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Alteration of cellular metabolism in cancer cells and its 
therapeutic prospects
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INTRODUCTION

The relationship between cancer and altered cellular 
metabolism has been deciphered decades ago. However, 
the importance of  tumor metabolism has dwindled over 
the past due to limited knowledge of  tumorigenesis. It’s 
only after the oncogenic revolution, the interest in tumor 
cell metabolism and signaling pathways is being renewed, 
and presently metabolic reprogramming is considered as 
a hallmark of  cancer.[1]

The three basic requirements of  cancer to sustain are rapid 
growth and proliferation of  cancer cells, the capability of  
the tumor cells to evade the normal apoptotic pathways, 
thus favoring survival and unrestricted entry of  the tumor 

cells into cell cycle progression even in the absence of  
growth signals. All these requirements are met by the 
tumor cell by acquiring a phenotype as a result of  various 
host cell mutations that combine to alter the metabolic 
pathways. Many of  these adaptations are also seen in 
rapidly proliferating normal cells, in which they represent 
appropriate response to physiological growth signals as 
opposed to constitutive cell autonomous adaptations.[2,3] 
In case of  cancer, this adaptability should also work in a 
stressful microenvironment which is deficit in nutrients.[4]

Energy and biomass requirement of  proliferating cells 
are more than that of  normal cells. In tumor cells when 
nutrients are abundant, the requirements are met by 
reprogramming pathways to increase acquisition and 

Transformation of a normal cell into a cancerous phenotype is essentially backed by genetic mutations that 
trigger several oncogenic signaling pathways. These signaling pathways rewire the cellular metabolism to 
meet the bioenergetic and biomass requirement of proliferating cell, which is different from a quiescent 
cell. Although the change of metabolism in a cancer cell was observed and studied in the mid‑20th century, 
it was not adequate to explain oncogenesis. Now, equipped with a revolution of oncogenes, we have a 
genetic basis to explain the transformation. Through several studies, it is clear now that such metabolic 
alterations not only promote cancer progression but also contribute to the chemoresistance of cancer. 
Targeting specific enzymes and combinations of enzymes can improve the efficacy of cancer therapy and 
help to overcome the therapeutic resistance.
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utilization of  nutrients, and in case of  nutrient stress, the 
metabolism is rewired to compensate for the scarcity of  
one nutrient by filling the metabolite pool with another 
nutrient.[5‑7]

In this review, we will discuss the alterations in cellular 
metabolism that the transforming cells undergo to sustain 
and proliferate in all nutrient conditions. Further, how 
these alterations can produce opportunity to target specific 
enzymes or combination of  enzymes will also be discussed.

NUTRIENT SUFFICIENCY STATE

In the presence of  abundant nutrient, oncogenic RAS 
stimulates the uptake and utilization of  glucose[8,9] by 
activation of  PI3K pathway  [Figures  1 and 2].[10] PI3K 
pathway is one of  the most commonly altered pathways 
in many human cancers. Apart from oncogenic RAS, 
this pathway is also activated by mutation in the tumor 
suppressor gene PTEN[11‑13] or by aberrant signaling 

from receptor tyrosine kinase.[14] The activation of  PIK3 
in turn activates the downstream effectors AKT1 which 
strongly stimulates signaling through mammalian target of  
rapamycin (mTOR) by inhibiting tuberin.[15] At molecular 
level, mTOR indirectly causes metabolic changes by 
activating transcription factors such as hypoxia‑inducible 
factor 1 (HIF1). HIF1 is a heterodimer that is stabilized 
in hypoxia.[16] However, it can also be activated in normal 
oxygen concentration by oncogenic signaling pathways such 
as PI3K.[17,18] HIF1, once activated, amplifies transcription 
of  gene encoding glucose transporter (GLUT1) and most 
glycolytic enzymes, increasing influx of  glucose into cell.[19]

High expression of  MYC collaborates with HIF1 inactivation 
of  glucose receptors and glycolytic enzymes.[20,21] Increased 
MYC also enhances glutamine uptake and metabolism.[22,23] 
Glutamine has an added advantage of  providing its two 
nitrogen atoms for biomass synthesis.[24]

In terms of  adenosine triphosphate  (ATP) generation, 

Figure 1: Glucose metabolism (represented by solid lines) in a quiescent cell
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one of  the most characteristic metabolic alterations 
occurring in tumor cells is shift from ATP generation 
through oxidative phosphorylation to ATP generation 
through glycolysis, even in the presence of  normal 
oxygen concentration (Warburg effect).[25] Although the 
ATP generation by this pathway is faster, it is inefficient 
in terms of  number of  ATPs produced per glucose 
molecule. Earlier it was hypothesized that this shift might 
an adaptation to defective mitochondria.[26] However, it was 
later appreciated that mitochondrial defects are rare,[27‑29] 
and oxygen consumption of  tumor cells remains same as 
that of  normal cell. The faster rate of  ATP production by 
this pathway can justify such switch, but this is possible 
only in an environment where nutrient supply is surplus. 
The most recent theory regarding the switch believes 
that aerobic glycolysis provides a biosynthetic advantage 
for tumor cells by a high flux of  substrate through 
glycolysis.[2,3]

AKT1, which is a downstream effector of  PI3K activation, 
is an important driver of  tumor glycolytic phenotype. It 

phosphorylates and activates glycolytic enzymes such as 
hexokinase and phosphofructokinase 2.[15,30]

The subsequent activation of  HIF1 decreases the flow 
of  glucose‑derived pyruvate into tricarboxylic acid (TCA) 
cycle[31‑33] by activation of  pyruvate dehydrogenase kinase 
which inactivates mitochondrial pyruvate dehydrogenase 
complex. Oncogenic MYC activates lactate dehydrogenase 
A that catalyzes the conversion of  pyruvate to lactate.[20,21] 
Recently, 13C‑nuclear magnetic resonance spectroscopy 
measurements have shown that glioblastoma cells in culture 
convert as much as 90% of  glucose and 60% of  glutamine 
they acquire into lactate or alanine.[34]

ADAPTATION TO NUTRIENT STRESS

For most of  the mammalian cells in culture, glucose and 
glutamine are the only two molecules that are catabolized 
appreciably to meet most of  the energy and biomass 
requirement of  cell.[2] Tumor cell deprived of  these 
nutrients are supposed to die of  starvation. On the 

Figure 2: Genetic mutations of gene such as RAS and PTEN can trigger several oncogenic signaling pathways such as PI3K and mammalian target 
of rapamycin that in turn upregulate glucose transporters and enzymes that catalyze various steps of glycolysis, thus favoring aerobic glycolysis
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contrary, nutrient deprivation has been correlated with poor 
survival of  patients[35] suggesting that scarcity of  nutrient 
makes the cancer cell stronger. This may be attributed to the 
biochemical alterations leading to acquisition of  necessary 
plasticity of  cancer cells that is required to reprogram 
metabolism [Figure 3] in response to different nutritional 
conditions.

In most of  the cancer cells, oxaloacetate (OAA) in TCA 
cycle is supplied by glutamine which compliment with 
acetyl‑CoA from glucose. In case of  glucose deprivation, 
carbon from glutamine has been seen to be rerouted 
to acetyl CoA in some cancers.[5] Similarly, glutamine 
deficiency can induce metabolic pathway changes. One of  
such changes is a loss of  citrate synthase. Citrate synthase 
condenses OAA to acetyl‑CoA to maintain TCA cycle.[35] 
However, in scarcity of  glutamine, OAA is shunted toward 
asparagine formation to support cell survival.[36] Expression 
of  asparagine synthetase has been seen to be associated 

with poor prognosis of  glioma and neuroblastoma,[37] 
suggesting that maintenance of  asparagine pool may 
provide an advantage to tumor cells.

In RAS expression, cancer, glutamine stimulates 
macropinocytosis.[38] In this process, extracellular matrix 
is captured and internalized. This allows starving cell to 
generate pools of  glutamine and other amino acids supply 
to TCA cycle.[38] This process must be highly controlled 
as hyperactive macropinocytosis can lead to cell death in a 
process previously misidentified as autophagic cell death.

Along with scavenging on extracellular matrix, autophagic 
degradation of  macromolecules is also active in cancer 
cells.[39‑42] During autophagy, the organelles and the 
macromolecules are degenerated to produce small molecule 
nutrients to feed intermediary metabolism.[38,41,43] This 
process has been seen to be crucial in tumor growth and 
survival of  cancer cells in some RAS driven tumor.[44]

Figure 3: Reprogramming of metabolism in cancer cells, deprived of glucose and glutamine (reduced intake represented by dotted lines). Pool of 
amino acids and tricarboxylic acid cycle intermediates, required are maintained by activating pathways that promote autophagy, macropinocytosis 
and scavenging fatty acids
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In the presence of  oxygen and abundant nutrients, 
cell synthesizes fatty acids de novo.[45,46] However, under 
nutrient stress, scavenging extracellular lipids become an 
adaptive mechanism for the cell.[47,48] Scavenging instead 
of  synthesizing spares the cell from the need to supply 
carbon to pentose phosphate pathway (PPP) for NADPH 
production which is required for lipid synthesis. In case of  
ovarian cancer, a cooperative mechanism exists between 
stromal cell and cancer cell. The stromal cells have been 
found to provide fatty acid to tumor cells. When ovarian 
cancer cells were cocultured with adipocytes, the transfer of  
fatty acid from adipocytes to tumor cells triggered activation 
of  adenosine monophosphate‑activated protein kinase and 
fatty acid oxidation leading to enhanced cell proliferation.[49]

Deprivation of  glucose or glutamine leads to activation 
of  serine synthesis pathway  (SSP) in tumor cells.[50] 
By this pathway, serine and glycine can be synthesized 
from glutamine by a process “reverse glycolysis.”[51] 
Serine driven one carbon metabolism produces reducing 
equivalent  (NADPH) with a comparable importance to 
PPP.[52] Serine binding has also been related to activation 
of  PKM2 enzymatic activation.[53] M2 is an isoform of  
pyruvate kinase which is present in self‑renewing cells 
such as embryonic and adult stem cells.[54] It is found to 
be expressed in many tumor cells and therefore might be a 
useful biomarker for early detection of  tumors.[4,55‑57] Unlike 
the other isoform PKM1, it is usually found inactive and 
is inefficient at promoting glycolysis.[58‑60] Due to its nature 
of  inhibiting Warburg effect and ATP production, which 
is unfavorable for tumor progression, presence of  PKM2 
in cancer cells was ignored for several years. However, 
recent work has produced evidences that PKM2 exerts a 
regulatory contribution to SSP.[61] Further work is required 
to understand the regulatory cascade completely.

Acetate is one of  the smallest molecules available as 
nutrient in mammals. It is converted to acetyl‑CoA by 
acetyl‑CoA synthetase. Although acetate has a very low 
concentration in circulating fluid,[62] it can be taken up by 
tumor cells and oxidized.[63] However, the primary role of  
acetate utilization is still to be evaluated.

Depending on the tumor microenvironment, the tumor 
cells rewire their metabolism to ultimately direct the 
available nutrient into the synthesis of  new biomass while 
maintaining adequate level of  ATP for survival.

THERAPEUTIC PROSPECTS

Over the past few decades, hundreds of  genes have been 
identified that are mutated in cancer. Many of  these genetic 

alterations that are known to promote cancer lead to a single 
converging metabolic phenotype that is characterized by 
reorganization of  metabolic pathway in such a way that 
biosynthesis of  macromolecules and ATP production to 
support cell survival are well balanced.[26,64,65] As all cancer 
cells are dependent on this alteration of  metabolism, 
these altered pathways represent attractive therapeutic 
targets.[66,67] Further, effective agents targeting many of  the 
common driver mutation in cancer are not available. For 
example, mutation of  RAS or dysregulated expression of  
MYC is frequent events in human cancer, yet no specific 
therapies exist to treat cancers based on either genetic 
event, and many RAS‑driven cancers are nonresponsive 
to existing therapies.[68,69] RAS‑mutant cells are dependent 
on sufficient glucose uptake,[70] and MYC‑dependent cells 
have a particular reliance on glutamine metabolism.[22,23,71] 
Small molecule inhibitors that disrupt glucose intake and 
metabolism has been found to decrease the growth of  
tumors that are derived from cells driven by these oncogenes 
in preclinical models.[70,72,73] Targeting metabolism may also 
be synergistic with many of  the existing therapies such 
as kinase inhibitor and cytotoxic therapies which act by 
impairing glucose metabolism.[2,74,75]

Cancer development, progression and treatment outcomes 
are linked to whole body metabolism. Obesity, hyperglycemia 
and insulin resistance are all associated with an increased risk 
of  developing cancer and worse clinical outcomes in patients 
suffering from cancer.[76‑80] Insulin and insulin‑like growth 
factor, which are capable of  activating signaling pathways that 
drive cell growth, are increased in circulation of  individuals 
suffering from obesity and insulin resistant. This suggests 
that obesity and insulin resistance promote cancer at least in 
part by activating pathways that drive cell growth.[77] These 
same signaling pathways also drive nutrient uptake into 
cells.[78] Further, elevated levels of  glucose alone can promote 
increased glucose uptake in some cells, and lower glucose 
levels are seen to be associated with better cancer treatment 
outcomes.[81‑84] Hence, antidiabetic drugs are being explored 
for anticancerous activity. Retrospective clinical studies 
have shown decreased cancer mortality rate in patients on 
metformin.[85,86] Metformin lowers level of  glucose and insulin 
by inhibiting gluconeogenesis.[87] Other antidiabetic drugs 
which act by other mechanisms such as increasing the level 
of  insulin in blood may worsen the clinical outcome in cancer.

Glutamine is an important nutrient source for cancer 
cell, and some cancers are addicted to glutamine. 
This increased reliance of  some cancers on glutamine 
makes glutamine a prospective therapeutic target. Small 
molecules such as 2‑amino‑(2,2,1)‑heptane‑2‑carboxylic 
acid that inhibits glutamine transporters have been shown 
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to slow proliferation and tumor growth.[88,89] Another 
potential therapeutic target is glutaminase, the enzyme 
that catalyzes the conversion of  glutamine to glutamate. 
The growth of  transformed cells can be selectively 
inhibited by targeting glutaminase activity.[90,91] Molecules 
such as bis‑2‑(5‑phenylacetamido‑1,2,4‑thiodiazol‑2‑yl) 
ethyl sulfide have been shown to successful in inhibiting 
glutaminase.[91,92]

Although biochemistry and metabolism of  transforming 
cells are extensively studied for the past few decades, 
targeting cancer metabolism for therapy of  cancer still 
remains as a challenge. As normal proliferating cells have 
same metabolic requirements as cancer cells, so finding a 
therapeutic window is difficult. Sometimes, it is assumed 
that a therapeutic window is obtained by chemotherapeutic 
agents because cancer cell proliferates more rapidly than 
normal cells. However, this is not always true. Proliferative 
cells of  gut can have cell cycle as frequently as 10 h[93,94] 
and hematopoiesis in human can generate 2 million red 
blood precursors per second.[95] Like the cancer cells, 
rapidly proliferating cells of  immune system rely on aerobic 
glycolysis[96‑98] and glutamine metabolism.[99,100] Another 
challenge in targeting cancer metabolism is the metabolic 
flexibility of  the transformed cell. Cancer cells often have 
a remarkable ability to shift fuel source when deprived of  
favored metabolic pathways.[101‑103]

CONCLUSION

The present cancer therapeutics that target DNA synthesis 
are not found to be promising because instead of  a single 
tumor‑specific metabolism, several metabolic programming 
exists that promotes proliferation of  cancer cell. A better 
understanding of  how metabolism is altered in specific 
genetic contexts that lead to cancer will guide to formulate 
strategies to target specific enzyme or combination of  
enzyme in cancers.
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