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A B S T R A C T   

Pinpointing the brain dysconnectivity in idiopathic rapid eye movement sleep behaviour disorder (iRBD) can 
facilitate preventing the conversion of Parkinson’s disease (PD) from prodromal phase. Recent neuroimage in-
vestigations reported disruptive brain white matter connectivity in both iRBD and PD, respectively. However, the 
intrinsic process of the human brain structural network evolving from iRBD to PD still remains largely unknown. 
To address this issue, 151 participants including iRBD, PD and age-matched normal controls were recruited to 
receive diffusion MRI scans and neuropsychological examinations. The connectome-wide association analysis 
was performed to detect reorganization of brain structural network along with PD progression. Eight brain seed 
regions in both cortical and subcortical areas demonstrated significant structural pattern changes along with the 
progression of PD. Applying machine learning on the key connectivity related to these seed regions demonstrated 
better classification accuracy compared to conventional network-based statistic. Our study shows that 
connectome-wide association analysis reveals the underlying structural connectivity patterns related to the 
progression of PD, and provide a promising distinct capability to predict prodromal PD patients.   

1. Introduction 

Over the past years, idiopathic rapid eye movement sleep behaviour 
disorder (iRBD) has been increasingly recognized as the heralding fea-
tures of Parkinson’s disease (PD) and is characterized by a long incu-
bation period (Boeve, 2010; Iranzo et al., 2014, 2006, 2013; Postuma 
et al., 2015a; Schenck et al., 2013, 1996). According to a recent longi-
tudinal study, 39.7% iRBD patients had converted to PD within four 
years (Fereshtehnejad et al., 2017). The update of Movement Disorder 
Society (MDS) criteria in 2019 demonstrates that polysomnogram- 
confirmed iRBD takes up the highest likelihood ratio of all the prodro-
mal markers of the progression of PD (Heinzel et al., 2019). Therefore, 
identification of in-vivo brain structural abnormality in iRBD is crucial to 

promptly prevent the conversion of PD from prodromal phase to clinical 
stage in time. 

Converging neurophysiological evidence suggested that progression 
of PD-related neurodegeneration is not prominent in terms of regional 
atrophy, but more associated with white matter integrity due to axon-
opathy and synaptic dysfunction (Burke and O’Malley, 2013; O’malley, 
2010; Tinaz et al., 2017). According to the Braak staging scheme of PD, 
the primary pathology patterns emerge in brainstem and progressively 
propagate to the neocortex, through the related white matter fibre 
pathway (Braak et al., 2003, 2004). In particular, this pathway could be 
directly damaged by the misfolded α-synuclein through regulating 
membrane levels of acidic phospholipids (Schechter et al., 2020). On a 
macroscopic scale, widespread diffusion MRI studies confirmed 
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decreased white matter connectivity in PD patients, including but not 
limited to frontoparietal-striatal pathway (Tinaz et al., 2017), nigro- 
pallidal pathway (Barbagallo et al., 2017), and other white matter 
tracts linking brainstem such as the longitudinal fasciculus and the in-
ternal capsule (Haghshomar et al., 2018; Scherfler et al., 2011). Notably, 
these white matter damages could be a preceding sign of surrounding 
grey matter neuronal loss (Rektor et al., 2018). Therefore, it is intuitive 
to hypothesize the reorganization of brain structural network may occur 
in iRBD stage. Another study using graph-theory based analysis showed 
disrupted topological disorganization of the global brain network and 
hub reorganization in iRBD (Park et al., 2019). However, the intrinsic 
process of the human brain structural network evolving from iRBD to PD 
remains largely unknown. 

On the other hand, studies exploring the brain network reorganiza-
tion due to neurodegeneration have often been hampered by the sub-
jective analytical design on manipulating massive brain connectivity, 
such as the seed-based strategies or within a restricted subnetwork. To 
avoid this bias, the connectome-wide association study (CWAS) para-
digms allow one to systematically quantify topological properties of 
brain networks as a whole continuum (Milham, 2012; Shehzad et al., 
2014). However, the conventional analytical strategies in CWAS, such as 
dimensionality reduction (Zhan et al., 2015) and graph analysis (Park 
et al., 2019), have been criticized for substantial local information loss 
(Poldrack et al., 2017). To address this issue, the multivariate distance 
matrix regression (MDMR) was recently introduced to statistically 
characterize the local pattern of brain connectome without sacrificing 
connectome dimension (Shehzad et al., 2014). This multivariate 
analytical framework allows to clarify the substrate of the specific 
structural connectivity patterns associated with various clinical pheno-
types, such as anhedonia (Sharma et al., 2017), and psychosis-spectrum 
symptoms (Satterthwaite et al., 2015). Besides, our previous investiga-
tion by using MDMR also revealed widespread brain network reorga-
nization caused by AD pathology (Ye et al., 2019), indicating that CWAS 
framework could open a new avenue to uncover the signature of brain 
structural network changes along with PD progression. 

Here, we exploited the MDMR framework to provide insights into the 
relationship between brain connectome and PD progression from pro-
dromal to clinical stage. In a cohort of 151 participants including iRBD, 
PD and age-matched normal controls (NC), the anatomical and diffusion 
MRIs were scanned for each individual in Xuanwu Hospital of Capital 
Medical University, Beijing, China. We anticipated that the signature of 
brain white matter structural connectivity would explicitly describe a 
trajectory of early PD. To evaluate its potential value in clinical use, we 
also adopted machine learning classification methods to examine the 
effectiveness of brain connectivity patterns revealed by the CWAS 
strategy. 

2. Methods 

2.1. Study participants and clinical assessment 

The subjects in this study were recruited from the Movement Dis-
orders Clinic of the Xuanwu Hospital of Capital medical University and 
were all approved by the Institutional Review Board of Xuanwu Hos-
pital, including 61 normal controls (NC), 35 iRBDs and 55 PDs. All the 
participants were given written informed consent to the experiment. In 
order to remove the potential handedness effects, all the patients were 
all right-handed measured according to the Edinburgh Inventory (Tinelli 
et al., 2013). In particular, the iRBD patients were screened by the In-
ternational Classification of Sleep Disorders-Third Edition (ICSD 3) 
diagnostic criteria and confirmed by polysomnography (Sateia, 2014). 
The NCs were all older than 40 years, with no family history of move-
ment disorders and no obvious cerebral lesions found in MR images. The 
PDs were diagnosed according to the MDS Clinical Diagnostic Criteria 
for Parkinson’s disease (Postuma et al., 2015b). Multiple assessments 
were applied to evaluate the iRBDs and PDs, such as the Rapid Eye 

Movement Sleep Behaviour Disorder Questionnaire–Hong Kong (RBDQ- 
HK), Pittsburgh sleep quality index (PSQI), Montreal Cognitive Assess-
ment (MoCA), the Movement Disorder Society Unified Parkinson’s 
Disease Rating Scale, part III (UPDRS III) and Epworth sleepiness score 
(ESS). Table 1 summarizes the demographic details. 

2.2. Imaging protocol 

MR images were collected on a 3.0 T MR system (MAGNETOM Skyra, 
Siemens, Germany) including the axial diffusion scan with echo-planar 
imaging sequence, the T1 weighted scan with sagittal magnetization- 
prepared rapid gradient-echo sequence, as well as quantitative suscep-
tibility mapping (QSM) scan with axial 3-D single-echo gradient echo 
sequence. The T1 weighted MRI data was acquired on with the following 
parameters: inversion time (TI) = 1100 ms; echo time (TE) = 2.98 ms; 
repetition time (TR) = 2530 ms; field of view (FOV) = 224 × 256 mm2; 
isotropic voxel size = 1 mm; flip angle = 7◦. A spin echo EPI sequence 
was performed to acquire diffusion weighted images with the following 
parameters: TE, 105 ms; TR, 5000 ms; flip angle, 90◦; isotropic voxel 
size, 2 mm; anterior to posterior phase encoding direction, 60 gradient 
directions with b = 1000/2000 s/mm2, and two additional b0 image 
were acquired with reversal of the acquisition direction along the phase- 
encode axis. A 3-D single-echo gradient echo sequence: slice thickness =
1.5 mm; TE = 17.5 ms; TR = 25 ms; echo number = 1; flip angle = 15◦; 
display field of view (DFOV) = 256 × 256 × 80 pixels; voxel size =
0.667 × 0.667 × 1.5 mm3; scanning time = 306 s. 

2.3. Image preprocessing and tractography based on diffusion MRI 

The anatomical scans were segmented with a parcellation scheme 
with n = 87 regions. After bias filed correction, each individual T1 
weighted image was processed by FreeSurfer V6 (Fischl, 2012) to 
separate all 77 cortical brain regions according to the Desikan-Killiany- 
Tourville (DKT) protocol. QSM reconstruction was performed using 
MATLAB-based susceptibility imaging software STI Suite (Li et al., 
2014) (refer details to our previous work (Sun et al., 2020)). Given that 
QSM images exhibit better signal contrast on certain subcortical nuclei 
as compared to T1 weighted images (Deistung et al., 2017), ten 
subcortical regions of interest, including the substantia nigra (SN), the 
globus pallidus, the red nucleus, the caudate nucleus, and the putamen 
on both hemispheres, were manually drawn on the QSM images by an 
experienced neuroradiologist (J. S.). Given that the low intensity voxels 
of QSM where SN locates don’t precisely coincide with voxels including 
pars compacta, we basically followed the previous robust principle (He 
et al., 2015) to maximally avoid bias. 1) SN was drawn on all successive 
axial slices where the boundary with hyperintensity signal were visible 
and clear; 2) the first and last layers, as well as the boundary voxels were 
excluded to avoid partial volume effects; 3) obvious vascular structures 
were removed. All these parcellation labels were further mapped to 
diffusion MRI space by linear image registration from the susceptibility 
weighted magnitude image to T1 weighted image using Advanced 
Normalization Tools (http://picsl.upenn.edu/software/ants/) (Avants 
et al., 2009), and served as nodes for brain connectivity extraction and 
brain structural network construction. All the MR images and parcella-
tion results have been visually checked by the neuroradiologist (J. S.). 

The preprocessing of diffusion weighted images includes image 
denoising (Veraart et al., 2016), head motion, eddy-current and sus-
ceptibility distortion correction (dwifslpreproc command), and field 
inhomogeneity correction (Tustison et al., 2010), which were all per-
formed by MRtrix3 (www.mrtrix.org). After preprocessing, the fiber 
orientation distributions were estimated by constrained spherical 
deconvolution (Jeurissen et al., 2011; Tournier et al., 2008) with a 
maximum spherical harmonic degree lmax of 8. Then in conjunction with 
the anatomical-constrained tractography protocol (Smith et al., 2012), 
we performed the 2nd order Integration over Fiber Orientation Distri-
butions (iFOD2) algorithm (Tournier et al., 2010) on each voxel to 
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reconstruct ten million probabilistic streamlines within a brain mask, 
with the default parameters: FOD amplitude threshold = 0.05, step size 
= 0.5 × voxel size, maximum curvature per step = 45◦. The probabilistic 
fiber tracking algorithm was adopted here because it exhibits higher 
anatomical reproducibility than other approaches in terms of connec-
tivity calculation (Bonilha et al., 2015). Furthermore, Spherical- 
deconvolution Informed Filtering of Tractograms (SIFT) algorithm 

(Smith et al., 2013, 2015) was applied to reduce the overall streamline 
count into five million, meanwhile provides more biologically mean-
ingful estimates of structural connection density and improve biological 
accuracy and reproducibility. From these data, a brain white matter 
structural connectivity matrix was derived for each subject, for which 
each element of this matrix represents the number of streamlines con-
necting the parcellated brain regions (Hermundstad et al., 2013). An 

Table 1 
Characteristics of participants.   

NC 
n = 61 
Mean (SD) 

iRBD 
n = 35 
Mean (SD) 

PD 
n = 55 
Mean (SD) 

F statistic ANOVA 
p 

Post-hoc comparisons 

F statistic NC VS iRBD 
adjusted p 

F statistic iRBD VS PD 
adjusted p 

F statistic NC VS PD 
adjusted p 

Sex (M/F) b 27/34 19/16 31/24  0.8532  0.428 0.432  0.513  0.161  0.689  1.69  0.196 
Age (years) a 60.1 

(10.1) 
61.5 
(7.83) 

59.6 (7.98)  0.4404  0.646 0.446  0.506  1.092  0.299  0.08  0.776 

Duration (years) 
a 

– 8.19 
(8.53) 

6.64 (11.0)  –  – –  –  0.4387  0.5096  –  – 

UPDRS III a – 4.97 
(4.56) 

26.16 
(13.4)  

–  – –  –  9.5332  0.002 **  –  – 

H&Y – – 1.79 (0.74)  –  – –  –  –  –  –  – 
RBDQ-HK a 9 (6.57) 40.2 

(17.4) 
21.3 (15.4)  56.703  <0.001 *** 150.2  <0.001 ***  26.047  <0.001 ***  31.99  <0.001 *** 

MoCA a 25.5 
(2.91) 

24.2 
(3.67) 

24.0 (3.88)  3.108  0.047 * 3.1568  0.079  0.088  0.767  5.8313  0.017 ** 

ESS a 4.61 
(3.38) 

5.57 
(4.79) 

6.6 (4.84)  3.0267  0.051 1.1907  0.278  0.8159  0.369  6.4805  0.0123 ** 

PSQI a 4.2 (3.25) 9.12 
(5.75) 

6.74 (4.34)  13.062  <0.001 *** 25  <0.001 ***  3.7161  0.0582  11.583  <0.001 *** 

Abbreviations: PD = Parkinson’s Desease; NC = Normal Control; iRBD = Idiopathic Rapid eye movement sleep Behavior Disorder; RBDQ-HK = Rapid Eye Movement 
Sleep Behavior Disorder Questionnaire–Hong Kong; PSQI = Pittsburgh sleep quality index; MoCA = Montreal Cognitive Assessment; ESS = Epworth Sleepiness Score. 

a Main effect of group in ANOVA.  

b Chi-squared test.  

Fig. 1. Schematic flowchart of multivariate distance matrix regression analysis based on the process framework, including 3D T1 weighted images parcellation, 
tractography of diffusion tensor images and registration. DWI: Diffusion weighted imaging; FDR, false discovery rate; DKT, Desikan–Killiany–Tourville atlas. 
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overview of processing steps is given in Fig. 1. 

2.4. Multivariate distance matrix regression 

MDMR was applied here to test the variation of distance in brain 
structural connectivity patterns among different cohorts. First, a dis-
tance matrix in the subject space was calculated for each region. Within 
each distance matrix, the distance between connectivity patterns for 
every possible subject pair among all groups related to region i was 
calculated by 

di
uv =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − ruv)

√

where ruv represents the Pearson correlation coefficient between con-
nectivity vectors of subject u and v. The connectivity vector, referring to 
the connection of a brain region to the rest 86 regions, demonstrates the 
connectivity strength from the given to others. 

The MDMR could exhibit excellent test level accuracy, yielding a 
pseudo F-statistic analogous to an F-statistic from a standard ANOVA 
model (Zalesky et al., 2010). Specifically, the total sum of squares for 
region i was calculated by 

ssi
T =

1
n

∑n

u=1

∑n

v=u+1
di2

uv  

where n = n1 + n2, the total number of subjects. Meanwhile, the within 
group sum of squares was calculated by 

ssi
W =

1
n1

∑n

u=1

∑n

v=u+1
di2

uvεa
uv +

1
n2

∑n

u=1

∑n

v=u+1
di2

uvεb
uv  

where n1 and n2 denote the number of each group respectively. εa
uv 

represents the belonging of the subject u and v, which equals to one 
when u and v within the same group. And then the F-statistic score of the 
region i would be obtained by 

Fi = (n − 1)
SSi

T − SSi
W

SSi
W 

A random permutation was applied to subjects with 1000 times to 
simulate the null distribution and the pseudo F-statistic score was re- 
computed each time. Finally, p value was calculated by counting the 
pseudo F-statistics from permutated values greater than those derived 
from the original data. Age and sex were incorporated in this model as 
covariates. Similarly, the procedure was repeated for all the brain re-
gions. False discovery rate correction was further applied to control the 
false positive rate. Essentially, MDMR could discriminate each voxel 
whether patterns of whole brain connectivity would be more similar in 
individuals with similar phenotypes than those with dissimilar pheno-
types (Ye et al., 2019). Additionally, p < 0.05 after false discovery rates 
correction was determined significance within the above experiments. 

2.5. Post-hoc analysis 

To explicitly measure which specific connectivity pattern is pri-
marily driving the association between brain network changes and dis-
ease progression, the alteration in connectivity pattern within these pair 
connections would be also examined. Specially, the δ-statistic was 
applied here to identify the top five connected network nodes with the 
greatest effect size from each seed brain region among the three subject 
groups (McArtor et al., 2017). The alterations of the connectivity 
strengths are further examined in those pairwise connections. In other 
words, the post-hoc analysis was conducted descriptively, according to 
those seed regions selected based on the significance from MDMR 
results. 

2.6. Classification performance 

Aiming to examine the discriminative ability of the key structural 
connectivity returned by MDMR and post-hoc analysis, we conducted the 
supervised learning experiment to classify the different subject groups. 
Briefly, we applied two classification models (i.e. logistic regression 
with L2 regularization and random forest) to detect iRBD or PD patients 
based on the connectivity features with the greatest effect size. A two- 
level nested cross validation was implemented to reduce potential 
overfitting, as illustrated in Fig. 2. In this nested cross-validation design, 
the outer cross validation holds out 20% of the samples as test set within 
5 folds and an additional inner 4-fold cross validation was performed on 
the remaining 80% samples to select the optimal model by hyper- 
parameter grid searching. This process was repeated 5 times with 
leaving 20% samples out and finally the classification performance was 
measured from all the samples. The two-level nested cross validation 
strategy helps to reduce the bias and gives an error estimate which is 
very close to the testing set. Dichotomous classification was applied for 
NC vs. RBD, and for NC vs. PD. In contrast, we also tested the discrim-
inative performance of the whole brain pairwise connectivity features 
(87 × 86 / 2 = 3741 pairs), and of the features extracted from network- 
based statistic (NBS) (Zalesky et al., 2010). The NBS algorithm was first 
proposed to exploit the extent to which the connections comprising the 

Fig. 2. The supervised learning pipeline with nested cross validation design, 
where logistic regression and random forest are implemented for distinguishing 
iRBD and PD. 
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contrast or effect of interest are interconnected, and reflects the 
advanced superiority of data-driven statistical method. Given that the 
NBS parameter threshold is difficult to choose, we empirically deter-
mined this value to make the number of significant connectivity from 
NBS approximate the number returned from MDMR analysis. The clas-
sification performance was evaluated in terms of sensitivity, specificity, 
accuracy, as well as the area under curve of receiver operating charac-
teristic on the test set. All the statistical analysis was performed in R 
(https://www.r-project.org). The classification model was built and 
evaluated with python package scikit-learn (Pedregosa et al., 2011). 

3. Results 

3.1. Demographic and clinical information 

The demographic characteristics of the participants in this study was 
shown in Table 1. No significant group differences were found in the sex 
(p = 0.351) and age (p = 0.646). Both iRBD and PD patients showed 
significantly worse sleep quality than NC, reflected by RBDQ-HK and 
PSQ (p < 0.001). MoCA assessment also demonstrated PD patients with 
significantly worse cognitive function compared with NC variations (p 
< 0.001). 

3.2. Brain regions with altered connectivity 

Eight brain seed regions with significant network reorganizations 
were observed from the MDMR analysis, including the right putamen, 
the right substantia nigra, the left parahippocampal gyrus, the left 
rostral middle frontal cortex, the left insula, the right paracentral, the 
right posterior cingulate, and the right precuneus (see Table S1 for 
statistical results of all brain regions). We further empirically selected 
five pair-wise connectivity with greatest effect size for each seed region 
as the key structural connectivity. Radar charts in Fig. 3 characterize the 
comprehensive connectivity patterns for each seed region, where each 
axis represents scaled connectivity strength. In Fig. 4, seed regions with 
significant network reorganizations were visualized in red, and the 
linked key connectivity were displayed in black. Based on the above 
findings, the brain connectivity signature associated with PD progres-
sion can be integrated into three types: Type A) remarkably disrupted 
connectivity in both iRBD and PD (the right putamen, the left rostral 
middle frontal cortex and the left insula); Type B) connectivity incre-
mentally decreasing from iRBD to PD (the left parahippocampal gyrus, 
the right precuneus, and the right paracentral lobule); and Type C) 
preserved connectivity in iRBD and remarkably disrupted connectivity 
in PD (the right substantia nigra and the right posterior cingulate). Note 
that this final determination of seed regions clustering mainly depends 
on the reshaping pattern of the most typical key connectivity, rather 
than all key connectivity for each seed region (please refer to the sup-
plementary univariate test shown in Table S2 and Fig. S2). For com-
parison, we also calculated the brain structural connectivity with 
significant groupwise difference based on NBS, as shown in Fig. S1. 

3.3. Evaluation of connectivity feature numbers 

In order to evaluate the optimal number of key connectivity (fea-
tures) related to each seed region, we compared the corresponding 
classification accuracy based on various numbers of features from n = 1 
to n = 10. The bar plot in Fig. 5 confirmed that key connectivity with n 
= 5 could achieve optimal classification accuracy across different group 
comparisons and different classification strategies. Therefore, the key 
connectivity regarding all eight seed regions (5 × 8 = 40) for each 
participant were collected to constitute the full feature set for the 
following evaluation. 

3.4. Classification performance 

To comprehensively evaluate the disease discriminating capability 
underlying the key structural connectivity patterns, the classification 
performance based on machine learning was compared among the three 
different feature selection approaches (i.e. whole brain connectivity, 
connectivity pairs returned from MDMR and NBS). As demonstrated in 
Fig. 6, MDMR with random forest achieved optimal accuracy perfor-
mance in discriminating NC and PD (accuracy = 0.933), compared to 
the other two approaches (whole brain: accuracy (RF) = 0.833, accuracy 
(LR) = 0.658; NBS: accuracy (RF) = 0.875, accuracy (LR) = 0.683). As 
expected, the random forest method prevails over the logistic regression 
in terms of accuracy for all feature selection approaches, probably due to 
advantage of ensemble strategy. Even for prodromal stage, the accuracy 
of discrimination between iRBDs and NCs was 0.833 (sensitivity =
0.886; specificity = 0.815), suggesting that the MDMR analysis could 
offer effective brain feature sets for PD detection and early warning (see 
Table 2). 

4. Discussion 

Increasing evidences suggest iRBD could be one of the initial mani-
festation and a prodromal symptom of PD (Fereshtehnejad et al., 2015; 
Zhang et al., 2017). In this study, we endeavoured to quantitatively 
characterize PD progression in early and late stages. To this end, we used 
diffusion MRI to establish individual-based brain structural network in 
NC, iRBD and PD groups, and performed multiple data-driven multi-
variate statistical approaches to identify potential brain connectivity 
signatures related to PD pathology. In our findings, while extensive 
decreased cortico-striatal structural connectivity was observed in iRBD 
patients, the incremental alterations of connectivity between cortical 
regions were associated with the progression of PD. More importantly, 
these connectivity features underlying this PD-related network reorga-
nization demonstrated excellent performance to distinguish iRBD and 
PD from NC. In the following discussion, we first summarize the PD- 
related structural connectivity patterns. 

Briefly, three distinct types of structural network reorganization 
patterns in PD progression were revealed related to PD progression. The 
first type is the disrupted cortico-striatal connectivity observed in both 
iRBD and PD (namely Type A connectivity pattern), including the ipsi-
lateral putamen-temporal connectivity (see Fig. 3A), the contralateral 
caudate-frontal connectivity (see Fig. 3B), and the contralateral caudate- 
insula connectivity (see Fig. 3C). Consistently, post mortem and nuclear 
imaging studies have reported that the nigro-striatal dopamine deple-
tion, one hallmark of PD, will trigger decreased connectivity between 
the striatum and the telencephalon (Brooks et al., 1990; Brück et al., 
2006; Guttman et al., 1997; Kish et al., 1988; Nurmi et al., 2001). Given 
pathological evidences showing that prominent motor symptoms would 
not emerge until about half dopaminergic nerves were irreversibly 
damaged (Fearnley and Lees, 1991), it’s no surprise to observe early 
decrease of cortico-striatal structural connectivity in prodromal PD 
stage. Congruently, compensatory reactivation due to dopaminergic 
deafferentation was also confirmed in brain functional network in pa-
tients with RBD (Rolinski et al., 2016). Taken together, our findings 
comprehensively reflected extensive decreased cortico-striatal struc-
tural connectivity occurred in iRBD patients, which may further induce 
significant motor symptoms in PD patients. 

Besides, the incremental alterations of connectivity between cortical 
regions along with the progression of PD were also extensively observed 
in our study, including connectivity related to the parahippocampus (see 
Fig. 3D), the precuneus (see Fig. 3E) and the paracentral lobule (see 
Fig. 3F). This connectivity pattern (namely type B connectivity pattern) 
supports the hypothesis that patients with iRBD are on the path to 
synucleinopathy development (Bauckneht et al., 2018). Previous studies 
have found that extensive patterns of reduced connectivity in PD were 
observed within and between the temporal, parietal and occipital areas 
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Fig. 3. Post-hoc analysis of connectivity patterns for the seed regions subsequent to multivariate distance matrix regression (MDMR). Eight nodes with significant 
differences in connectivity patterns in the three-group comparison were selected for the post-hoc analysis. For each seed region returned by MDMR, the top five 
connections with the greatest effect size are represented as axes in the radar chart. 
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(Shah et al., 2017a) and precuneus degeneration might be related to this 
non-motor symptom in PD (Shin et al., 2017). The gradually decreased 
connectivity linked to paracentral lobule has also been reported on PD 
patients in previous studies (Hepp et al., 2017) (Kim et al., 2014). 

Contrary to our hypothesis, the contralateral cingulate connectivity 

(see Fig. 3G) and the SN-related connectivity (see Fig. 3H) significantly 
reconfigured on clinical PD stage, as compared to preserved connectivity 
strength in prodromal stage (namely type C connectivity pattern). 
Although the interpretation of the significant increased contralateral 
cingulate connectivity needs more evidence, many observations 

Fig. 4. Comprehensive connectivity patterns for all seed regions identified by the post-hoc analysis. Network nodes representing each brain region selected in this 
paper are shown, where seed regions with significant difference by MDMR and post-hoc analysis are represented in red and others in blue. The edges with top five 
greatest connectivity strength for each seed region are displayed in black. SN: substantia nigra; L, left; R, right. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Classification performance with the number of features, which were selected from the regions with the greatest effect size.  
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Fig. 6. Receiver operating characteristic (ROC) curves show the brain connectivity patterns returned from MDMR (first column), NBS (second column), whole brain 
(third column) briefly in the first row, distinguishing PD from NC (second row), iRBD from NC (third row) and PD from iRBD by random forest (blue line) and logistic 
regression (green line) in detail. The shaded areas represent the confidence intervals of the ROC curves. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Classification performance between groups (NC vs. iRBD and NC vs. PD) with two classification algorithm, logistic regression, and random forest. ACC = accuracy; 
SEN = sensibility; SPE = specificity, MDMR = multivariate distance matrix regression; NBS = network based statistics.  

Connectivity features MDMR NBS Whole Brain 

NC vs. PD NC vs. iRBD iRBD vs. PD NC vs. PD NC vs. iRBD iRBD vs. PD NC vs. PD NC vs. iRBD iRBD vs. PD 

Logistic Regression ACC  0.708  0.667  0.667  0.683  0.724  0.635  0.658  0.625  0.588 
SEN  0.750  0.667  0.701  0.634  0.725  0.548  0.607  0.705  0.550 
SPE  0.667  0.527  0.519  0.772  0.650  0.646  0.738  0.551  0.625 

Random Forest ACC  0.933  0.833  0.889  0.875  0.833  0.824  0.833  0.778  0.824 
SEN  0.967  0.886  0.925  0.917  0.875  0.869  0.857  0.765  0.812 
SPE  0.917  0.815  0.920  0.833  0.750  0.900  0.800  0.667  0.900  
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regarding structural compensation of commissural fibers in later stage 
have been reported (see literature review in (Sanjari Moghaddam et al., 
2020)), possibly due to improved interhemispheric information transfer 
to counterbalance pathological changes in one hemisphere. As a hall-
mark brain region of PD, SN has been widely reported in terms of fiber 
damages in clinical stage (Kamagata et al., 2018; Menke et al., 2009; 
Shah et al., 2017b). However, no MRI study has ever investigated SN- 
related structural connectivity integrity in iRBD patients. Although our 
previous study reported excessive iron deposition accumulated in the SN 
at the iRBD stage (Sun et al., 2020), the related connectivity in iRBD 
remains controversial. While a previous study with a limited sample size 
of participants found that the brain functional connectivity of iRBD was 
different from that of NC and PD, which shows the progression from 
iRBD to PD involves increases and decreases in different nigra 
subcortical-cortical connections correlations (Ellmore et al., 2013), 
another recent study reported no significant difference in functional 
connectivity between iRBD and PD (Rolinski et al., 2016). Overall, these 
findings imply that the SN-related structural connectivity is more likely 
to be relatively intact at prodromal PD and altered after prodromal PD. 
Longitudinal evidence is further needed to test this hypothesis. 

Furthermore, the brain dysconnectivity features identified by MDMR 
demonstrated remarkably performance in detecting iRBD and PD from 
NC (NC vs. iRBD accuracy: 83.3%, NC vs PD accuracy: 93.3%), 
compared with the connectivity features detected by the conventional 
NBS approach (NC vs. iRBD accuracy: 83.3%, NC vs PD accuracy: 
87.5%), or from the whole brain (NC vs. iRBD accuracy:77.8%, NC vs PD 
accuracy: 83.3%). MDMR evidently exhibits excellent sensitivity and 
specificity to identify the driving components that leads to brain 
network reorganization, and to localize the brain connectivity signature 
unique to particular disease states in a data-driven manner. Overall, our 
findings coincide with the recent paradigm shift in investigating etio-
logical mechanism of PD from regional abnormalities to an integrated 
outlook. Studies have shown that the misfolding of α-synuclein propa-
gation occurs along the structural connection network of the human 
brain (Zeighami et al., 2015; Zheng et al., 2019). Therefore, clarifying 
the nature of structural connectivity signature of PD progression is 
crucial for searching new intervention targets to alter disease trajectory 
in early PD patients. 

This study was not without limitations. First, the optimal fiber 
tracking method in structural brain network construction is still 
controversial, for regions with more frequent fiber disposition are more 
likely to obtain potential errors during fiber tract reconstruction. To 
maximally avoid such effects, anatomical-constrained tractography 
method for tractography estimation with anatomical priors was per-
formed to improve the biological plausibility of the generated stream-
lines (Smith et al., 2012). Second, it’s challenging to biologically 
interpret the substrate underlying the strength changes of brain struc-
tural connectivity. The multi-shell high spatial and angular diffusion MR 
data combined with anatomical-specific post-processing analysis, such 
as voxel-based analysis (Mito et al., 2018), can possibly explain whether 
the degeneration of WM tracts in iRBD and PD patients is mainly due to 
axonal loss or demyelination. Finally, the sample size of our study was 
relatively small. Although nested cross validation strategy has been 
implemented to overcome overfitting, larger cohorts are needed to 
validate the observed brain network signature related to PD progression. 

In conclusion, we established the brain structural network of iRBD 
and PD using diffusion MRI data, and identified unique patterns of 
network reorganization along with the progression of PD. Three types of 
brain structural connectivity reorganizations of PD progression were 
detected in eight brain regions. These progressive alterations support the 
hypothesis that iRBD patients are on the path to developing a synu-
cleinopathy (Bauckneht et al., 2018). The extracted specific structural 
connectivity patterns associated with various clinical phenotypes ob-
tained high accuracy performance to predict iRBD and PD. Cheap, safe 
and reliable means of identifying iRBD with the highest risk of PD will 
promote the targeted use of novel disease modification therapies and 

revolutionize clinical trials in this field. 
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Vilas, Dolores, LLadó, Albert, Gaig, Carles, Santamaria, Joan, 2013. 
Neurodegenerative disease status and post-mortem pathology in idiopathic rapid- 
eye-movement sleep behaviour disorder: an observational cohort study. Lancet 
Neurol. 12 (5), 443–453. https://doi.org/10.1016/S1474-4422(13)70056-5. 

Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J., 2011. Probabilistic 
fiber tracking using the residual bootstrap with constrained spherical deconvolution. 
Hum. Brain Mapp. 32 (3), 461–479. 

Kamagata, Koji, Zalesky, Andrew, Hatano, Taku, Di Biase, Maria Angelique, El 
Samad, Omar, Saiki, Shinji, Shimoji, Keigo, Kumamaru, Kanako K., Kamiya, Kouhei, 
Hori, Masaaki, Hattori, Nobutaka, Aoki, Shigeki, Pantelis, Christos, 2018. 
Connectome analysis with diffusion MRI in idiopathic Parkinson’s disease: 
Evaluation using multi-shell, multi-tissue, constrained spherical deconvolution. 
Neuroimage Clin 17, 518–529. https://doi.org/10.1016/j.nicl.2017.11.007. 

Kim, Ji Sun, Yang, Jin-ju, Lee, Jong-min, Youn, Jinyoung, Kim, Ju-min, Cho, Jin Whan, 
2014. Topographic pattern of cortical thinning with consideration of motor laterality 
in Parkinson disease. Parkinsonism Related Disord. 20 (11), 1186–1190. 

Kish, Stephen J., Shannak, Kathleen, Hornykiewicz, Oleh, 1988. Uneven pattern of 
dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. 
N. Engl. J. Med. 318 (14), 876–880. 

Li, W., Wu, B., Liu, C., 2014. STI Suite: a Software Package for Quantitative Susceptibility 
Imaging. Proc. Intl. Soc. Mg. Reson. Med. 22. 

McArtor, Daniel B., Lubke, Gitta H., Bergeman, C.S., 2017. Extending multivariate 
distance matrix regression with an effect size measure and the asymptotic null 
distribution of the test statistic. Psychometrika 82 (4), 1052–1077. 

Menke, R.A., Scholz, J., Miller, K.L., Deoni, S., Jbabdi, S., Matthews, P.M., Zarei, M., 
2009. MRI characteristics of the substantia nigra in Parkinson’s disease: a combined 
quantitative T1 and DTI study. Neuroimage 47 (2), 435–441. https://doi.org/ 
10.1016/j.neuroimage.2009.05.017. 

Milham, Michael Peter, 2012. Open neuroscience solutions for the connectome-wide 
association era. Neuron 73 (2), 214–218. 

Mito, R., Raffelt, D., Dhollander, T., Vaughan, D.N., Tournier, J.D., Salvado, O., 
Connelly, A., 2018. Fibre-specific white matter reductions in Alzheimer’s disease and 
mild cognitive impairment. Brain 141 (3), 888–902. https://doi.org/10.1093/brain/ 
awx355. 

Nurmi, Elina, Ruottinen, Hanna M., Bergman, Jrgen, Haaparanta, Merja, Solin, Olof, 
Sonninen, Pirkko, Rinne, Juha O., 2001. Rate of progression in Parkinson’s disease: a 
6-[18F] fluoro-L-dopa PET study. Movement Disord.: Off. J. Movement Disord. Soc. 
16 (4), 608–615. 

O’malley, K.L., 2010. The role of axonopathy in Parkinson’s disease. Exp. Neurobiol. 19 
(3), 115–119. 

Park, Kang Min, Lee, Ho-Joon, Lee, Byung In, Kim, Sung Eun, 2019. Alterations of the 
brain network in idiopathic rapid eye movement sleep behavior disorder: structural 
connectivity analysis. Sleep Breathing 23 (2), 587–593. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Dubourg, V., 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 
2825–2830. 

Poldrack, Russell A., Baker, Chris I., Durnez, Joke, Gorgolewski, Krzysztof J., 
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