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Protein aggregation is a common characteristic of many neurodegenerative disorders, and the
interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of cur-
rent neuroscience research. Despite clinical, genetic, and experimental differences, evidence
increasingly indicates considerable overlap between synucleinopathies and tauopathies or other
protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other
neurodegenerative diseases, suggest interactions of pathological proteins engaging common
downstream pathways. Novel findings that have shifted our understanding in the role of pathologic
proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/
overlaps between these and other neurodegenerative disorders. The synergistic effects of α-
synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying
molecular pathogenic mechanisms, including induction and spread of protein aggregates, are
critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding
disorders, although the etiology of most of these processes is still mysterious.
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1. INTRODUCTION

Neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), frontotemporal
degeneration, prion, Huntington, and motoneuron diseases are increasingly being realized to have common
cellular and molecular mechanisms including protein aggregation and inclusion body formation in selected
areas of the nervous system. Therefore, these disorders are summarized as “proteinopathies” [1, 2]. The
aggregations usually consist of insoluble fibrillary aggregates containing misfolded protein with β-sheet
formation. The most probable explanation is that these inclusions and aggregates symbolize an end stage
of a molecular cascade of complicated events, and that an earlier stage may be more directly tied up to
the—hitherto unknown—pathogenesis of the disorder than the inclusions themselves, which may or may
not represent diagnostic hallmarks. Small intermediates termed as “soluble oligomers” in the aggregation
process may influence synaptic dysfunction, while large insoluble deposits might function as reservoirs
of the bioactive oligomers that can lead to synaptic dysfunction, neuronal apoptosis, and brain damage
[3, 4]. This is predominantly due to iron-related oxidative damage mediated by α-synuclein (αSyn) oli-
gomerisation during the development of PD pathology [5]. Seeding induced by αSyn oligomers, the toxic-
ity of which has been demonstrated in vivo [6], can induce intracellular αSyn aggregation, providing evi-
dence for spreading of αSyn pathology [7] similar to that of prions [8]. Amyloid-β (Aβ) induces the neuro-
degenerative triad of spine loss, dendritic changes, and neuritic dystrophies through calcineurin activa-
tion [9], while soluble tau species rather than aggregated ones induce neurodegeneration [10]. Tau phosphor-
ylation proceeds to tau aggregation that is favored by kinases like glucose-synthase kinase-3β (GSK-3β)
[11], while inhibition of GSK-3β activity prevented not only tau phosphorylation but also tau aggregation
in hippocampus [12]. Recent studies showed that caspase activation, observed in a tg mouse model overex-
pressing GSK-3β [13], precedes tangle formation [14]. Seeding of normal tau by pathological tau conform-
ers further drives pathogenesis of neurofibrillary tangles (NFT) [15]. However, the mechanism by which oli-
gomers trigger neurodegeneration still remains elusive. The aim of this paper is to review the molecular
mechanisms and interactions between the various pathological proteins in neurodegeneration.

2. INTERACTION BETWEEN αSyn, Tau, AND AMYLOID-β IN PARKINSON DISEASE

Intracytoplasmic proteinaceous inclusions, primarily composed of tau and/or αSyn, are predominant patho-
logical features of AD and PD, respectively [16]. However, the coexistence of these and other pathological
proteinaceous aggregates like Aβ is identified in many neurodegenerative disorders [17–19]. The cooc-
currence of both αSyn and tau or other pathologic proteins highlights the interface between them [20].
They may be coaggregated in the same brain or even in the same region or in the same cell in human brains
[18, 21, 22] and transgenic mice [23]. Whereas αSyn can spontaneously polymerize into amyloidogenic
fibrils, in vitro, tau polymerization requires an inducing agent [24]. Cellular models, various transgenic and
other experimental PD models, provided novel insights into the role of αSyn in the hyperphosphorylation of
tau protein observed in disease [24–32]. These data suggest that oxidatively modified αSyn is degraded by
the proteasome and plays a proaggregatory role for tau [31], and that αSyn is an in vivo regulator of tau pro-
tein phosphorylation at Ser (262). Toxic interactions with αSyn may lead to hyperphosphorylation of tau
and eventually to the deposition of both proteins in the disease [33]. E46K human αSyn tg mice develop
Lewy-like and tau pathology associated with age-dependent motor impairments, supporting the notion that
αSyn is involved in the pathogenesis of human diseases [34].

Recent postmortem studies showed increased accumulation of tau protein phosphorylated at Ser 262
and 396/404 in the striata of PD patients and in the A53T αSyn mutant mouse model of PD [27, 35].
This is related to increased activity of GSK-3β [26, 29], a major kinase that hyperphosphorylates tau to
produce pathologic forms of tau [36] and may be a possible link between Aβ and tau [37, 38]. Dopamine
D1 receptor activation induces tau phosphorylation via cyclin-dependent kinase 5 (cdk5) and GSK-3β
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signaling pathways [39]. Expression of both GSK-3β and microtubule-associated protein/microtubule affin-
ity-regulating kinase 2 inhibited the formation of αSyn-induced tau aggregation [24]. Reduced 19S and
20S proteasomal subunit activites in PD striata suggest that they account for the abnormal disposal of
αSyn and phosphorylated tau (p-tau). The small decrease in proteasomal activity in PD striata is consistent
with other studies that showed no significant changes of these proteins in PD striata but lower activity in
substantia nigra (SN) [40]. In an MPTP model and in MPP+ cellular models, αSyn has been shown to in-
duce GSK-3β-catalyzed tau phosphorylation [41–43]. PD-associated risk factors such as environmental
toxins and αSyn mutations promote tau phosphorylation at Ser 262, causing microtubule instability, which
leads to neuronal degeneration [30]. Rotenon exposure may also induce αSyn and Aβ aggregation as well as
increased hyperphosphorylation of tau, although high concentrations of the pesticide lead to cell death be-
fore protein aggregation [32].

Tau in MPTP models and in human postmortem PD striata is hyperphosphorylated at the same sites
(Ser 202, 262, and 396/404) as in AD [35], whereas phosphorylation of soluble tau differs in AD and Pick
disease brains [44]. Tauopathy in PD striata is restricted to dopaminergic neurons, whereas degeneration
in the inferior frontal cortex, associated with increased tau deposition because of diminished proteasomal
activity in the absence of oxidative stress and pGSK-3β activity, is not associated with tauopathy [35]. In the
αSyn overexpressing mouse model of PD tauopathy, along with microtubule destabilization, exists primarily
in the brainstem and striatum, the two major brain regions known to express high levels of αSyn and undergo
the highest levels of degeneration in human PD. Thus, tauopathy in PD may have a restricted pattern of dis-
tribution [28], which differs from its generalized affection in AD. Whether there are differences in the 3- and
4-repeat tau pathology between these disorders is not yet fully understood and needs further investigation.

There is strong interaction between αSyn, tau, and Aβ, particularly in their oligomeric forms,
which might synergistically promote their mutual aggregation and vice versa [33, 45, 46]. Cross-seeding
between dissimilar proteins that share β-sheet structures has been described, for example, of Aβ and αSyn
[47], tau and αSyn [48], and prion protein and Aβ [49]. In vivo interactions between αSyn and tau are
supported by genetic studies [50, 51], and in familial PD, fibrillation of αSyn and tau is caused by the
A 53T mutation [48]. A family with early onset dementia was pathologically characterized by widespread
appearance of LBs and NFTs, but no amyloid deposits [52]. Recent studies gave evidence that prions trigger
hyperphosphorylation of tau in genetic, sporadic, and transmitted forms of prion diseases in the absence of
amyloid plaques [53].

Neurofibrillary tau pathology is modulated by genetic variations of αSyn [54]. Tau phosphorylation
is found in synapse-enriched fractions of frontal cortex in PD and AD [55] and in brainstems of αSyn mice
[56]. Other links between αSyn and tau are suggested by the colocalization of both proteins in both NFTs
and Lewy bodies (LBs), especially in neuronal populations vulnerable for both aggregates [21, 57–59], in
the olfactory bulb in AD with amygdaloid LBs [57], and in neuronal and glial cytoplasmic inclusions in
multiple system atrophy (MSA) [60, 61]. Between 15 and 60% of AD brains show numerous αSyn lesions
in the amygdala, even in the absence of subcortical LBs [62, 63]. AD with amygdala LBs is considered a
distinct form of α-synucleinopathy [64]. In AD patients with clinical extrapyramidal symptoms, between
50 and 88% of the patients showed extensive αSyn pathology co-localized with p-tau in SN, tau and less
αSyn pathology in brainstem significantly increasing with higher neuritic Braak stages [65–67].

In conclusion, genetic, pathologic, and biochemical evidence support a role for tau in the pathogene-
sis of PD [33], and concurrence of tau, αSyn, and TDP-43 pathology in brains of AD and LB disease provide
a better understanding of the pathogenic pathways in these disorders [17]. It has been suggested that the
process of LB formation is triggered, at least in part, by Alzheimer pathology [18, 68], while the interaction
between αSyn and tau in MSA awaits further elucidation [61, 69]. Recent data suggest that PD and AD
could be linked by progressive accumulation of p-tau, activated GSK-3β, and αSyn [27, 35, 70, 71], while
activation of caspase and caspase-cleft �tau may represent a common way of abnormal intracellular accu-
mulation of both tau and αSyn, promoted by Aβ deposition, unifying the pathology of AD and LB diseases
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FIGURE 1: Hypothetic diagram unifying pathologic processes in Alzheimer and Lewy body diseases. PD:
Parkinson disease; LBD: Lewy body disease; LBs: Lewy bodies; AD: Alzheimer disease.

FIGURE 2: Morphologic interrelations of synucleinopathies, tauopathies, and amyloidopathies. NFTs: neu-
rofibrillary tangles; PSP: progressive supranuclear palsy; CBD: corticofrontal degeneration; PDD: Parkinson
disease dementia; DLB: dementia with Lewy bodies; AD: Alzheimer disease; LBs: Lewy bodies.

[72–74] (see Figure 1). In addition, emerging evidence suggests that prion-like spreading, evolving secreted
proteins such as Aβ, and cytosolic proteins such as tau and αSyn are spreading by cell-to-cell transmission,
thus unifying the pathogenesis of many neurodegenerative disorders [8, 75], but is not fully understood
whether they are due to similar protein aggregation and misfolding mechanisms. Combined determination
of αSyn, tau, and Aβ concentrations in cerebrospinal fluid (CSF) show differential patterns in these neurode-
generative disorders [76]; in particular tau/αSyn ratios can contribute to the discrimination of PD [77].

Other studies have suggested that Aβ is more likely to promote the deposition of αSyn than tau
[78], and Aβ is known to initiate hyperphosphorylation of tau [79]. Cortical αSyn load is associated with
Aβ plaque burden in a subset of PD patients [80]. Aβ peptides enhance αSyn accumulation and neuronal
deficits in a tg mouse model [81], and αSyn-induced synapse damage is enhanced by Aβ 1-42 [82]. Both can
be linked by separate mechanisms driven by a common upstream component [83]. Recent studies showed
that Aβ 1-42 tightly binds to tubulin polymerization promoting protein (TPPP/p25) and causes aberrant
protein aggregations inhibiting the physiologically relevant TPPP/p25-derived microtubule assembly, the
interaction of TPPP/p25 and Aβ can produce pathologic aggregates in AD and LB diseases [84]. These
lesions represent a collision of two or more processes, but it is unclear whether there is a common underlying
final pathology leading to neuronal degeneration (see [85]) (Figure 2).
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3. AMYLOID-β AND Tau IN ALZHEIMER DISEASE

The brains in patients with AD, in addition to nerve and synapse loss, are characterized by two hall-
mark lesions, Aβ-containing plaques and NFT, which are composed of hyperphosphorylated forms of mi-
crotubuli-associated protein tau [86]. Progression of NFT pathology throughout the brain correlates with
disease progression [87], and loss of synapses is one of the earliest events that has been associated with
functional impairment [88]. Although both Aβ and tau have been extensively studied with regard to their
separate modes of toxicity (see [89]), more recently new light has been shed on their possible interactions
and synergistic effects in AD, linking Aβ and tau [90, 91]. Moreover, the interaction between tau and Aβ

mediated by FIN kinase should be considered, since it is an interesting link between the two pathogenic
hallmarks of the disorders [36–38].

According to the amyloid cascade hypothesis, Aβ formation is the critical step in diving AD’s patho-
genesis [92]. Support for this concept stems from the identification of pathogenic mutations in patients with
familial AD linked to Aβ formation and a higher frequency of AD in people with trisomy 21, who carry an
additional APP allele [93].

Although Aβ and tau exert toxicity through separate mechanisms [94], evidence from both in vitro
and in vivo models suggest that there are three possible models of interaction between the two. (1) Aβ drives
tau pathology, supported by induction of tau hyperphosphorylation by Aβ formation in APP tg mice [95],
induction of neuronal tau hyperphosphorylation by Aβ oligomers [96] and, together with neuritic degen-
eration, by soluble Aβ-protein dimers isolated from Alzheimer cortex [97], or by Aβ-rich brain extracts
[98], and aggravation of NFT pathology by intracranial injection of synthetic Aβ into mutant tau tg mice
[99]. On the other hand, a single-dose intraventricular injection of an Aβ antibody in 4-month-old mice
cleared intraneuronal Aβ pathology and reduced early cognitive deficits [100], and inhibition of GSK-3β at-
tenuated Aβ-induced tau phosphorylation in vitro and can reduce tau pathology in vivo [12, 101]. Other
data suggest induction of NFT formation by amyloidogenic peptides rather than specifically by Aβ [102].
While the 3xtg AD mouse model, based on early intraneuronal accumulation of Aβ played an important
role in supporting the “intraneuronal Aβ hypothesis” [100], recent evidence claims that these mice early
and age-dependently accumulate AβPP instead of Aβ within neurons [103, 104], thus challenging this
hypothesis. (2) Synergistic effects of Aβ and tau by impairment of mitochondrial respiration in triple tg
mice that display both Aβ and tau pathologies [105]. This indicates the convergence of Aβ and tau on mito-
chondrial deterioration and establishes a molecular link in AD pathology in vivo [106, 107]. (3) Tau medi-
ates Aβ toxicity supported by the observation that tau −/− neurons are protected from Aβ induced cell
death in cell culture [108–110]. Tau reduction also prevents Aβ-induced defects in axonal transport of mito-
chondria and other cargoes [111], which may link the “tau hypothesis” to other ones, the axonal transport
impairment hypothesis, according to which tau induces failure of axonal transport [112, 113], and the
“oxidative stress hypothesis” according to which mitochondria are functionally impaired, resulting in the
production of reactive oxidative species [114]. Astrocytes have been shown to be important mediators of
Aβ-induced neurotoxicity and tau hyperphosphorylation in primary cultures [13].

Although knowledge about the roles of tau and its interactions with Aβ is increasing (see [1, 115]),
many questions about the scaffolding partners for tau in its interaction with Aβ are still unanswered. While
this phenomen may result from direct cross-seeding of tau by aggregated Aβ [116, 117], indirect pathways
such as Aβ-induced tau phosphorylation, inflammation, and/or disruption of proteostasis [37, 91, 118] have
not been ruled out.

As we gain a deeper understanding of the different cellular functions of tau, the focus shifts from the
axon, where tau has a principal role as microtubule-associated protein, to the dendrite, where it mediates Aβ

toxicity [91]. On the other hand, according to several data, tau aggregates may be a consequence rather than
a cause of neurodegeneration [14, 119]. Therefore, the effects promoted by Aβ and tau should be analyzed
more specifically to identify the mechanisms that underlay Aβ and tau toxicity and/or neuroprotection in
order to find appropriate therapeutic targets.
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4. INDUCTION AND SPREAD OF PROTEIN AGGREGATES IN
NEURODEGENERATIVE DISEASES

Increasing evidence implicates the importance of disease-specific proteins and their interrelations in various
neurodegenerative disorders [1–4, 16]. In PD, αSyn-rich lesions that typify Lewy body pathology, first arise
in the lower brainstem and in the anterior olfactory nucleus and olfactory bulb; they subsequently appear in a
predictable sequence in mesencephalic and neocortical regions [120–122], although their reliability of Lewy
pathology staging in sporadic PD has been a matter of discussion [123–126]. The concept that αSyn lesions
ramify within the CNS by a seeding-like process is supported by the observation that fetal dopaminergic
transplants in the striatum of a subset of PD patients surviving more than 5 years may develop αSyn-
positive Lewy bodies [127–129]. These data imply for a host-to-graft propagation of αSyn, but the effects
of LBs in the grafted neurons are unclear [129], although neuron-to-neuron (interneuron) transmission or
transsynaptic spread of αSyn appears a likely interpretation for the propagation of the disease [8, 129]. It has
been suggested that LBs develop in transplanted dopaminergic neurons in a fashion similar to that in the host
SN [130]. On the other hand, LB pathology in grafted neurons does not necessarily mean their functional
impairment. Similar accumulation of αSyn occurs in stem cells transplanted into transgenic mice [8]. Se-
creted αSyn can recruit endogenous αSyn in the recipient cells, act as a permissive template, and promote
misfolding in small aggregates [131]. Some of the uptake of αSyn from the extracellular space appears to
occur via endocytosis, although additional mechanisms might also contribute [131, 132]. It is probable to
trigger the formation of large LB-like aggregates in cultured cells, when artificial methods, bypassing phys-
iologic uptake mechanisms, are used to promote the entry of misfolded αSyn. In vivo approaches in cell
cultures could not discriminate between a prion-like mechanism—host-derived, misfolded αSyn inducing
misfolding of αSyn generated in the graft—versus simple translocation of aggregated synuclein from the
host to the graft. Thus, in cell culture all the mechanisms needed for prion-like behavior of misfolded αSyn
appear to be in place [131, 133, 134]. These and other data suggest that αSyn pathology could be induced
in cells and may spread by a prion like mechanism involving the transmission of conformationally altered
αSyn [135–138]. Thus, the prion-like propagation of αSyn lesions has been demonstrated as has the induc-
tion of proteinaceous lesions associated with other neurodegenerative diseases, such as aggregates of super-
oxide dismutase 1 (SOD1) [139, 140], aggregates of polyamine [141], which typify Huntington disease and
spinocerebellar ataxias, or cytosolic aggregates of TDP-43 [142], which are present in ALS and fronto-
temporal lobar degeneration with TDP-43-positive inclusions (FTDL-TDP). The capability of passing be-
tween living cells is not limited to prions and those cited above; it was also shown for aggregates of truncated
tau, consisting of the microtubule-binding region and a fluorescent protein tag that can leave and enter
cells in culture and promote the aggregates and fibrillization of normal tau within them [115, 143–146].
The recent demonstration of tau-positive pretangle material in the locus ceruleus before involvement of
the transentorhinal region of the cerebral cortex in young individuals [147] suggests a progression of tau
pathology via neuron-to-neuron transmission and transsynaptic transport of tau protein aggregates [148],
since seeding of neuronal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles
[15]. These data may indicate that the currently used neuropathological stages of AD [149–151] will have
to be reclassified. Mutant P201S tau, as found in frontotemporal dementia with parkinsonism (FDTP-19),
is capable of spreading through the cortex of an Alz 17 tg mouse expressing the human wild type protein
and induce an NFT-like pathology that consists of human tau in brain areas distant from the injection site
[145]. These and other data raise the possibility that neurodegenerative pathologies could spread within the
brain via a mechanism analogous to prion-like self-propagation, although alternative mechanisms, such as
disruption of basic cellular proteostasis by exogenous aggregates, cannot be excluded [152]. Furthermore,
tau and αSyn are present in blood and CSF in both monomeric and oligomeric forms, suggesting release
of these normally intracellular proteins in vivo [77, 153–155]. The intercellular transfer of cytosolic protein
aggregates may also occur through nanotubes, exosomes, or microvesicles [135]. Like other pathogenic
proteins, Aβ can be taken up, modified, and secreted by cells in vitro [108, 156], and it is also present in the
CSF [157].
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5. CONCLUSIONS

Interaction between αSyn, tau, and Aβ may be a molecular mechanism in the overlapping pathology of
LB disease and AD, possibly representing a complex continuum, characterized by variable amounts of
pathologic proteins, and Aβ is suggested to promote accumulation of both αSyn and tau; the procession
from Aβ to neurite pathology in the cerebral cortex of AD and DLB may be unifiable [73, 74]. DLB-3xtg-
AD mice exhibit accelerated formation of αSyn and LB-like inclusions in the cortex and enhanced increase
of p-tau deposits immunoreactive for antibody AT8 in the hippocampus, and neocortex provide further
evidence that tau, αSyn, and Aβ interact in vivo to promote accumulation of each other and accelerate
cognitive dysfunction, although accumulation of αSyn alone can significantly disrupt cognition [158, 159].
Polymorphic tau and Aβ-tau aggregates may be due to repeated sequences, which are prone to variable
turn locations along the tau repeats, suggesting that synergistic interactions between repeats in tau protein
and Aβ may be responsible for accelerated aggregation via polymorphic states [117]. These changes and
common inflammatory mechanisms in these disorders [160] could be generated by the same stimulus, with
the outcome possibly having an inverse relationship depending on genetic backgrounds and environmental
factors. Although recent data documented colocalization of αSyn and tau in LBs [57], of Aβ and p-tau in
synaptosomes [161], synaptic terminals [162], and in triple transgenic mice [105], why tau, Aβ, and αSyn
pathologies are so intimately associated remains one of the major questions of the pathogenesis of neurode-
generation in selected/vulnerable brain regions that are typical for different disease processes (double or
triple amyloidoses). It has been suggested that these pathologies represent a common final pathway leading
to or preventing neuronal damage [23, 70, 71, 85]. The basic molecular mechanisms (presumed regional
differences in proteasomal, caspase, GSK-3β activities, oxidative stress in the presence of αSyn deposition,
etc.) need further elucidation, and the molecular basis of the synergistic effects of αSyn, p-tau, Aβ, and
other pathologic proteins, suggesting a dualism or triad of neurodegeneration, are a major challenge for
modern neuroscience. Improved understanding of these mechanisms may not only improve our insight into
the pathogenesis of proteinopathies, but also have an impact on diagnostic and therapeutic possibilities.
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[13] J. J. Lucas, F. Hernández, P. Gómez-Ramos, M. A. Morán, R. Hen, and J. Avila, “Decreased nuclear β-catenin,
tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice,” The EMBO Journal,
vol. 20, no. 1-2, pp. 27–39, 2001.

[14] A. de Calignon, L. M. Fox, R. Pitstick et al., “Caspase activation precedes and leads to tangles,” Nature, vol.
464, no. 7292, pp. 1201–1204, 2010.

[15] J. L. Guo and V. M.-Y. Lee, “Seeding of normal tau by pathological tau conformers drives pathogenesis of
Alzheimer-like tangles,” The Journal of Biological Chemistry, vol. 286, no. 17, pp. 15317–15331, 2011.

[16] G. B. Irvine, O. M. El-Agnaf, G. M. Shankar, and D. M. Walsh, “Protein aggregation in the brain: the molecular
basis for Alzheimer’s and Parkinson’s diseases,” Molecular Medicine, vol. 14, no. 7-8, pp. 451–464, 2008.

[17] S. Higashi, E. Iseki, R. Yamamoto et al., “Concurrence of TDP-43, tau and α-synuclein pathology in brains of
Alzheimer’s disease and dementia with Lewy bodies,” Brain Research, vol. 1184, no. 1, pp. 284–294, 2007.

[18] E. Iseki, T. Togo, K. Suzuki et al., “Dementia with Lewy bodies from the perspective of tauopathy,” Acta
Neuropathologica, vol. 105, no. 3, pp. 265–270, 2003.

[19] J. Miklossy, J. C. Steele, S. Yu et al., “Enduring involvement of tau, β-amyloid, α-synuclein, ubiquitin and
TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam (ALS/PDC),”
Acta Neuropathologica, vol. 116, no. 6, pp. 625–637, 2008.

[20] W. R. Galpern and A. E. Lang, “Interface between tauopathies and synucleinopathies: a tale of two proteins,”
Annals of Neurology, vol. 59, no. 3, pp. 449–458, 2006.

[21] Y. Arai, M. Yamazaki, O. Mori, H. Muramatsu, G. Asano, and Y. Katayama, “α-Synuclein-positive structures in
cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation,” Brain Research,
vol. 888, no. 2, pp. 287–296, 2001.

[22] J. E. Duda, B. I. Giasson, M. E. Mabon et al., “Concurrence of α-synuclein and tau brain pathology in the
Contursi kindred,” Acta Neuropathologica, vol. 104, no. 1, pp. 7–11, 2002.

[23] E. Maries, B. Dass, T. J. Collier, J. H. Kordower, and K. Steece-Collier, “The role of α-synuclein in Parkinson’s
disease: insights from animal models,” Nature Reviews Neuroscience, vol. 4, no. 9, pp. 727–738, 2003.

[24] E. A. Waxman and B. I. Giasson, “Induction of intracellular tau aggregation is promoted by α-synuclein seeds
and provides novel insights into the hyperphosphorylation of tau,” Journal of Neuroscience, vol. 31, no. 21, pp.
7604–7618, 2011.

[25] T. Nonaka, S. T. Watanabe, T. Iwatsubo, and M. Hasegawa, “Seeded aggregation and toxicity of α-synuclein
and tau: cellular models of neurodegenerative diseases,” The Journal of Biological Chemistry, vol. 285, no. 45,
pp. 34885–34898, 2010.

[26] T. Duka, V. Duka, J. N. Joyce, and A. Sidhu, “α-Synuclein contributes to GSK-3β-catalyzed Tau
phosphorylation in Parkinson’s disease models,” The FASEB Journal, vol. 23, no. 9, pp. 2820–2830, 2009.

[27] J. Wills, J. Credle, T. Haggerty, J.-H. Lee, A. W. Oaks, and A. Sidhu, “Tauopathic changes in the striatum of
A53T α-synuclein mutant mouse model of Parkinson’s disease,” PLoS One, vol. 6, no. 3, Article ID e17953,
2011.

[28] T. Kaul, J. Credle, T. Haggerty, A. W. Oaks, E. Masliah, and A. Sidhu, “Region-specific tauopathy and synu-
cleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson’s disease,” BMC Neur-
oscience, vol. 12, article 79, 2011.

1900



TheScientificWorldJOURNAL (2011) 11, 1893–1907

[29] T. Haggerty, J. Credle, O. Rodriguez et al., “Hyperphosphorylated Tau in an α-synuclein-overexpressing trans-
genic model of Parkinson’s disease,” European Journal of Neuroscience, vol. 33, no. 9, pp. 1598–1610, 2011.

[30] H. Y. Qureshi and H. K. Paudel, “Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) and α-synuclein mutations promote tau protein phosphorylation at Ser262 and destabilize microtubule
cytoskeleton in Vitro,” The Journal of Biological Chemistry, vol. 286, no. 7, pp. 5055–5068, 2011.

[31] M. Riedel, O. Goldbaum, and C. Richter-Landsberg, “α-Synuclein promotes the recruitment of tau to pro-tein
inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress,” Journal of Molecular Neur-
oscience, vol. 39, no. 1-2, pp. 226–234, 2009.

[32] R. S. Chaves, T. Q. Melo, S. A. Martins, and M. F. R. Ferrari, “Protein aggregation containing beta-amyloid,
alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coer-
uleus after rotenone exposure,” BMC Neuroscience, vol. 11, article 144, 2010.

[33] P. Lei, S. Ayton, D. I. Finkelstein, P. A. Adlard, C. L. Masters, and A. I. Bush, “Tau protein: relevance to
Parkinson’s disease,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 11, pp. 1775–1778,
2010.

[34] K. L. Emmer, E. A. Waxman, J. P. Covy, and B. I. Giasson, “E46K human α-synuclein transgenic mice develop
lewy-like and tau pathology associated with age-dependent, detrimental motor impairment,” The Journal of
Biological Chemistry, vol. 286, no. 40, pp. 35104–35118, 2011.

[35] J. Wills, J. Jones, T. Haggerty, V. Duka, J. N. Joyce, and A. Sidhu, “Elevated tauopathy and alpha-synuclein
pathology in postmortem Parkinson’s disease brains with and without dementia,” Experimental Neurology, vol.
225, no. 1, pp. 210–218, 2010.

[36] L. Baum, R. Seger, J. R. Woodgett et al., “Overexpressed tau protein in cultured cells is phosphorylated without
formation of PHF: implication of phosphoprotein phosphatase involvement,” Molecular Brain Research, vol.
34, no. 1, pp. 1–17, 1995.
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