back to E which 
would repeat along with disease progression or modification 
during the treatment (Figure 1c).

In summary, baseline-driven E–R or response-driven E–R can 
bias the apparent overall E–R relationship for efficacy of therapeu-
tic mAbs. Given they often affect the exposure–efficacy relation-
ship in the same direction, combination of the two would further 
exacerbate the bias.

STRATEGIES TO MITIGATE THE CONFOUNDING EFFECT
To decouple the confounding effect by baseline-driven E–R or 
response-driven E–R on the exposure-driven E–R, several ap-
proaches have been used, and new approaches are emerging. These 
approaches along with their merits and limitations are summa-
rized in Table 2. Most of the reported approaches are landmark 
E–R analysis, in which exposure data at a certain fixed time-
point (the landmark time) are analyzed with matched response 
data. A few longitudinal analyses are also reported. While some 
approaches are used during the data analysis stage to address the 
confounding effect, others are deployed during the study design 
stage to tackle more fundamental issues caused by suboptimal de-
signs, such as only one dose level studied, inadequate PK and base-
line factor sampling schemes, lack of control group, and/or lack of 
alternative response end points. These approaches/strategies are 
discussed below based on the stage they can be deployed in—data 
analysis or study design.

Data analysis

Using early exposure in E–R analysis. Steady-state exposure, Css, 
matching the response end point after chronic treatment, has 
been a preferred exposure metric for landmark E–R analyses. 
However, when Css is affected by treatment response, using it in 
E–R analysis would confound the interpretation25 which is the 
basis of response-driven E–R. To minimize such a confounding 
effect, C1 has been recently used in E–R analysis (see Table 1). In 
this case C1 is a surrogate for Css. The advantage of C1 is that rich 
PK data from the first dose is more commonly available compared 
with the later time PK data. However, C1 may not always be a 
good surrogate of later exposure, e.g., C1 may not adequately 
account for the effect of later exposure on efficacy/safety response 
when it is different from C1, especially when the relative ranking 
of exposure among the patients is changed during the study.25 
Specifically, a dose interruption/reduction due to adverse events or 
noncompliance, a planned regimen change in a subgroup during 
the study, or crossover between arms after disease progression 
(commonly seen in oncology trials) limits the utility of C1 for E–R 
analysis. Alternatively, we propose that another exposure metric, 
the exposure projected for repeated dosing using single-dose (or 
first-dose) pharmacokinetic model, Cp,SDPK, may be used in lieu 
of C1. Like C1, Cp,SDPK is not expected to be affected by treatment 
response or disease progression and would be able to minimize 
the confounding effect of response-driven E–R, as explained 
mathematically in Box S3. Yet, unlike C1, Cp,SDPK can be a PK 
metric at any time during the study, including early stage, later 
stage, or the cumulative or average concentration during the study 
and can incorporate actual administered dosing information, 
which gives more flexibility to choose a metric relevant to a 
response end point.

However, neither C1 nor Cp,SDPK accounts for the circular in-
teraction between exposure and disease. Modeling such a dynamic 
circular interaction requires a mechanistic PK/PD model that in-
cludes a feedback loop from disease status to PK (such as time-de-
pendent disease effect on CL in PopPK model) and from PK back 
to disease progression/modification (see Longitudinal Analysis 
in Table 2). Time variant disease-related covariates on CL were 
used in PopPK model for durvalumab32 and nivolumab,29 but no 
effect from PK to disease was incorporated in these models, i.e., 
they are not mechanistic PK/PD models. Modeling the circular 
interactions requires serial PK sampling after first dose and multi-
ple dosing along with serial data on disease factors and treatment 
response. Even when those data are available, modeling the circular 
interactions is still challenging due to the complexity of the inter-
action, limitation of the software, missing data, and nonrandom 
dropout in the data set commonly seen in oncology studies. It has 
been shown that informative censoring of the data due to nonran-
dom dropout could lead to biased estimation of parameters in a 
PK/PD model.47

In summary, the confounding effect by the time-varying clear-
ance (response-driven E–R) could be mitigated by using an early 
exposure metric in the landmark E–R analysis, though it does not 
account for the dynamic circular integration between disease sta-
tus and PK.
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Identify the confounding baseline factors. To decouple the 
confounding effect by baseline factors and characterize the E–R 
relationship appropriately, baseline factors, specifically B-shared, 
need to be identified at first. Baseline factors that affect exposure 
can be identified by PopPK analysis and/or graphical analysis of an 
E–R data set based on their correlation with exposure. In the same 
manner, the factors that affect response can be found by graphical 
analysis of an E–R data set and/or univariable analysis of response. 
The intersection of two sets is B-shared. This principle has been 
used by Baverel et al. in the evaluation of E–R for tremelimumab, 
an antibody against CTLA4.5 Once shared baseline factors are 
identified, their confounding effect can be further addressed. 
Two approaches have been reported in landmark E–R analyses: (i) 
case control analysis, and (ii) multivariable analysis of data from 
multiple dose levels.

Case control analysis. Case control analysis has been used 
to account for baseline-driven E–R when a control arm is 
available. This method has been widely used in epidemiological 
or observational studies to account for the effect of baseline 
factors. In the case control, subjects in the treatment arm are 
divided into subgroups based on drug exposure, and then a 
corresponding subgroup from the control arm is matched to each 
of the exposure subgroups based on the similarity of baseline 
factors with an assumption that matched baseline factors have 
similar effects on response in the two arms. Further analysis 
after matching is performed to examine the efficacy trend across 
exposure subgroups. For example, in the case control analysis for 
pembrolizumab for the E–R relationship,8 patients from control 
groups were selected based on risk factors matching to those in 
pembrolizumab exposure subgroups (Q1 and Q4 subgroup). 
HR for overall survival (OS) was then calculated for each paired 
subgroup using Cox regression. Results show that the difference 
in HR between Q1 and Q4 is reduced by case control analysis. 
However, the difference did not disappear after matching, and the 
slope of HR vs. exposure appeared markedly steeper within-dose 
compared with the one from pooled data across doses. The authors 
attributed this to hidden baseline factors that are not measured/
accounted for in case-control analysis. Similar conclusions were 
drawn in other E–R analyses using case control analysis.16,25

There are several limitations with case control analysis. First, 
not all factors are measured or can be identified, i.e., some baseline 
factors may be “hidden.” Second, it requires a large sample size in 
order to have a reasonable match. The more factors that need to 
be matched, the larger the sample size would be required. Based 
on the framework, “B-shared” represents the relevant factors and 
should be used in the matching. Including additional baseline fac-
tors on top of B-shared may reduce the goodness of matching and 
make matching more complicated. Third, the assumption that all 
matched baseline factors have similar effects on response in the 
two arms needs to be carefully examined. While prognostic factors 
may have similar effects on disease progression regardless of treat-
ment, predictive biomarkers are different42–44 due to their inter-
action with treatment. For example, MET mutation14 and PDL1 
expression45,46 are predictive factors for MET inhibitor and for 
anti-PD1/PDL1 treatment, respectively. MET-positive patients or 

high-PDL1 expressors have shown to be associated with a shorter 
survival in chemotherapy but associated with a longer survival 
with MET inhibitor or anti-PD1/PDL1 treatment compared 
with MET-negative subjects or low-PDL1 expressors.14,45,46 Of 
note, some prognostic factors can also be predictive factors and 
are expected to have different effects to some degree between the 
treatment arm and the control arm.42–44 Because prognostic fac-
tors have similar effects in two arms, matched prognostic factors 
should have a zero net effect on HR within paired subgroups, and 
across exposure subgroups even if they are imbalanced across them. 
In contrast, predictive factors would not have net zero effect on 
HR even if they are matched within paired subgroups. If a predic-
tive biomarker is imbalanced by chance across exposure subgroups, 
especially in a relatively small efficacy study which is not random-
ized to a predictive biomarker, its effect on HR across exposure 
subgroups could be falsely attributed to exposure, leading to an 
apparent E–R relationship. The distinction between prognostic 
and predictive biomarkers, if confirmed by real data, may also par-
tially explain the reported failure of case control analysis to fully 
account for the confounding effect, in addition to the unaccounted 
confounding effect of potential hidden baseline factors.8,16,25 So 
far, the implication of this distinction in case control analysis is 
mostly overlooked in the literature.8,25,48 To address this limitation, 
postmatch analysis, such as examining the response trend across 
matched exposure groups, should consider inclusion of predictive 
markers as covariates. In anti-PD1/PDL1 case control analysis, 
including PDL1 in post-match Cox regression as a covariate may 
further improve concordance between the E–R within dose and 
that across doses.

Multivariable analysis. Multivariable analysis including exposure 
and baseline factors has been used in landmark E–R analysis to 
account for the confounding effect of baseline factors on E–R 
relationship and decouple the baseline-driven E–R from exposure-
driven E–R (Table 1). Univariable E–R analysis (with exposure 
as the only independent variable) was shown to result in a steeper 
E–R slope compared with multivariable models (Table 1) because 
potential effects by other baseline factors may be falsely attributed 
to exposure in a univariable model. Examples of multivariable 
exposure–response analysis using data from multiple dose levels 
include pembrolizumab,8 nivolumab,7 and bintrafusp alfa.26

Study design
Part of the challenge in mitigating the confounding effect is lack 
of an appropriate data set due to inadequate study design in on-
cology trials. In order to have meaningful multivariable or case- 
controlled E–R analysis, there are several requirements in study 
design related to dose, PK data and baseline factor data, control 
arm, and response end points.

Multiple dose levels. As shown for the nivolumab example 
(Figure 2), the E–R slopes obtained with data from the single dose 
level are much steeper than the one estimated from the multiple 
dose levels.7 When only one dose is studied, baseline factors 
and exposure are highly correlated, and their effects cannot be 
decoupled.12 This is because baseline factors affect CL, and CL 
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is highly correlated with exposure at one dose level. Therefore, 
ideally data should be collected from a prospective study with 
multiple randomized dose levels and analyzed using multivariable 
E–R analysis.

With a sufficiently large sample size and multiple dose groups, 
randomization is expected to lead to balanced distribution of base-
line CL across dose groups. The great number of dose levels are 
studied, the more likely it is to reduce the correlation between ex-
posure and baseline CL and to separate the effects of baseline CL 
and exposure, and thus more accurately the exposure-driven E–R 
can be estimated.7,8,22,26 However, there is a high cost associated 
with studying a large number of dose levels. It has been shown with 
pembrolizumab and bintrafusp alfa that E–R data from at least 
two dose levels was helpful to decouple the above correlation and 
support dosing decision.8,26 Simulation should be able to facilitate 
selecting the appropriate number of dose levels as well as the dose 
range and space for a specific therapeutic agent.

Control arm. Control arm can provide valuable information on 
study population in terms of prognostic factors which can be used 
in case control analysis as described above.8,48 Since prognostic 
factors are drug-independent, their effect on CL and on response 
may be estimated using data from the control arm within a study, 
across multiple clinical studies, or even from real-world data. 
This information can then be used for another therapeutic mAb 
in the same patient population, analogous to drug-independent 
PK parameters in physiologically-based PK models. However, 
crossover from control arm to the treatment arm may confound 
the long-term survival end points.49

Data collection for PK, baseline factors, and baseline CL. As 
mentioned previously, an appropriate PK sampling schedule 
after the first dose and repeated dosing is needed to evaluate the 
presence of response-driven E–R (or time-varying PK). If the 
treatment duration is too short or insufficient PK samples are 
collected, the time-varying PK may not be identifiable. Similarly, 

adequate serial data on disease factors and treatment response are 
also required for longitudinal PK/PD modeling.

A common limitation for clinical data is that some baseline 
factors may not be measured or identifiable. In this case, baseline 
CL may be used as a surrogate for shared baseline factors given the 
high correlation between them.7,50 The caveat is that baseline CL 
should not be predominantly affected by B-PK. It should be noted 
that inability to identify time-varying CL or shared baseline factors 
does not mean they do not exist, but it does mean that the ability to 
mitigate the confounding effect would be hindered.

Response end points

PD end point. Commonly available oncology efficacy end points 
include objective response rate (ORR), progression-free survival, 
and OS. It is reported that the correlation between ORR and OS 
is moderate.51 This may be related to the pseudo progression at the 
early phase of the treatment and the delayed benefit of immune 
response on survival on top of tumor shrinkage.52 Therefore, it 
is plausible that OS may be more prone to the immune-related 
baseline factors than ORR.

One obvious downside of evaluating a long-term efficacy end 
point such as OS at multiple dose levels is the long duration and 
the associated high cost. Alternatively, a short-term PD marker (in-
cluding target engagement and tumor response, see Table 2) may 
be considered as a response end point in landmark analysis for early 
dosing decision.53–55

Rich PK/PD data can be collected at multiple dose levels within 
a subject in either a fixed sequence or crossover design over a rela-
tively short time period. With a rich data set collected under such 
design, the effect by baseline and treatment effect can be accounted 
for and the baseline-driven E–R and response-driven E–R can be 
mitigated. However, a link between short-term PD and long-term 
efficacy needs to be established. For example, tumor size end points 
from tumor growth inhibition (TGI) model was used to link expo-
sure and OS in exposure-TGI-OS models in an attempt to resolve 

Figure 2  Nivolumab data from multiple dose levels for (a) exposure–efficacy relationship and (b) clearance-efficacy relationship. Figures 
adapted from Agrawal et al.7 and are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​
iveco​mmons.org/licen​ses/by/4.0/).
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the confounding effect by baseline prognostic disease marker.56–58 
The association between survival and a short-term end point such 
as response rate59–61 or TGI58 has been shown in some indications, 
but more work needs to be done in this direction.

Change in CL from baseline. In addition to PD end point, change 
in CL from baseline (∆CL) may also be considered as a surrogate 
end point for treatment effect. While baseline CL has been 
shown to be correlated to patient survival in immuno-oncology 
settings5,7,8,26 and can be incorporated as baseline covariate for 
E–R analysis, ∆CL over time has also been shown to be associated 
with disease improvement and/or survival after treatment with 
checkpoint inhibitors such as atezolizumab,10 nivolumab,29,62 
durvalumab,32 and pembrolizumab.30 Therefore, ∆CL could 
be a potential surrogate end point for treatment effect. The 
magnitude of ∆CL could vary for different baseline disease 
conditions or specific populations. For example, significant ∆CL 
for nivolumab was observed for patients with poor disease status 
and higher baseline CL.62 In contrast, in the same study, CL was 
time-invariant in patients whose tumors were removed by surgical 
resection.62 On the other hand, lack of ∆CL over time upon 
treatment does not necessarily mean lack of treatment effect at 
the subject level. For a study with no change in mean CL (mean 
∆CL  =  0), an increase in CL in some subjects (the responders) 
may be negated by a decrease in others (nonresponders). For a 

subject with stable disease, the treatment effect on CL may be 
negated by disease progression. Lastly, PopPK analysis estimated 
that 50% ∆CL occurred ~  60  days after the first dose of anti-
PDL1 or anti-PD1 mAbs,10,29 making ∆CL an early response end 
point compared with survival. Given that longitudinal PK data 
are commonly collected, ∆CL can be readily estimated and may 
be supplementary to survival or tumor size. Thus, ∆CL may be 
explored as a potential surrogate marker for treatment effect in 
some indications for dosing decision, but further exploration is 
needed in clinical studies.

RECOMMENDED ROADMAP TO IDENTIFY THE EXPOSURE-
DRIVEN E–R RELATIONSHIP
Given that various approaches have been developed and can be 
used at different stages and for different purposes, it can be confus-
ing to choose the right one. Here we propose a practical roadmap 
to find an appropriate strategy for minimizing various confound-
ing effects and identifying a true E–R relationship for therapeutic 
mAbs (Figure 3). First, if the PK data are sufficient, the presence 
of a response-driven E–R can be investigated by checking whether 
time-varying CL exists in the overall population or in any expo-
sure subgroups, then a relevant exposure metric, C1, Cp,SDPK, or 
Css, should be chosen based on existence of response-driven E–R 
or lack of it for further E–R analysis. If PK data are inadequate to 

Figure 3  Recommended roadmap to identify the true E–R relationship. (a) Minimizing response-driven E–R: Response-driven E–R can be 
identified by checking whether there is time-varying CL (clearance). If response-driven E–R is present in overall population or in any exposure 
subgroups, Cp,SDPK should be used for E–R analysis to account for dose interruptions / change in a subgroup. C1 can also be used in lieu of 
Cp,SDPK, if appropriate. If response-driven E–R can be ruled out, Css can be used for E–R. *If PK data are inadequate to identify the time-varying 
CL, using either C1 or Cp,SDPK could be a conservative approach in addressing potential response-driven E–R. (b) Accounting for baseline-driven 
E–R: Baseline-driven E–R can be accounted for by case control analysis and/or multivariable analysis using B-shared or other methods (see 
Table 2). **If data do not allow the identification of shared baseline factors, baseline CL may be used as a surrogate for shared baseline 
factors. C1, first-dose exposure; Cp,SDPK, projected exposure based on single-dose PK model (SDPK) at any time during repeated dosing; 
Css, steady-state exposure; E–R, exposure–response; PK, pharmacokinetic; PK/PD, pharmacokinetic/pharmacodynamic; PopPK, population 
pharmacokinetic. [Colour figure can be viewed at wileyonlinelibrary.com]
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identify the time-varying CL, using either C1 or Cp,SDPK could be 
a conservative approach in addressing a potential response-driven 
E–R. Second, if data allow, shared baseline factors between PK 
and response should be identified. Baseline-driven E–R may be ac-
counted for using the shared baseline factors by either multivari-
able analysis with data from multiple dose levels or by case control 
analysis with data from a control group. If data do not allow the 
identification of shared baseline factors, baseline CL may be used 
as a surrogate for shared baseline factors provided it is not pre-
dominately affected by B-PK. If no long-term efficacy is studied at 
multiple dose levels, rich short-term PD data from multiple dose 
levels can be used as a surrogate for efficacy in cases where the link 
between PD and efficacy variables can be established. Similarly, 
∆CL after treatment, if it exists, may also be explored as a surro-
gate for efficacy response in the context of PK/PD analysis. In ad-
dition to the above landmark analyses, a longitudinal model with 
or without a mechanistic feedback from response to exposure may 
be explored (Table 2).

It should be noted that the feasibility of each method and its 
effectiveness are highly dependent on study designs and avail-
able data sets. More attention is needed for proper study design 
in oncology trials to aid E–R analysis for dose selection. Another 
challenge is to assess the effectiveness of each method and whether 
confounding effects have been successfully mitigated. Examining 
the concordance between the E–R relationship and dose–response 
relationship, or the agreement between the within-dose E–R rela-
tionship vs. the one obtained using pooled data across doses, has 
been used for this purpose,7,8 which requires data from at least 
two dose levels. Lack of concordance suggests that either base-
line-driven E–R or response-driven E–R is not fully accounted for.

Each approach for E–R analysis has its own limitation. Even 
if all above approaches are applied, the potential confounding 
effect may not be fully mitigated due to the complexity of the 
model and limitations of the data set or study design. Therefore, 
a holistic approach is needed to consider the totality of evidence 
and has been proven to be useful in dose selection.26,53 The ap-
proach takes into consideration various types of data, including 
the target exposures associated with a full PD effect in blood 
circulation and/or target tissue from preclinical studies, clinical 
PK/PD data, projection of tissue exposures in tumors, tumor 
kinetics, safety profile, historical data, real-world data, dose–re-
sponse relationship, and E–R relationship.

FUTURE DIRECTIONS
The framework shown In Figure 1 is built upon review of the 
literature including reports of clinical data and simulations.35 
More simulations and/or clinical studies would further substan-
tiate the framework predictions and help to illustrate the frame-
work’s potential applications including finding novel approaches 
to mitigate the confounding effects. The framework is intended 
to provide a snapshot of the interplay among E, R, and B. In fu-
ture, a more complex model can be built to describe the dynamic 
interdependencies between these three variables. However, such 
a complex model may likely be overparametrized for the data 
commonly available in clinical studies. Therefore, future work 
that enables longitudinal circular modeling is needed.

Future work is also needed to identify “hidden” baseline fac-
tors in order to fully account for the effect of baseline factors in 
E–R analysis and for potential patient stratification/selection. 
According to the proposed framework, all baseline factors that 
affect the E–R relationship are expected to affect CL. Thus, 
baseline CL or a biomarker signature representing baseline CL 
may be useful to address the hidden factors. To this end, cachexia 
score is being considered as a candidate biomarker, because it is 
related to inherent catabolic capacity and is also a prognostic 
factor for efficacy. Several standardized cachexia scoring systems 
have been developed, including CASCO (cachexia score), which 
consists of laboratory tests, physician evaluation, and patient 
questionnaires.40 However, these scoring systems remain to be 
validated. More investigation is needed to identify other novel 
biomarkers or disease-driven catabolic signature for cachexia 
and cancer-associated changes in protein catabolism. Such a sig-
nature, once available, may be used to identify poor responders 
and aid clinical trial designs in terms of patient stratification or 
inclusion/exclusion criteria.

It is also noted that, while the focus of review is for immuno- 
oncology, the phenomenon of confounded E–R relationships was 
also observed with other mAbs in inflammation therapeutic area 
(including rheumatoid arthritis and inflammatory bowel disease). 
In addition, apparent E–R relationships were observed for several 
small-molecule drugs for oncology or inflammatory indications 
such as axitinib, sunitinib, pazopanib, and osimertinib, and the 
impact of disease condition on exposure of these small-molecule 
drugs has been mentioned in the literature.63–68 Whether the 
framework can be expanded to small molecules and how their E–R 
relationships may be affected need further investigation.

CONCLUSIONS
Complex E–R relationship have been observed with therapeutic 
mAbs, in particular, for oncology, immuno-oncology, and im-
mune disorders due to the confounding effect by various baseline 
factors and disease progression and modification, which creates 
challenges in E–R analysis for dose selection. We review the cur-
rent learnings in the field and propose a general framework to 
integrate various elements involved in the E–R relationship: ex-
posure, response, and disease-related baseline factors that affect 
both PK and treatment response. Various approaches that miti-
gate the confounding effects of baseline factors (baseline-driven 
E–R) and time-varying CL (response-driven E–R), as well as 
their merits and limitations related to study designs and data sets, 
are reviewed and discussed. A roadmap is proposed to select rel-
evant approaches to characterize E–R relationship. Specifically, 
exposure metrics based on a single-dose PK model can be used to 
mitigate response-driven E–R, while multivariable analysis and/
or case control analysis can be used to account for baseline-driven 
E–R. However, due to the complexity of the issue, more work 
is needed to further improve existing approaches and find new 
ones.

The proposed framework and roadmap highlight (i) the impor-
tance of conducting E–R analyses using data from multiple dose 
levels, and (ii) the role of predictive/prognostic biomarkers in 
dose selection and optimization, and the need to consider them in 
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conjunction with drug exposure for selecting the right dose and the 
right population, the two key goals in drug development.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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