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Abstract Telocytes (TCs) form a cardiac network of inter-
stitial cells. Our previous studies have shown that TCs are
involved in heterocellular contacts with cardiomyocytes and
cardiac stem/progenitor cells. In addition, TCs frequently
establish ‘stromal synapses’ with several types of immuno-
reactive cells in various organs (www.telocytes.com). Using
electron microscopy (EM) and electron microscope tomog-
raphy (ET), we further investigated the interstitial cell net-
work of TCs and found that TCs form ‘atypical’ junctions
with virtually all types of cells in the human heart. EM and
ET showed different junction types connecting TCs in a
network (puncta adhaerentia minima, processus adhaer-
entes and manubria adhaerentia). The connections between
TCs and cardiomyocytes are ‘dot’ junctions with nanocon-
tacts or asymmetric junctions. Junctions between stem cells
and TCs are either ‘stromal synapses’ or adhaerens junc-
tions. An unexpected finding was that TCs have direct cell–
cell (nano)contacts with Schwann cells, endothelial cells
and pericytes. Therefore, ultrastructural analysis proved that
the cardiac TC network could integrate the overall ‘infor-
mation’ from vascular system (endothelial cells and peri-
cytes), nervous system (Schwann cells), immune system
(macrophages, mast cells), interstitium (fibroblasts, extra-
cellular matrix), stem cells/progenitors and working cardio-
myocytes. Generally, heterocellular contacts occur by means
of minute junctions (point contacts, nanocontacts and pla-
nar contacts) and the mean intermembrane distance is with-
in the macromolecular interaction range (10–30 nm). In
conclusion, TCs make a network in the myocardial

interstitium, which is involved in the long-distance intercel-
lular signaling coordination. This integrated interstitial sys-
tem appears to be composed of large homotropic zones
(TC–TC junctions) and limited (distinct) heterotropic zones
(heterocellular junctions of TCs).
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Introduction

A telocyte (TC) is a unique type of interstitial cell with specific
prolongations named telopodes (Tp) (Popescu and Faussone-
Pellegrini 2010; Popescu 2011; Faussone-Pellegrini and
Popescu 2011). TCs have been described by electron micros-
copy in several cavitary and non-cavitary organs of humans
and mammalians [see www.telocytes.com]. Tp are an alterna-
tion of thin segments (podomers) and dilated segments
(podoms). Podomers are very thin (less than 0.2 μm), often
below the resolving power of light microscopy, explaining the
fact that TCs have been overlooked up to now. In the heart,
TCs have been found in the myocardium, epicardium,
endocardium and cardiac stem cell niches (Popescu and
Faussone-Pellegrini 2010; Li et al. 2010; Bani et al. 2010;
Faussone-Pellegrini and Bani 2010; Gherghiceanu et al. 2010;
Gherghiceanu and Popescu 2010; Kostin 2010; Suciu et al.
2010a; Zhou et al. 2010; Popescu et al. 2010, 2011a, b;
Faussone-Pellegrini and Popescu 2011; Popescu 2011; Rusu
et al. 2011) and various roles of TCs in cardiac physiology and
pathology have been discussed (Mandache et al. 2010; Rupp
et al. 2010; Limana et al. 2011; Ardeleanu and Bussolati 2011;
Barile and Lionetti 2012; Kostin 2011; Liehn et al. 2011;
Lionetti 2011; Liu et al. 2011; Manole et al. 2011; Russell et
al. 2011; Sassoli et al. 2011; Xiao et al. 2011 Zheng et al.
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2011; Zhou and Pu 2011; Suciu et al. 2011; Laflamme and
Murry 2011). In 1963, Farquhar and Palade discovered and
classified the ‘classical’ cell–cell junctions, using electron
microscopy. For a long time they were considered static
structures based on their conspicuous ultrastructure. However,
new techniques have revealed that junctional molecules are
not restricted to a particular type of junction (Franke 2009;
Pieperhoff et al. 2010). Atypical homocellular junctions with
discrete ultrastructure and specific molecular composition
have been described in addition to the four major “textbook
categories” of cell–cell junctions (gap junctions, tight junc-
tions, adherens junctions and desmosomes) (see for review
Franke et al. 2009). Anyway, a broad range of other junctions
exists such as the tiny puncta adhaerentia minima, manubria
adhaerentia, plakophilin-2-containing adhaerens junctions,
etc. (Wuchter et al. 2007; Franke et al. 2009; Barth et al.
2009). Cell–cell interactions play a key role in tissue

architecture as well as in cell growth, renewal, repair and
pathology (Sheikh et al. 2009; Cavey and Lecuit 2009; Li
and Radice 2010; Green et al. 2010; Palatinus et al. 2010; Li et
al. 2011; Raju et al. 2011). In the adult mouse heart, we have
found that TCs form an interstitial network connected by
homocellular junctions and that they are also involved in
formation of heterocellular contacts with cardiomyocytes
(Mandache et al. 2007; Gherghiceanu and Popescu 2011)
or cardiac stem/progenitor cells (Popescu et al. 2009;
Gherghiceanu and Popescu 2010). Electron microscopy
has also shown that TCs frequently establish close contacts
(stromal synapses; Popescu et al. 2005) with several types
of immunoreactive cells in various organs (Suciu et al.
2010b; Hinescu et al. 2011; Popescu et al. 2011b, Nicolescu
and Popescu 2012; Nicolescu et al. 2012; Rusu et al. 2012;
Cretoiu et al. 2012). We have further investigated the
interstitial TC network in the human heart and have found

Fig. 1 Electron micrograph of
human atrium shows the
interstitial network of telocytes
and their telopodes (digitally
colored in blue). Many different
types of nonmyocytes are
present in cardiac interstitium:
telocyte (about 50 μm long),
fibroblast, blood vessel,
Schwann cell and numerous
nerve endings (n). Telopodes
(Tp) of different telocytes are
visible among the interstitial
cells. Telopodes Tp1 and Tp2
enfold a group of working
cardiomyocytes. The fibroblast
(about 15 μm long) has the
cytoplasm filled with rough
endoplasmic reticulum (rER).
Bar 10 μm
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that TCs can form ‘atypical’ junctions with virtually all
types of cardiac cells.

Material and methods

Small human heart samples (atrial appendages) were obtained
from patients undergoing heart surgery. Mouse heart samples
were obtained from four 1-year-old C57BL/6 mice.

Transmission electron microscopy (EM) was per-
formed on cardiac samples processed according to a routine
fixation and Epon embedding procedure, as previously de-
scribed (Mandache et al. 2007; Hinescu et al. 2011). Thin
sections (60 nm) were examined under a Morgagni 286

transmission microscope (FEI Company, Eindhoven, The
Netherlands) at 60 kV. Digital electron micrographs were
recorded with MegaView III charge-coupled device (CCD)
using iTEM SIS software (Olympus, Soft Imaging System,
Münster, Germany). All measurements were performed with
iTEM SIS software, using 50 randomly selected structures/
images. Several EM images were digitally colored (blue)
using Adobe Photoshop CS3, in order to highlight the
presence of TCs.

Electron microscope tomography (ET) was performed
by using a Tecnai G2 Spirit BioTwin transmission electron
microscope with single-tilt specimen holder (FEI Company)
at 100 kV as previously described (Gherghiceanu and
Popescu 2007). Electron tomographic data sets were

Fig. 2 Telocytes in human heart (electron microscopy). a Digitally
colored image emphasizes in blue a network of telopodes (Tp1÷Tp9)
neighboring a cardiac artery. Overlapping and parallel running telo-
podes are formed by alternation of podomers (less than 0.2 μm thin
segments) and podoms (arrowheads), which generate their moniliform
aspect. b Podoms, the dilated segments of telopodes, host mitochondria

(M), endoplasmic reticulum (ER) and caveolae (arrows). c Shed
vesicles (sv), clustered in multivesicular structures, emerge (arrows)
from telopodes (Tp). The image suggests that shed vesicles (sv) are
transferred from Tp2 to Tp3. A point contact (arrowhead) is visible
between Tp1 to Tp2. CM— cardiomyocyte; E — endothelial cell; P —
pericyte. Bars 10 μm (a), 1 μm (b), 0.5 μm (c)
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recorded with a MegaView G2 CCD camera (Olympus) in
ET mode on 250 nm-thick sections of Epon-embedded
mouse cardiac tissue. Tomographs were acquired at 1-
degree angular increments from −65° to +65° with an axis
perpendicular to the optical axis of the microscope, at a
magnification of 36,000× magnifications (1.64 nm/px). Af-
ter data alignment, the data sets were reconstructed into a
three-dimensional (3D) volume (data collection, reconstruc-
tion and visualization) by using Xplore3D Tomography
Suite software (FEI Company). Amira 5.0.1 software (Vis-
age Imaging, Berlin, Germany) was used for 3D imaging.

Results

Telocytes (TCs) are clearly defined by their ultrastructural
features: interstitial cells with extremely long prolongations
named telopodes (Tp). The shortest definition of TCs is: cell
with Tp (Popescu 2011).

Telopodes (Tp) have particular characteristics and limi-
tations (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11):

1. Number : 1–5/cell, usually 1–3 (Figs. 1 and 2);
2. Branching: dichotomous pattern (Fig. 3);

Fig. 3 Telocyte–telocyte junctions in human heart (electron mi-
croscopy). a Two overlapping telopodes (Tp1, Tp2) are connected
by a sequence of puncta adherentia minima (small arrows) in
1.2 μm long contact sector (white arrows in dotted circle) —
processus adhaerens. Minute adjoining points of the plasma mem-
brane of telopodes (Tp1-Tp2 and Tp1-Tp3) are also visible (black
arrowheads). b A telopode (Tp1) is embraced by the cytoplasmic
extension (Tp2) of a telocyte (TC) — recessus adhaerens (intercel-
lular contact is 2.7 μm long and the mean intermembrane distance
is 25 nm). Note the mitochondria (m), dense core granule (g) and

microtubule (small arrows) in telopode Tp1. An attachment plaque
(white arrowhead) connects Tp1 with the extracellular matrix. c A
telopode (Tp2) inserts into a cuplike space (dotted circle) formed
by the adjacent telopode (Tp1) — a loose recessus adhaerens
(intercellular contact is 3 μm long and the intermembrane distance
is between 25 and 100 nm). Focal adherens junctions (black
arrowheads) could be seen connecting telopodes in the junctional
structure. Similar junctional construct (white arrowhead) can be
usually seen connecting adjacent endothelial cells (E1, E2). CM —
cardiomyocyte; P — pericyte. Bars 0.5 μm (a, b), 1 μm (c)

268 Cell Tissue Res (2012) 348:265–279



3. Length: usually tens of micrometers (up to 100) (Figs. 1
and 2);

4. Aspect: moniliform — podomers alternating with
podoms (Fig. 2);

5. Podomers (Fig. 2) — 50–100 nm thin segments;
usually below 0.2 μm (the resolving power of light
microscopy) (116.91±58.64 nm; min029.26 nm;
max0261.82 nm/n050);

6. Podoms (Fig. 2) — dilated segments accommodating mi-
tochondria, ER and caveolae (‘Ca2+ uptake/release units’)
(0.65±0.23 μm; min00.32 μm; max01.19 μm/n050);

7. Connected with each other via homocellular junc-
tions (Fig. 3) form an interstitial 3D network (Figs. 1
and 2a).

Telocytes — homocellular junctions

One of the most striking features of TCs is their organization
in a 3D network by Tp connections through homocellular
junctions. Non-characteristic junctions connecting TCs usual-
ly occur at the level of Tp but junctions between the Tp and
TCs cell body are also encountered (Fig. 3c). Moreover,
electron microscopy often shows that Tp are connected by
point contacts and electron-dense nanostructures (Fig. 3a).
The two cell membranes are separated by a narrow space
(10-30 nm), suggesting a molecular interaction between dif-
ferent TCs.

Electron microscopy showed that TCs are coupled by adhe-
rens junctions with different morphology: puncta adhaerentia

Fig. 4 Telocyte–cardiomyocyte junctions in human heart (electron mi-
croscopy). a, b Serial sections display a tight contact (white arrows in
dotted circles) between plasma membranes of a telopode (Tp1) and a
cardiomyocyte. Note the discontinuity (small black arrows) of CM’s
basal lamina. Another telopode (Tp2) makes planar contact (arrowheads)
with Tp1 and wraps an elastic fiber (e). A desmosome (d), gap (g) and
adherens (a) junctions are visible connecting the cardiomyocytes. c, d
Serial ultrathin sections additionally show ‘atypical’ junction connecting
a telopode (Tp) and a cardiomyocyte (CM). The junction is formed by
small point contacts (white arrows) apparently randomly distributed.

Triple arrows point out a connection segment where the telopode and
cardiomyocyte seem to fuse (c). Microfilaments form a cytoplasmic
plaque in the cardiomyocyte cortical space at the site of asymmetric
junction. Basal lamina of the cardiomyocyte is interrupted on this seg-
ment and small black arrows mark the break points. Note that the
telopode (Tp) makes a loop around an elastin fiber (e). Attachment
plaques (arrowheads) connect the telopode with the extracellular matrix.
A dense core granule could be seen in the telopode in panels d (g). Bars
0.5 μm (a, c), 1 μm (b, d)
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minima (Figs. 3a, 7a and 10a), processus adhaerentes, visible
between overlapping telopodes (Figs. 3a, 4a, b and 7a) and
recessus adhaerentes or manubria adhaerentia (Fig. 3b, c).
The recessus adhaerentes junctions were visible between Tp
(Fig. 3c) and regions of the cellular body of TCs or between Tp
segments of different cells (Fig. 3b). It is worthy of mention
that no unambiguous gap junction has been found connecting
TCs.

In addition to all direct membrane-membrane homocel-
lular contacts, electron microscopy also showed that shed-
ding vesicles (60-100 nm vesicles) and clusters of
microvesicles or exosomes (diameters: 250 – 350 nm up

to 1 μm) were frequently emerging from Tp (Fig. 2c). The
mean diameter of shed vesicles was 128.6±33.3 nm (min:
60 nm; max: 193 nm / n050).

Telocytes — heterocellular junctions

Electron microscopy revealed that cardiac TCs could estab-
lish heterocellular junctions with all other cell types existing
in the heart: cardiomyocytes (CM) (Figs. 4 and 10b), puta-
tive stem cells (pSC) (Figs. 5 and 6), cardiomyocyte pro-
genitors (CMP) (Fig. 7), fibroblasts (Fig. 8a–c), mast cells
(Fig. 8d, e), macrophages (Fig. 9), pericytes (Fig. 10a),

Fig. 5 Telocyte–putative stem cell junctions in human heart (elec-
tron microscopy). a, b Electron microscopy shows the point
contacts (arrowheads) between a telocyte (blue colored) and a
putative stem cell. Broader, planar contacts (double arrows) could
also be seen. a The mean distance between plasma membranes of
telopode (Tp) and putative stem cell is 43±20.3 nm (min:
20.3 nm; max: 90.6 nm). CM — cardiomyocyte; sv — shed
vesicles; E — endothelial cell. b Higher magnification on a

consecutive ultrathin section of the rectangular area marked in
a highlights the geometry of the 8-μm-long heterocellular con-
nection: dot contacts (arrowheads) alternate with planar contacts,
tight-fitting apposed sectors of plasma membranes (double
arrows). Small cellular projection of putative stem cell (arrow)
inserts into a small recess of the telocyte. Dense nanostructures
(15–20nm) could be seen connecting the plasma membranes of
the two cells (white arrowheads). Bars 2 μm (a, b)
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endothelial cells (Fig. 10b) and Schwann cells (Fig. 11).
Direct heterocellular contacts found by electron microscopy
were point contacts, electron-dense nanostructures and pla-
nar contacts (Table 1). No typical ultrastructural features of
‘classical’ types of junctions have been found (gap, tight,
adhaerens or desmosomes).

Telocytes — cardiomyocytes

Frequently, TCs are close to the basal lamina of cardiomyo-
cytes and the distance between the two cellular membranes
is about 150 nm. Occasionally, direct contacts between
TCs and cardiomyocytes have also been observed (Figs. 4
and 10b). The basal lamina of cardiomyocytes appears to
be split apart lateral to the contact sites (Fig. 4).

Sometimes, EM images suggest a fusion of the cell mem-
branes of TCs and cardiomyocytes (Fig. 4a, c) but the
exploration of serial thin sections (Fig. 4b, d) shows that
‘fusion’ is a false impression generated by the picture of
obliquely sectioned membranes. Direct connections TC–
CM have been undoubtedly found (Fig. 4b, d), dot junc-
tions connecting the cellular membranes. Small electron-
dense nanostructures have been seen linking the cellular
membranes of TCs and CMs (Fig. 4c, d). Some TC–CM
junctions appear to be asymmetric. Dense material (Z-
band like) could be observed in cortical cytoplasm of
cardiomyocytes in some points (Fig. 4c) but no specific
ultrastructure in the counterpart TC cytoplasm. The TC–
CM junctions could often be observed at the level of
intercalated discs (Figs. 4a, b and 10b) but TC–CM

Fig. 6 Telocyte–putative stem
cell junctions (pSC) (electron
tomography). Telocyte via
telopode (Tp) makes
heterocellular and heterotypical
junctions with a putative stem
cell in a mouse cardiac stem cell
niche. a The image in the
background (direct image of the
250-nm-thick section) shows the
overall appearance of the multi-
ple contacts: planar contacts
(white arrows) and point contacts
(black arrows). The two insets
show digital sections (60 and 81
from 89) from the reconstructed
volume of square marked area.
Arrows mark planar contacts be-
tween telopode (Tp) and putative
stem cell (pSC). A small space
(arrowheads) is delimited by the
two planar contacts. b, c Digital
sections through another tomo-
graphic volume show adherens
junction (black arrows) and lat-
eral point contacts (white arrows)
between a telopode (Tp) and a
putative stem cell. Endoplasmic
reticulum cisternae (ER) are visi-
ble in both cells. m— mitochon-
drion. Bars 2 μm (a), 0.5 μm
(insets in a), 1 μm (b, c)
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contacts could be seen at various distances from interca-
lated discs (Fig. 4c, d).

Telocytes — putative stem cells

Electron microscopy showed that TCs have direct contacts
with mononuclear cells, probably stem cells (Figs. 5 and 6a).
These putative stem cells (pSC) are small, round-oval cells (6–
10 μm in diameter), with few mitochondria, few long endo-
plasmic reticulum cisternae and a large amount of free ribo-
somes (Fig. 5). Anyway, a set of criteria for stem cell
recognition by electron microscopy has already been reported
(Gherghiceanu et al. 2011). Usually, TCs have small contacts
with pSC (Gherghiceanu and Popescu 2010) but sometimes
Tp attach to the plasma membrane of pSC and the ultrastruc-
ture of the membrane connections resemble a stromal synapse
(Popescu et al. 2005) with multiple close-contact points alter-
nating with planar direct intermembrane contacts and regions
of wider intermembrane distance (50-100 nm) (Fig. 5). Serial
sections show that short processes of pSC insert into small
recesses of TCs and form minute ‘recessus adhaerens’ - like

junctions (Fig. 5b). Electron tomography shows that planar
contacts have small dense structures bordering on the contact
membrane of pSC (Fig. 6a). In addition, typical adherens
junctions could be observed (Fig. 6b, c).

Telocytes — cardiomyocyte progenitors

Unlike stem cells, the cardiomyocyte progenitors
(Popescu et al. 2009; Gherghiceanu et al. 2011) are
recognizable without difficulty (Fig. 7). These cells dis-
play typical ultrastructural features of immature cardio-
myocytes, including high nucleo-cytoplasmic ratios,
unorganized bundles of filaments, lipid droplets, intra-
cytoplasmatic dense bodies (similar to primordial Z
lines), intracytoplasmatic desmosome-like structures (pri-
mordial intercalated discs) and cortical leptofibrils
(Fig. 7). Moreover, these cells have large mitochondria,
numerous caveolae and a continuous basal lamina. A
central element of the niche is represented by TCs,
stromal supporting cells for CMP (Popescu et al. 2009;
Gherghiceanu and Popescu 2010).

Fig. 7 Telocyte–
cardiomyocyte progenitors
(CMP). a, b Electron
microscopy images of mouse
heart show telopodes (Tp, blue)
surrounding cardiomyocyte
progenitors (arrowheads) in the
stem cell niche. The
intercellular, intermembrane,
distance is below 150 nm.
White arrows indicate typical
organelles for CMP-leptofibrils.
a White arrowheads point out
small adherens junctions be-
tween overlapping telopodes
(Tp1 with Tp4; Tp2 with Tp3)
embracing CMP. Rectangular
marked area (details in inset)
highlights how CMP adjoin in
the periphery or cardiac muscle
(CM). Inset — higher magnifi-
cation reveals immature adhe-
rens junctions (white arrows)
fastening CMP addition to the
working cardiomyocyte (CM).
Dotted line follows the insertion
of a small process of CMP into
a recess of the adult CM. b Note
the convoluted segment of the
telopode (Tpc) above the CMP
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Telocytes — other interstitial cells

Point contacts or planar junctions could often be found
between TCs and fibroblasts (Fig. 8a-c), mast cells
(Fig. 8d, e) or macrophages (Fig. 9). Small electron dense
nanostructures were usually present between plasma mem-
branes of contacting cells (Figs. 8 and 9) but classical type
of junctions has not been found.

Telocytes — capillaries

Electron microscopy showed contacts between TCs and cap-
illaries, in particular pericytes (Fig. 10a) and endothelial cells
(Fig. 10b). There were point contacts (Fig 10b) or planar
contacts (Fig 10a) but no electron dense structures were pres-
ent on plasma membranes or in the cortical cytoplasm to
subsume these contacts under one of the known classes of
intercellular junctions. The basal lamina of both endothelial

cells and pericytes was always broken up at the level of
heterocellular junctions (Fig. 10). The relationships between
TCs and endothelial cells (Manole et al. 2011) as well as
between TCs and pericytes (Suciu et al. 2011) have previously
been reported. Endothelial cells and pericytes usually estab-
lish heterotypic myocyte–endothelial junctions (Fig. 10a).

Telocytes — Schwann cells

Our ultrastructural study showed that TCs also establish direct
cell–cell point contacts with Schwann cells (Fig. 11), for
example in human atrial tissue. The basal lamina of Schwann
cells presented discontinuities at the site of contacts. The
maximal diameter of these atypical heterocellular junctions
was up to 0.5 μm. Electron dense nanostructures (about
10 nm) were usually present between plasma membranes of
TCs and Schwann cells (Fig. 11). Cisternae of endoplasmic
reticulum could often be seen next to junctional areas (Fig. 11).

Fig. 8 Electron microscopy of human heart demonstrates the existence
of atypical junctions between the telocyte and fibroblast (a–c) as well
as between the telocyte and mast cell (d, e). a–c Serial ultrathin
sections illustrate the telocyte–fibroblast connection. Electron-dense
nanostructures (arrows) could be observed connecting a telopode

(Tp) with a fibroblast (Fb). d A mast cell is surrounded by telopodes
(Tp, blue colored). e High magnification of squared marked area in e
shows, on a consecutive ultrathin section, electron-dense nanostruc-
tures (arrow) connecting the telopode (Tp) with the mast cell. CM —
cardiomyocytes. Bars 0.5 μm (a–c, e), 2 μm (d)
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Discussion

We have previously reported that TCs and CMs are directly
connected by small dense structures (10–15-nm nanocontacts)
and suggested that TC–CMmight represent a ‘functional unit’
(Gherghiceanu and Popescu 2011). The present study reveals
that intercellular communication in human heart is much more
complex than actually thought (see the recent viewpoint by
Kohl and Camelliti 2011).

The ultrastructural analysis showed that TCs form an
interstitial system that assembles all cardiac cells in an
integrative network. TCs have direct cell–cell communica-
tion not only with CMs but with all interstitial cells (Table 1).
Among interstitial cells, TCs seem to be particularly in-
volved in heterocellular communication and this study
endorses the idea of the TC cardiac network as structural
and functional support for long-distance signaling, essential
in cardiac renewing physiology (Popescu et al. 2011a).

From an ultrastructural point of view, TC–CM junctions do
not fit in any acknowledged pattern — there are no specific
structures to be classified in one of the known junction types,
either classical (Farquhar and Palade 1963) or newly described
(Franke et al. 2009). Usually, clusters of nanocontacts (‘nano-
feet’) fasten the connection between TCs and CMs plasma

membranes with no interposition of the basal lamina. The
bridging nanostructures (about 10 nm) and the intermembrane
distances (10–30 nm) essentially suggest a molecular interac-
tion between the TC and CMs (Gherghiceanu and Popescu
2011). Using EM, we did not identify any gap junction con-
necting TCs and CMs, as has been reported connecting the
fibroblasts and CMs (e.g., Kakkar and Lee 2010; Kohl and
Camelliti 2011). The discrepancy between the results previ-
ously reported about Cx43 immunofluorescence and our EM
results reported here might be explained by the fact that Cx43
is a highly regulated phosphoprotein and has a half-life of less
than 2 hours (Lampe and Lau 2004). Anyway, the main (if not
the only) unequivocal diagnosis for a ‘gap junction’ remains
EM. In addition, we could not find any cellular fusion (Driesen
et al. 2005) or nanotubules (Hurtig et al. 2010) connecting TCs
andCMs. Partial heterocellular fusion has also been reported in
vivo between cardiac fibroblasts and dedifferentiated CMs in
the border zone of a rabbit myocardial infarction (Driesen et al.
2005) but EM images presented were not compelling. A
thicker section or an oblique section though the contact area
could generate a false image (see Fig. 4).

An unexpected finding was that TCs have also direct
cell–cell contacts with Schwann cells. We have not found
any reference about junctions between cardiac nerve

Fig. 9 Telocyte–macrophage junction in human heart (electron mi-
croscopy). a,b Serial ultrathin sections illustrate the discontinuity of
the telopode (Tp, arrowheads) attributable to its sinuous path. c,d High

magnification of round marked areas in a and b shows on serial
sections, apparently random distributed electron-dense nanostructures
(arrows) connecting the telopode and slim process of the macrophage
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endings, specifically Schwann cells, or any other interstitial
cells. Recently, it was reported that signaling between fibro-
blasts and Schwann cells results in cell sorting, followed by
directional collective cell migration of Schwann cells out of
the nerve stumps to guide axons regrowing across the
wound (Parrinello et al. 2010). The TCs–Schwann cell
interaction should be important for cardiac renewal and
regeneration. Moreover, TCs establish contacts with peri-
cytes, or directly with endothelial cells. The EM shows that
these junctions are similar with myoendothelial junction,
which possibly is a cellular integration point in the vascular
(patho)physiology (Heberlein et al. 2009).

The distance between TCs and other interstitial cells (mac-
rophages, fibroblasts, mast cells) is often within the range of

tens of nm (10 to 30 nm), which also fits in the macromolecular
interactions domain but which molecules are involved in
heterocellular communication remains to be established.
Additionally, a paracrine and/or juxtacrine secretion of small
molecules and long-distance signaling by shedding microve-
sicles may play distinct roles in horizontal transfer of important
macromolecules among neighboring cells (Ramachandran and
Palanisamy 2011). Shed vesicles and exosomes are molecular
complex intercellular signaling organelles (involved in this
acellular mode of communication) with multiple functions,
which appear as promising new tools for clinical diagnostics
and potentially for novel therapeutic strategies (Lee et al.
2011). TCs release shed vesicles and/or exosomes, thus send-
ing macromolecular signals (e.g., microRNAs, Cismasiu et al.

Fig. 10 Telocyte–capillary junction in human heart (electron microsco-
py). a Two overlapping telopodes (Tp1, Tp2), connected by plaque-
bearing puncta adhaerentia junction (black arrow), are positioned be-
tween a cardiomyocyte and a capillary. Two tight contacts (arrowheads in
rectangle mark) are noticeable between the pericyte and telopode Tp2.
Basal lamina of the pericyte is broken up (asterisks) by two short
processes extending to Tp2.White arrows point out tight contacts between
the endothelial cell and the pericyte (myoendothelial junctions). b A
telopode (Tp) has two point contacts (arrowheads in dotted circles) with

the endothelial cell. Basal lamina (asterisks) of the endothelium is inter-
rupted and short processes of the endothelial cell extend toward the Tp,
comparable to the myoendothelial junctions in panel a. Rectangular
dotted mark surrounds the additional heterocellular junction (arrows)
between the same telopode (Tp) and the cardiomyocyte. Basal lamina
of cardiomyocytes is discontinuous at the junctional site. Desmosome (d),
gap (g) and adherens (a) junctions are visible in the intercalated disk. A
dense core granule is visible in the telopode, nearby the heterocellular
junctional complex. Bars 2 μm (a, b)
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2011) to neighbor cells and thus modifying their transcriptional
activity (Barile and Lionetti 2012).

TCs seem to be active players in cardiac renewing, since
they are ‘nursing’ CM progenitors in epicardial stem cell
niches (Popescu et al. 2009; Gherghiceanu and Popescu
2010). Moreover, electron microscope tomography has
revealed complex nanoscopic junctions between TCs and
resident stem/progenitor cells. Apparently, TCs provide tracks
(long telopodes) for the “evolution” (sliding) of precursor cells
towards mature CMs (Fig. 7; Popescu et al. 2009) and their

integration into heart architecture (Gherghiceanu and Popescu
2010). Last but not least, TCs are directly (nanocontacts) and
indirectly (paracrine secretion, VEGF and NO) involved in
neoangiogenesis, within the border zone of experimental
myocardial infarction (Manole et al, 2011).

An enhanced understanding of the cells involved in and the
signals, pathways that mediate the regenerative response may
be useful in modulating the regenerative response of the
injured heart. Irrespective of location, a stem cell niche capa-
ble of housing stem cells entails few constitutive elements

Fig. 11 Telocyte–Schwann cell
junction in human heart
(electron microscopy) formed
by point contacts. About 10 nm
electron-dense nanostructures
(nanocontacts) are visible
bridging plasma membranes of
the TC’s telopode and Schwann
cell (arrowheads). The basal
lamina of Schwann cell is bro-
ken up (black arrows) lateral to
the junctional site. Endoplasmic
reticulum (ERs) and microtu-
bules (mt) are visible in
Schwann cell, which enfolds
nerve endings (N). Endoplasmic
reticulum (ERt) in telopode is
connected by dense nanostruc-
tures or ‘feet’ (white arrow)
with plasma membrane fronting
the junction. The inset shows
the overall image: TC — telo-
cyte; Tp — telopode, S —
Schwann and nerve endings,
CM — cardiomyocytes, C —
capillary. Bars 0.5 μm, 2 μm
(inset)

Table 1 The intermembrane distances in heterocellular junctions formed by telocytes with various cell types in adult heart

Cell type Junction type Rough estimation of
intermembrane distance

Intermembrane distance (n050)

Working cardiomyocytes close vicinity <150 nm 122.79±20.61 nm (min079.80 nm; max0158.22 nm)

point contacts 10–30 nm 21.36±4.06 nm (min010.20 nm; max028.34 nm)

nanocontacts 10 nm 9.98±1.32 nm (min08.24 nm; max013.02 nm)

Cardiomyocyte progenitors close vicinity <150 nm 106.27±30.09 nm (min077.53 nm; max0181.75 nm)

Putative stem cells point contacts 10–30 nm 21.66±3.95 nm (min012.79 nm; max030.08 nm)

planar contacts 10–25 nm 16.19±6.46 nm (min09.20 nm; max024.48 nm)

Endothelial cells point contacts 10–30 nm 23.55±5.03 nm (min012.09 nm; max027.57 nm)

Pericytes planar contacts 10–20 nm 16.18±3.48 nm (min010.47 nm; max020.59 nm)

Schwann cells point contacts 10–30 nm 17.12±7.87 nm (min07.89 nm; max026.81 nm)

nanocontacts 10 nm 10.45±2.59 nm (min08.69 nm; max012.72 nm)

Macrophages point contacts 10–30 nm 18.32±5.03 nm (min012.09 nm; max027.57 nm)

Mast cells point contacts 10–30 nm 24.70±4.75 nm (min016.70 nm; max029.12 nm)

Fibroblasts point contacts 10–30 nm 17.17±3.04 nm (min013.79 nm; max021.63 nm)
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with regulatory properties (Jones and Wagers 2008): (1) stro-
mal supporting cells (also called nurse cells, niche cells or
supporting cells) that interact directly with the stem cells and
with each other, (2) extracellular matrix proteins that provide
mechanical signals to the niche, (3) blood vessels that transmit
systemic signals and bring circulating stem cells if needed and
(4) neural inputs that might communicate distant physiologi-
cal cues to the stem cell microenvironment. TCs produce an
adequate microenvironment for precursor cells and guide
them from epicardium into the myocardium and therefore
should be considered as nurse cells (Gherghiceanu and
Popescu 2010; Popescu et al. 2011a). Furthermore, this study
showed that TCs cardiac network could integrate the overall
‘information’ from the vascular system (endothelial cells and
pericytes), nervous system (Schwann cells), immune system
(macrophages, mast cells), interstitium (fibroblasts, extracel-
lular matrix) and working cardiomyocytes. The integration of
all these heterocellular signals may be essential for the deci-
sion of stem cells (resident or exogenous) to proliferate, dif-
ferentiate and mature into new CMs or other cardiac cell
types.

The understanding of the interstitium as an integrating
system is more sensitive nowadays when cellular therapy is a
key word of science. The interstitial space seems to be the
place where regenerative process happens but little is known
about the cells involved and how they act together (Barile and
Lionetti 2012). The structural and functional interactions be-
tween CMs and other cardiac cells are essential for understand-
ing heart (patho)physiology and for the further development of
efficient cell therapies (Kohl and Camelliti 2011). Hitherto, we
have found only TCs interacting with CMs and nonmyocytes
in normal heart. One key question is whether all the interstitial
cells (stem/progenitor cells, macrophages, Schwann cells,
fibroblasts, mast cells, etc.) make contacts with each other or
with CMs. The concept of "cardiovascular unit" as a building
block of the heart, which includes CMs, adjacent capillaries
and fibroblasts has recently been proposed (Ausoni and Sartore
2009). Myocardial tissue functions as a well-organized com-
munity of cells and presumably the TC network is enough to
offer the physical support for heterocellular communication
and coordinates their individual activities.

This study shows that homotropic and heterotropic ultra-
structural interactions of TCs form an integrative interstitial
cardiac system, which possibly assures physiological coordi-
nation of multicellular signals, essential for cardiac renewal,
regeneration and repair. Further, molecular analysis must iden-
tify the key players involved in the telocytes communication
network and their role in cardiac physiology and pathology.
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