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REVIEW

Ocular herpes: the pathophysiology, management and treatment 
of herpetic eye diseases
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Herpesviruses are a prominent cause of human viral disease, second only to the cold and 
infl uenza viruses. Most herpesvirus infections are mild or asymptomatic. However, when the virus 
invades the eye, a number of pathologies can develop and its associated sequelae have become 
a considerable source of ocular morbidity. The most common culprits of herpetic eye disease are 
the herpes simplex virus (HSV), varicella zoster virus (VZV), and cytomegalovirus (CMV). While 
primary infection can produce ocular disease, the most destructive manifestations tend to arise 
from recurrent infection. These recurrent infections can wreck devastating effects and lead to 
irreversible vision loss accompanied by a decreased quality of life, increased healthcare usage, 
and signifi cant cost burden. Unfortunately, no method currently exists to eradicate herpesviruses 
from the body after infection. Treatment and management of herpes-related eye conditions 
continue to revolve around antiviral drugs, although corticosteroids, interferons, and other newer 
therapies may also be appropriate depending on the disease presentation. Ultimately, the advent 
of effective vaccines will be crucial to preventing herpesvirus diseases altogether and cutting the 
incidence of ocular complications. 
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INTRODUCTION

Certain sites in the human body are immune-privi-
leged, meaning that they have evolved to tolerate the 
introduction of antigens without provoking an inflam-
matory immune response. This phenomenon protects 
vital organs and their functions from the damaging ef-
fects of infl ammation. The eye is one example of an im-
mune-privileged site. Ocular tissues have minimal ability 
to regenerate if damaged, and as such, each structure 
within the eye has developed a variety of overlapping 
molecular and cellular mechanisms to suppress poten-
tially destructive T-cell responses and maintain tissue 
integrity (Hori J, 2008; Stein-Streilein J, 2008). While 

these mechanisms limit local tissue destruction to help 
preserve vision, they also render the eye more vulnerable 
to infections that require a more robust infl ammatory re-
sponse for eradication (Dartt D A, 2011).
Ocular infections caused by herpesviruses present a 
serious clinical problem in both industrialized countries 
and developing nations around the world. While there are 
over 25 viruses in the Herpesviridae family, only eight 
are able to produce infection in humans. The most com-
mon culprit of herpetic eye disease is the herpes simplex 
virus. While both herpes simplex virus-1 and -2 (HSV-
1 and HSV-2) can elicit ocular disease, HSV-1 is far 
more likely to spread to the eyes, causing infection and 
infl ammation of the cornea referred to as herpes simplex 
keratitis. HSV keratitis is the most frequent type of ker-
atitis and is also one of the leading causes of blindness 
around the world (Karsten E, et al., 2012). Globally, the 
incidence of HSV keratitis is roughly 1.5 million, includ-
ing more than 40,000 new cases of severe monocular 
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visual impairment each year (Farooq A V, et al., 2012). 
In the United States alone, 500,000 people are estimated 
to have ocular HSV, with treatment of new and current 
cases costing the country $17.7 million annually (Lairson 
D R, et al., 2003; Liesegang T J, et al., 1989).
Another herpesvirus associated with ocular disease is 
the varicella zoster virus (VZV). VZV is the causative 
agent of varicella and zoster, or better known as chicken-
pox and shingles, respectively. In the eye, VZV can insti-
gate an extensive list of ocular manifestations stemming 
from herpes zoster ophthalmicus (HZO), with the more 
serious sequelae including chronic ocular infl ammation, 
vision loss, and debilitating pain. These complications 
often times result in a decreased quality of life and con-
siderable health care use. A mean of 10.8 eye visits per 
HZO patient was recently reported with the average 
eye-related complication lasting over 300 days (Yawn B 
P, et al., 2013). 
Cytomegalovirus (CMV) can cause eye disease in 
immunocompromised individuals. While CMV retinitis 
is the most common intraocular disease in patients with 
acquired immunodeficiency syndrome (AIDS), the dis-
ease is also becoming more prevalent in patients with 
normal immune function. If left untreated, CMV retini-
tis can lead to progressive destruction of retinal tissue 
and irreversible visual loss. In fact, CMV retinitis is the 
leading cause of blindness in AIDS patients and in many 
developing countries (Yen M, et al., 2014). Lastly, the 
Epstein-Barr virus (EBV), human herpesvirus-6 (HHV-6) 
and human herpesvirus-8 (HHV-8) can also elicit ocular 
disease on rare occasion. This review will go into more 
detail about the pathophysiology of herpetic eye diseases 
as well as current management strategies, with a focus 
on the main culprit of ocular herpes, the herpes simplex 
virus.

HERPES SIMPLEX VIRUSES

Herpes simplex virus (HSV) is a double-stranded DNA 
virus belonging to the Alphaherpesvirinae subfamily of 
herpesviruses. HSV exists as two types, type 1 (HSV-1) 
and type 2 (HSV-2), also known as human herpesvirus 1 
(HHV-1) and human herpesvirus 2 (HHV-2), respectively. 
These two viruses are highly related, sharing nearly 70% 
genomic homology, but can be differentiated by antigen-
ic differences in their envelope proteins. Not surprisingly, 
HSV-1 and HSV-2 also have very similar characteristics. 
Both herpesviruses contain a large genome that encodes 
over 80 proteins. Many of these proteins function in host 
cell interaction and immune evasion, helping the two 
viruses bind, fuse and spread from cell to cell during in-
fection (Murray P R, et al., 2005). Symptomatic disease 
caused by HSV-1 is typically limited to keratitis in the 
eyes and herpes labialis (cold sores) on the mouth. HSV-

2, on the other hand, is almost entirely associated with 
genital disease, commonly genital herpes. However, both 
HSV-1 and HSV-2 have the ability to produce disease on 
identical regions of the body (Akhtar J, et al., 2009).

Epidemiology
The infection rates of HSV-1 and HSV-2 vary largely 
across geographical regions and are influenced by fac-
tors such as location, race, age, sex, and social class. In 
a 2002 study, the HSV-1 seroprevalence in adult popu-
lations of the United States, Germany, and Tanzania was 
determined to be >50%, >75% and >90%, respectively, 
with the worldwide seroprevalence estimated to be be-
tween 80%-90% (Rabenau H F, et al., 2002; Smith J S, 
et al., 2002). Interestingly, a general decline in HSV-1 
prevalence has been noted in many industrialized na-
tions. This may be a result of improved hygiene and bet-
ter living conditions, leading to reduced exposure to the 
virus (Bradley H, et al., 2014; Farooq A V, et al., 2012; 
Steiner I, et al., 2007). 
While HSV-1 infections are dropping in the United 
States, conflicting data exists regarding the infection 
rates of HSV-2. Certain seroprevalence studies have 
found increases in HSV-2 rates rising to 22% in the US, 
while others have noted either an overall decline to 17% 
or no noticeable changes over the last decade (Bradley H, 
et al., 2014; Xu F, et al., 2006). In Europe, HSV-2 infec-
tion rates are reportedly between 4%-24% and in some 
developing countries, over 60%. Generally speaking, the 
worldwide seroprevalence of HSV-2 is around 20% with 
HSV-2 infections occurring more frequently in wom-
en (Azwa A, et al., 2009).
HSV is present in lesions and can also be found in 
body fl uids such as saliva and vaginal secretions. The no-
tion that HSV-1 and HSV-2 can be distinguished by their 
route of transmission is a widely thought misconception. 
Although HSV-1 is typically transmitted via the orolabial 
route (e.g. kissing) and HSV-2 is typically transmitted 
via sexual contact or maternal transmission to newborns 
during childbirth, this is not always the case. It is actual-
ly now clear that recurrent oral herpes can be caused by 
HSV-2 (Buxbaum S, et al., 2003). Recent studies have 
also confi rmed that a signifi cant portion of genital herpes 
in developed countries is attributable to HSV-1, likely 
due to an increase in oral-genital contact mixed with the 
decline in childhood HSV-1 transmission, hence lower 
immunity to genital HSV-1 infection (Nilsen A, et al., 
2000; Scoular A, et al., 2002; Tran T, et al., 2004).
Even though both HSV-1 and HSV-2 are capable of in-
fecting identical sites on the body, HSV-2 will very rare-
ly cause ocular disease in healthy adults. Cases of HSV-2 
ocular disease are generally found in neonates who have 
acquired the virus in utero, during delivery, or postna-
tally from an infected individual. Because of their un-
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derdeveloped immune system, the subsequent infection 
can be severe and even lead to death. Owing primarily to 
HSV-1 instead, there are about 50,000 new and recurring 
diagnosed cases of ocular HSV in the United States each 
year. On a global scale, an estimated 10 million individ-
uals have had ocular HSV, of which approximately two 
million are left with impaired vision (Wilhelmus K R, 
2010).

Infection and reactivation
HSV infection begins with direct contact with an 
individual who is shedding the virus. Virions enter the 
new host via mucosal surfaces or damaged skin at the 
site of contact. The viral envelop fuses with the plasma 
membrane of the target cell during entry. This utilizes 
concerted action from many HSV glycoproteins and is 
initiated specifi cally by the interaction of glycoprotein-D 
with its receptor. Adding to the complexity of HSV infec-
tion, the virus also demonstrates alternate routes of entry, 
including manipulation of a phagocytosis-like pathway 
to enter via an intracellular vesicle (Akhtar J, et al., 
2009; Toma H S, et al., 2008). Immediately following 
entry, HSV shuts off the host’s cellular protein synthesis 
processes by degrading host mRNA molecules (Kwong 
A D, et al., 1987). In the two to four hours post infection, 
the virus undergoes an acute phase during which replica-
tion rapidly occurs. Lesions form as the virus multiplies 
in the host epithelial cells, inducing eventual lysis before 
spreading to adjacent cells. After a round of replication, 
the virus travels by retrograde axonal transport to the 
sensory nerve ganglia where it establishes latency in neu-
ronal cells (Al-Dujaili L J, et al., 2011). During the latent 
infection, viral DNA and RNA transcripts are present, 
but no infective viral particles are produced. The virus 
still retains its potential to reactivate, resume replication 
and cause recurrent disease; a characteristic shared by all 
herpesviruses. Because of this, HSV-1 and HSV-2 infec-
tions are considered to be persistent infections, having 
the ability to continuously infect others for life.
Reactivation from this latent state is triggered by phys-
iological, chemical and environmental stressors. During 
reactivation, the virus travels back down the nerve axon 
to the body’s surface where it replicates and causes re-
current disease. HSV can recur at the original site of 
infection or at any other site that is innervated by the in-
fected ganglion. Typically though, the virus will surface 
in areas dense with sensory receptors, such as the cornea, 
oral mucosa, lips and fi ngertips (Toma H S, et al., 2008). 
Viral shedding is responsible for the ulcerative lesions 
seen in individuals presenting with clinical symptoms, 
although asymptomatic shedding can also take place in 
those with a subclinical infection. In both situations, this 
viral shedding allows for the transmission of HSV to a 
new host. Replication lasts fi ve to six days, after which 

the virus returns to its latent stage and lesions heal.

Pathophysiology of ocular herpes
When the initial HSV infection causes disease in the 
eye, it is termed primary ocular herpes. Primary ocular 
infections arise predominantly from direct inoculation 
on the surface of the eye, but in immunocompromised 
individuals, can be the result of autoinoculation from an 
active HSV infection elsewhere on the body (Gimenez 
F, et al., 2013). Primary ocular infections can also occur 
through HSV infection in the orofacial region, with the 
virus traveling through the ophthalmic branch of the tri-
geminal ganglion into the eyes. 
More commonly, involvement of the eye comes from 
the reactivation of latent HSV. The virus usually estab-
lishes latency following a non-ocular route of infection, 
such as acquisition from close contact with active orola-
bial lesions, virus-laden saliva or lesions on the genital 
mucosa. The predominant site of infection is the orofa-
cial region innervated by the maxillary branch of the tri-
geminal nerve (Figure 1). In this scenario, the virus then 
travels up the maxillary branch and rests during latency. 
Upon reactivation, HSV will spread to the ophthalmic di-
vision of the trigeminal ganglion, where it enters the bas-
al epithelium and emerges at the corneal surface causing 
viral shedding (Ohara P T, et al., 2000; Rowe A M, et al., 
2013; Tasman W J E A, 2013). Reactivation tends to elic-
it the first clinically apparent episode of ocular herpes, 

Figure 1. The trigeminal ganglion supplies neuronal 

innervation to most of the head and has three major 

branches: the ophthalmic branch, maxillary branch, and 

mandibular branch. Most commonly, infection of HSV-

1 occurs in the orofacial region served by the maxillary 

branch. During primary infection or reactivation, the 

virus can spread to the ophthalmic branch, leading to 

infection of the ophthalmic division of the trigeminal 

ganglion and subsequent ocular disease (Liesegang, 

1992) (Reuse with permission).
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producing an ocular HSV infection without prior skin or 
mucous membrane HSV infection.

Clinical presentation
HSV can affect any part of the eye and cause pathol-
ogy in all three layers of the cornea. This allows for a 
broad array of clinical manifestations with generalized 
symptoms such as tearing, redness, blurry vision and 
ocular discomfort. Primary HSV infection is usually as-
ymptomatic and depends on the immunological status of 
the host. If present, it tends to manifest as conjunctivitis 
that can involve infl ammation of the eyelids (blepharitis), 
ulcers and unilateral lid vesicles (Figure 2A)   (Darougar 
S, et al., 1985; Rowe A M, et al., 2013). Corneal lesions 
from HSV may also arise, remaining on the epithelial lay-
er, called infectious epithelial keratitis, or going deeper 
to involve the stroma, known as stromal keratitis.  
Epithelial keratitis is the most frequent type of her-
petic eye disease, accounting for 50%-80% of all ocular 
herpes infections (Wilhelmus K R, et al., 1981). HSV 
epithelial keratitis results from the virus replicating in 
and destroying the corneal epithelial cells. The earliest 
manifestation will start as small intraepithelial vesicles, 
which coalesce and grow into dendritic-shaped lesions 
with raised borders, central ulceration, and terminal end 
bulbs (Figure 2B) (Green L K, et al., 2006; Tasman W J 
E A, 2013). These dendritic ulcers are characteristic of 
epithelial keratitis and associated with pain, sensitivity to 
light, blurry vision, tearing and redness.
Keratitis with stromal involvement is seen more fre-
quently in recurrent HSV infections, occurring in about 
30% of those with epithelial keratitis (Labetoulle M, et al., 
2005). Stromal keratitis can be further subcategorized 
into two types: necrotizing stromal keratitis and immune 
stromal keratitis. In necrotizing stromal keratitis, viral 
invasion causes dense infi ltration, ulceration and necrosis 

in the stroma. There is however no defect in the epitheli-
um. More commonly, stromal keratitis will present as the 
latter, immune stromal keratitis, which arises from recur-
rent HSV infection of the corneal stroma. Clinical signs 
include stromal opacity, edema and neovascularization, 
presumably triggered by the potent immune response to 
retained viral proteins after infection has cleared (Figure 
2C). Corneal vascularization, in particular, is a prominent 
contributor to corneal damage in stromal keratitis. The 
ingrowth of vessels in the eye can interfere of the pas-
sage of light into the retina, deposit lipids and proteins 
into the corneal stroma, and serve as a passageway for 
infl ammatory cells to enter the eye. The resultant damage 
to the structural integrity of the cornea leaves behind scar 
tissue after the inflammation clears (Gimenez F, et al., 
2013). Repeated bouts of keratitis can lead to progressive 
irreversible stromal scarring and visual morbidity. For 
this reason, stromal keratitis is generally considered the 
most serious of the HSV ocular diseases.
Recurrent HSV keratitis can also present as endothe-
liitis (endothelial keratitis) or neurotrophic keratopathy 
(neurotrophic keratitis or NK). Endotheliitis occurs when 
the virus spreads to the corneal endothelium, the inner-
most layer of the cornea that is critical for maintaining 
corneal transparency. Inflammation of the cells here 
increases endothelial dysfunction and damages the aque-
ous pumps (Sundmacher R, 2009). Subsequent corneal 
edema without any signs of infl ammation in the stroma 
is one indication of endotheliitis. Endotheliitis is also 
identifi ed by the presence keratic precipitates, which are 
cellular deposits on the corneal epithelium caused by 
infl ammation. The distribution of these precipitates and 
confi guration of overlying stromal edema determines the 
classifi cation between linear, sectorial, disciform and dif-
fuse endotheliitis (Suzuki T, et al., 2008).
Neurotrophic keratopathy (NK), on the other hand, is a 

Figure 2. Clinical presentation of primary and recurrent ocular HSV infection. A: Typical HSV lesions on or about 

the eye lid margins (Source: CDC, Dr. K. L. Hermann). B: HSV infection can cause dendritic ulceration of the 

corneal epithelium, as shown here under fl uorescein staining. These ulcers are characteristic of herpes epithelial 

keratitis (Tasman, 2013). C: Slit lamp photograph of patient presenting with stromal keratitis demonstrating corneal 

opacity and neovascularization (Rowe et al., 2013) (Reuse with permission).
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degenerative corneal disease characterized by a decrease 
or absence of corneal sensation. The disease has a mul-
tifactorial etiology, often appearing after a long history 
of dendritic ulcers and treatment with several antiviral 
agents that led to impairment of the trigeminal innerva-
tion, damage to the epithelial basement membrane and 
inflammation of the stroma. Clinically, patients with 
neurotrophic keratopathy present with symptoms that 
range from reduced tear film production and decreased 
visual acuity, to persistent corneal epithelial defects, 
ulcers, stromal opacification and corneal neovascular-
ization. Mackie proposed three stages of neurotrophic 
keratopathy based on severity (Figure 3). Stage 1 can be 
identified by changes in the corneal epithelium accom-
panied by superficial punctate keratopathy and corneal 
edema. Stage 2 involves persistent epithelial defects 
with smooth, rolled edges and stage 3 is characterized 
by the presence of corneal ulcers with stromal melting or 
corneal perforation (Hamrah P, et al., 2012; Roy F H, et 
al., 2008; Sacchetti M, et al., 2014). HSV can also cause 
iridocyclitis, panuveitis, and acute retinal necrosis (ARN). 
However, these ocular manifestations are rare and do not 
usually occur in immunocompetent hosts. 
One last note is that the clinical presentations of ocular 
HSV vary signifi cantly in children and adults. In adults, 
epithelial keratitis is the most common ocular manifes-
tation of HSV infection, whereas in children, stromal 
keratitis is far more likely to develop due to a heightened 
inflammatory response (Revere K, et al., 2013). In the 
largest study to date of pediatric patients with corneal 
HSV infections, Liu et al. found that corneal scars devel-
op in up to 80% of pediatric patients with HSV keratitis. 
Furthermore, children are more at risk for refractive 
amblyopia caused by keratitis-induced astigmatism; the 
team reported an increase of more than two diopters in 
astigmatism in roughly 30% of pediatric HSV keratitis 
patients and a fi nal vision of 20/40 or worse in 26% of 
their patients (Liu S, et al., 2012). All in all, children with 
HSV keratitis are likely to have poor visual outcomes 

and are at high risk for recurrence, corneal scarring and 
vision loss.

Diagnosis of ocular HSV infection
Diagnosis of ocular HSV is primarily based on clini-
cal fi ndings. Diagnostic testing is seldom needed due to 
characteristic clinical features. However, laboratory test-
ing is available to confi rm clinical suspicion in cases that 
lack typical fi ndings in addition to almost all suspected 
cases of neonatal herpes infection. In the lab, cells from 
the base of the lesion can be obtained and analyzed. The 
gold standard in laboratory diagnosis of HSV keratitis 
is viral isolation in culture. Other techniques can also be 
used for reliable, quicker diagnostic testing. A few for 
example are polymerase chain reaction (PCR) assays that 
detect viral DNA and enzyme- and fluorescence-based 
immunological assays that detect viral antigens. Despite 
having a lower sensitivity, the Giemsa stain can be uti-
lized as well (Farhatullah S, et al., 2004). Herpesviruses 
distinctively fuse at neutral pH to form syncytia giving 
the appearance of giant multinucleated cells. As such, 
infected cells stained with Giemsa stain will be large in 
size and show the coalescence of infected cells and viral 
inclusion bodies.

Management and treatment of ocular HSV
Primary ocular HSV will usually resolve by itself; nev-
ertheless, proper treatment can shorten disease course, 
reduce severity and minimize damage, thereby lessening 
the long-term complications of HSV. Within in the last 
century, various physical, chemical and antiviral agents 
have been used to treat ocular HSV. These include curet-
tage and cauterization in the 1890s, followed by corneal 
epithelial debridement, iodinisation, and carbolization in 
the fi rst half of the 20th century (Wilhelmus K R, 2010). 
Many of these physiochemical interventions are still em-
ployed today. By means of physical scraping, chemical 
erosion and the application of cytotoxic reagents, these 
methods physically remove lesions and virus-infected 

Figure 3. Three stages of neurotrophic keratopathy. A: Stage 1 NK with a cloudy and irregular corneal epithelium. 

B: Stage 2 NK with persistent epithelial defect with smooth and rolled edges. C: Stage 3 NK presenting with a deep 

corneal ulcer and stromal melting (Sacchetti and Lambiase, 2014) (Reuse with permission).
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cells. The reduction in viral load aids in regeneration of 
the corneal epithelium to promote a faster recovery.
Researchers began to screen anti-infective compounds 
as potential treatments when it became clear that herpes 
viral infection was associated with epithelial keratitis. In 
1962, idoxuridine, a pyrimidine analogue, became the 
fi rst antiviral agent (Kaufman H E, 1962). Its success led 
to the development of other synthetic nucleoside ana-
logues used in present day treatment of HSV. Now, anti-
viral agents are the mainstay of HSV therapy. Acyclovir 
(Zovirax) is one of the best-known antiviral drugs on 
today’s market. The purine nucleoside analogue acts se-
lectively against HSV without causing substantial toxic 
effects on uninfected cells. Antiviral nucleosides at large 
work by interfering with viral DNA synthesis during 
transcription of the viral genome to inhibit HSV replica-
tion. In the case of acyclovir, the drug is fi rst phosphory-
lated into acyclovir monophosphate by the virus-encoded 
enzyme thymidine kinase, and then converted into its 
active form, acyclovir triphosphate, by human enzymes. 
Acyclovir triphosphate selectively inhibits viral DNA 
polymerase (Hung S O, et al., 1984). In doing so, the 
drug prevents viral replication, effectively reducing the 
severity of symptoms, frequency of viral shedding and 
spread of infection. 
Current regimes to treat ocular herpes include a com-
bination of physiochemical interventions and either 
topical or oral antiviral agents (Table 1). Antiviral treat-
ment options include: ganciclovir ophthalmic 0.15% gel, 
trifl uridine 1% drops, vidarabine 3% ointment, and oral 
acyclovir 400 mg, valacyclovir 500 mg, and famciclovir 
250 mg. Because topical therapy can cause epithelial tox-
icity, they should be rapidly tapered after initial response 
and discontinued after complete healing. Oral therapy, 
on the other hand, has the advantage of no ocular surface 
toxicity and systemic antiviral activity (Hung S O, et al., 
1984). As such, long-term use of an oral antiviral medi-

cation at a lower dose would be appropriate for patients 
experiencing recurrent ocular HSV.
A relatively new therapy-demonstrating efficacy in 
the treatment of HSV keratitis is the use of interfer-
ons. Interferons are antiviral proteins released by host 
cells immune system in the presence of viruses; two in 
particular, interferon- and interferon-, can activate 
an intracellular pathway to upregulate host genes that 
generate antiviral responses (Wilhelmus K R, 2010). 
Studies suggest that interferon therapy alone is as effec-
tive as treatment with a nucleoside antiviral agent; but a 
synergistic effect is observed when interferons are used 
in conjunction with an antiviral agent (Guess S, et al., 
2007). In one study, treatment with interferon drops and 
acyclovir ointment led to an average resolution time of 3.9 
days, as compared to an average resolution time of seven 
days using topical acyclovir alone (Colin J, et al., 1987). 
However, because human interferon is a biological com-
pound, the high cost and need for refrigeration may limit 
its practicality. 
Specifi c treatment plans will need to be evaluated de-
pending on the presentation of the herpetic eye disease. 
Table 2 provides a general look at treatment strategies for 
varying ocular sequelae. Treatment for patients with ep-
ithelial keratitis aims to halt corneal infection in order to 
control symptoms and allow the normal ocular surface to 
become reestablished. The best evidence-based treatment 
of HSV epithelial keratitis seems to be trifl uridine sup-
plemented by ether topical or oral acyclovir (Wilhelmus 
K R, 2010). In cases of active herpetic epithelial kera-
titis, topical corticosteroids are contraindicated. This is 
because topical steroids inhibit normal immune defense 
mechanisms. The virus would then be able to replicate 
more quickly, thereby prolonging the course of infection 
and exacerbating disease severity.
Treatment for stromal keratitis employs topical corti-
costeroids accompanied by a prophylactic antiviral drug. 

Table 1. Dosage of antiviral agents

Oral antivirals Dosage

Acyclovir

Treatment dose for adults: 400 mg 3-5x/day 

Treatment dose for children: 12-15 mg/kg/day in several doses

Prophylactic dose: 400 mg 2x/day

Valacyclovir
Treatment dose: 500 mg 3x/day

Prophylactic dose: 500 mg once daily

Famciclovir
Treatment dose: 250 mg 3x/day

Prophylactic dose: 250 mg once daily or 125 mg 2x/day

     Topical antivirals                                        Treatment dosage

Trifl uridine 1% drop One drop every 2 hours, reduced to 5x/day after 3-7 days

Ganciclovir 0.15% gel 5x/day 

Vidarabine 3% ointment 5x/day
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Even though stromal keratitis will spontaneously resolve 
itself within months, treatment can help prevent the oth-
erwise profound stromal vascularization and scarring as-
sociated with the body’s potent immune response to viral 
antigens. Corticosteroids, such as prednisolone, dampen 
the immune response by inhibiting CD4+ cell production 
of cytokines. In this manner, they combat the immuno-
pathological component of stromal disease, while antivi-
ral drugs thwart viral replication to shorten the duration 
of disease (Knickelbein J E, et al., 2009). The Herpetic 
Eye Disease Study determined that a tapering regimen 
of topical corticosteroid (1% prednisone for the fi rst fi ve 
weeks followed by 0.125% prednisone for the next fi ve 
weeks) with a topical antiviral agent was able to signifi -
cantly reduce the duration of stromal infl ammation and 
progression of herpetic stromal disease (Barron B A, et al., 
1994).
Similarly, endotheliitis is treated with a combined 
corticosteroid and antiviral therapy. For patients with 
neurotrophic keratopathy, no pharmacological treatments 
are available. Management of neurotrophic keratopathy 
relies on preservative-free artificial tears, autologous 
serum, and the use of corneal or scleral contact lenses 
to support corneal epithelial healing. Due to potentially 
detrimental effects on the ocular surface, all topical med-
ications should be discontinued and any diseases relating 
to the ocular surface should be resolved. Surgical inter-
vention may be necessary in cases of stromal thinning 
and perforation (Sacchetti M, et al., 2014).

Vaccine development
Even with advances in antiviral therapy and the mul-
titude of treatment options now available, recurrent in-
fection and viral shedding are still not fully preventable. 
Thus, considerable effort has been expended towards the 
development of a vaccine against HSV. Vaccine devel-
opment aims to produce a biologic agent that is either 
prophylactic or therapeutic. Prophylactic vaccines are 
designed to protect against primary HSV infection in 
those who are seronegative. They aim to contain the vi-
rus at the epithelial site of entry, thwart replication, and 
most importantly, block entry into the nerves. Protecting 
the nervous system from infection is especially import-
ant since the establishment of latency provides a source 

of intermittent reactivation and infection of the cornea. 
Therapeutic vaccines, on the other hand, are designed 
lessen the burden recurrent HSV infection in those 
who are seropositive and reduce the risk of transmis-
sion (Coleman J L, et al., 2013). These vaccines must 
be able to boost the existing immune effectors so that 
they stay above the threshold permitting virus reactiva-
tion (Pepose J S, et al., 2006). Because therapeutic vac-
cines enhance the immune response when reactivation 
occurs, they run the risk of inadvertently exacerbating 
corneal damage. With this in mind, a vaccine to prevent 
ocular HSV must be able to elicit an immune response 
that can control viral replication with minimal collateral 
damage to the cornea (Pepose J S, et al., 2006). 
Since the 1920s, various HSV-1 and HSV-2 vaccines 
have been tested. Although some have shown promise 
in animal models, they fail to prove efficacy in human 
clinical trials. Specific hurdles in the development an 
effective vaccine include the virus’s complex replica-
tion cycle, latent infection, immune evasion and large 
size (Azwa A, et al., 2009). To date, only one vaccine 
has exhibited partial effi cacy against HSV. Developed by 
GlaxoSmithKline, the gD2-ASO4 vaccine (Simplirix) is 
a glycoprotein subunit vaccine. This vaccine was created 
from glycoprotein-D2 from HSV, an ideal antigen due to 
its essentiality in viral entry and ability to elicit a strong 
antibody response, and an ASO4 adjuvant consisting of 
aluminum hydroxide and 3-O-deacylated monophos-
phoryl lipid A to boost immune response. 
Researchers tested the gD2-ASO4 vaccine in 2002 
and observed benefi ts in women who were seronegative 
for both HSV-1 and HSV-2 antibodies at the time of 
vaccination. The vaccine was reported to be 73% pro-
tective of genital disease in these women, yet provided 
no protection for women who were seropositive for 
HSV-1 or HSV-2 and no protection for men (Stanberry 
L R, et al., 2002). Between 2002 and 2010, Belshe et al. 
further evaluated this vaccine’s effi cacy in the Herpevac 
Trial with a cohort of over 8,000 women screened to be 
seronegative for both viruses. They found that, surpris-
ingly, the HSV vaccine only provided protection against 
genital disease and infection caused by HSV-1 (58% ef-
fi cacy with two doses and 77% with three doses), but not 
against HSV-2 disease or infection (Belshe R B, et al., 

Table 2. Treatment strategies for ocular HSV

Ocular fi nding Basic treatment approach

Epithelial keratitis Topical or oral antiviral with possible debridement

Stromal keratitis without ulceration (immune stromal keratitis) Topical steroid with prophylactic oral antiviral 

Stromal keratitis with ulceration (necrotizing keratitis) Oral antiviral in therapeutic doses with topical steroid

Endotheliitis (endothelial keratitis) Oral antiviral in therapeutic doses with topical steroid

Neurotrophic keratopathy (neurotrophic keratitis) Topical lubrication, soft contact lenses, tarsorrhaphy



Ocular herpes

VIROLOGICA SINICA334　DECEMBER  2014　VOLUME 29　ISSUE 6

2012). While there are no obvious explanations for the 
gender difference in effi cacy, it is postulated to be due to 
inherent anatomical differences in male and female gen-
ital mucosa. Vaginal tissues are surrounded by secretions 
containing antibodies and white blood cells which can 
act as an immunologic barrier, more effective at prevent-
ing infection than the mucosal immune system found in 
the epidermal tissues of men (Belshe R B, et al., 2012; 
Coleman J L, et al., 2013; Stanberry L R, et al., 2002). 
This study also suggests that a simple glycoprotein may 
not be adequately powered to induce a vigorous enough 
immune response to boost immunity in individuals previ-
ously infected with HSV.
Subunit vaccines are the most studied of HSV vac-
cines, but other approaches have also been explored. One 
example is the development of a live attenuated vaccine. 
In theory, live attenuated vaccines hold clear advantages 
over other methods. They can present the full range of 
viral antigens to the host immune system and bring about 
a broader, longer-lived immune response by stimulating 
both the humoral and cell-mediated immune responses as 
well as innate immunity (Nguyen L H, et al., 1992). Live 
attenuated vaccines must be able to suffi ciently replicate 
in the host to evoke a robust immune response, but not 
cause the pain and ulcerative lesions characteristic of nat-
ural infection. Ideally, the vaccine candidate should also 
be neuroattenuated and retain its ability to establish latent 
infection. This is valuable as subclinical reactivation will 
periodically re-stimulate the immune system to generate 
a more effective immune response (Arvin A M, 2007). 
The disadvantage to live attenuated vaccines however 
is their potential to revert back to the wild phenotype. 
Other vaccine strategies currently being investigated are 
replication defective vaccines, peptide vaccines, DNA 
vaccines and live vector vaccines. 
Right now, no successful vaccine against HSV-1 or 
HSV-2 has been created. The development of a subunit 
vaccine that affirms protection against HSV-1 genital 
disease is a step forward, but additional research is still 
needed. A better understanding of factors and their mech-
anisms affecting vaccine efficacy, such as gender dif-
ferences and preexisting HSV-1 serological status, will 
help scientists overcome the challenges posed by HSV 
to traditional vaccine strategies and hopefully lead to the 
advent of an effective HSV vaccination.

VARICELLA ZOSTER VIRUS

Background
The varicella zoster virus (VZV) is the causative agent 
of two clinically distinct forms of disease. Primary infec-
tion presents as varicella, commonly known as chicken-
pox, and leads to a lifelong infection of the sensory gan-
glia neurons. Chickenpox is a highly contagious but gen-

erally benign childhood disease that presents with itchy 
blister-like rashes all over the body. Reactivation of la-
tent VZV later in life results in herpes zoster, or shingles. 
Shingles usually manifests as painful unilateral vesicular 
eruptions, most often affecting the dermatomal distribu-
tions of the thoracic nerve (56%) and trigeminal nerve 
(15%) (Gross G, et al., 2003). The ocular manifestations 
of VZV infection can be divided into the ophthalmic se-
quelae of varicella and the ophthalmic sequelae of herpes 
zoster. Although varicella infection can create problems 
in the eye, severe pain and ocular complications typically 
stem from herpes zoster infection instead. 
  Unlike HSV, immunization against VZV does exist 
and is commercially available. In 1995, Varivax was the 
fi rst VZV vaccine implemented in the United States. The 
live attenuated vaccine was developed using the Japanese 
varicella strain, Oka, and has decreased the number of 
hospitalizations and deaths from VZV by more than 
90% (Prevention C f D C a, 2012). Its counterpart, the 
shingles vaccine (Zostavax), was approved in 2006 for 
individuals over the age of 50. This vaccine also uses the 
VZV Oka strain, but is about 15 times stronger and has a 
much larger dosage of virus (Gershon A A, et al., 2010). 
Despite demonstrating effi cacy in lessening the morbid-
ity associated with chickenpox and shingles, these vac-
cines have also permanently changed the epidemiology 
of VZV-elicited diseases the United States. 

Varicella
Varicella, or chickenpox, is a highly infectious dis-
ease that developed in virtually all children prior to the 
introduction of the varicella immunization. In fact, in 
the pre-vaccination era, there were an estimated 60 mil-
lion new cases of chickenpox worldwide each year, and 
roughly 95% of the population had serological evidence 
of prior a VZV infection (Papaloukas O, et al., 2014). 
VZV can be found in respiratory secretions and fl uid 
from cutaneous lesions. The virus typically spreads via 
respiratory droplets, although transplacental transfer of 
VZV can also take place if the mother acquires varicella 
during early pregnancy (Arvin A M, 1996). In most cas-
es, the virus enters the host through the respiratory mu-
cosa. During an incubation period of 10-21 days, VZV 
initially replicates in the upper respiratory tract followed 
by primary subclinical viremia. The virus is transported 
back to the respiratory system towards the end of the in-
cubation period, allowing for the transmission of VZV to 
susceptible individuals before onset of the characteristic 
chickenpox rash (Papaloukas O, et al., 2014). Clinical 
symptoms begin to appear after additional viral replica-
tion and a second viremic phase. In immunocompetent 
patients, humoral antibodies will quickly eliminate the 
virus from the bloodstream while cellular lympho-
cyte-mediated immune response handles intracellular 



Lucy Zhu et al

www.virosin.org DECEMBER 2014　VOLUME 29　ISSUE 6　335

virus. Despite this, some VZV still spreads to sensory 
ganglia throughout the body and establishes latency. 
Subsequent reactivation of the virus then produces the 
other distinct viral syndrome, herpes zoster. 
The main clinical manifestations of varicella are fever, 
malaise and mucocutaneous exanthem with itchy vesic-
ular eruptions of the skin. These vesicles take about one 
week after their initial appearance to rupture and become 
encrusted, at which time the patient is no longer conta-
gious. Ocular manifestations accompanying varicella 
are most commonly mild conjunctivitis and episcleri-
tis (Liesegang T J, 2008). Epibulbar phlyctenule-like 
lesions can also form on the cornea, referred to as pocks. 
These are round, focal accumulations of lymphocytes 
and inflammatory cells that often appear during active 
systemic varicella and suspected to harbor live virus. 
They can also emerge months later as an immunologic 
reaction to retained viral antigens. In either case, the 
pocks are usually mild and persist for one to two weeks 
before resolving on their own. Less frequently, varicella 
may present as punctate or dendritic epithelial keratitis, 
nummular keratitis, and stromal keratitis. Keratitis from 
VZV closely resembles herpes simplex keratitis, but with 
a few distinguishable features (Figure 4). Firstly, VZV 
dendrites do not leave ulcerated lesions as seen with her-
pes simplex. These pseudodendrites tend to be smaller, 
polymorphous and elevated, with less distinct branching 
patterns and lack terminal bulbs (Tyring S K, 2006). In 
addition, VZV keratitis usually does not recur and is less 
responsive to topical antiviral therapy. 
Generally speaking, varicella is a self-limiting disease 
that requires minimal treatment. Oral acyclovir can be 
used to treat varicella in otherwise healthy children, but 
its administration is controversial since the drug has not 
demonstrated a signifi cant reduction in varicella-related 
complications or transmission (Kim S R, et al., 2014). In 

neonates and immunocompromised individuals, varicella 
infection can bring about severe complications such as 
pneumonitis, encephalitis, optic nerve atrophy, and cat-
aract. Treatment with intravenous acyclovir in these pa-
tients will substantially decrease their disease morbidity, 
progression, and mortality (Prober C G, et al., 1982).

Herpes zoster
With over one million new cases each year in the 
United States alone, herpes zoster (shingles) is a major 
public health concern in both the US and worldwide. 
The disease ensues when latent VZV reactivates from 
the sensory ganglia and spreads to the corresponding 
dermatome. Age is the most common predisposing factor 
to developing zoster, as changes in T cells and a decrease 
in neutralizing VZV antibodies allow for the latent virus 
to reactivate (Kahloun R, et al., 2014). Aside from the 
immunosenescence of aging, immune suppression from 
possible malignancy or immunosuppressive therapy is 
also linked to a higher risk of herpes zoster. In fact, her-
pes zoster is four to five times more likely in patients 
who are immunocompromised than in those who are not.
  While herpes zoster is rarely fatal, the accompanying 
morbidity and burden are substantial. Nearly 50% of 
older adults with herpes zoster will experience complica-
tions (Oxman M N, et al., 2005). The most frequent and 
debilitating of these is postherpetic neuralgia (PCN), a 
chronic neuropathic pain syndrome that can persist for 
months, years or even life (Schmader K, et al., 2008). 
Representing an estimated 10%-20% of all zoster cases, 
herpes ophthalmicus (HZO) is the second most common 
complication. Although zoster can involve any division 
of the trigeminal nerve, it is 20 times more likely to 
affect the ophthalmic branch (Tyring S K, 2006). HZO 
is the term used to describe a zoster infection with in-
volvement of the ophthalmic branch of the trigeminal 

Figure 4. VZV keratitis and HSV keratitis with fl uorescein stain. A: VZV pseudodendrites are smaller and do not 

have terminal end bulbs. They are formed by heaped up epithelial cells that only stain mildly with fl uorescein stain. 

Courtesy of Dr.Rapuano.(Source: http://dnn.testshell.net/Images.aspx). B: HSV dendrites are true dendrites. They 

cause ulceration with terminal end-bulb formations. The ulcer base stains vividly with fl uorescein dye. Courtesy of 

Dr.Rapuano.(Source: http://dnn.testshell.net/images/corneal_04.jpg).
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nerve, regardless of any intraocular association. In a co-
hort study examining trends in herpes zoster over a 28-
year period, Yawn et al. discovered that the rate of eye 
complications in individuals with herpes zoster increased 
23% between 1970 and 2007. They also found that these 
eye complications result in considerable health care us-
age, with an average of more than eight visits over a six-
month or longer period (Yawn B P, et al., 2013).
Ocular manifestations can occur concurrently or fol-
lowing infection due to a delayed cell-mediated hyper-
sensitivity reaction to viral DNA antigens, which can be 
found in the cornea up to 10 years after the initial episode 
of zoster (Wenkel H, et al., 1998). Most cases of HZO 
begin with a prodrome of severe pain and hyperesthesia 
over the affected dermatome, mild fever and malaise. 
After a few days, cutaneous lesions usually emerge. The 
initial HZO eruption may give the appearance of small 
raised bumps on the skin, but will become vesiculopap-
ular and ulcerative before the lesions rupture and crust 
over, requiring several weeks to heal completely (Shaikh 
S, et al., 2002). As the infl ammation resolves, permanent 
scarring with loss of normal pigmentation may occur. 
Although a majority HZO cases show this classic rash, a 
small number of patients will present with only HZO-like 
ophthalmic fi ndings without any dermatomal lesions. This 
is called zoster sine herpete (Gilden D H, et al., 1992). 
Inflammation from HZO can affect all ocular and 
adnexal tissues. As such, a wide and complex array of 
sequelae is associated with HZO. The clinical spectrum 
of HZO findings is presented below in Table 3. HZO 
can involve the eyelids, conjunctiva, sclera, episclera, 
cornea and iris, with the most frequent ophthalmic 
manifestations being keratitis (76.2%), uveitis (46.6%) 
and conjunctivitis (35.4%) (Yawn B P, et al., 2013). On 
the eyelids, HZO will produce vesicular lesions in the 

majority of patients that tend to resolve with minimal 
scarring. Conjunctivitis often occurs and will resolve in 
one week, although secondary infections can develop. 
Corneal complications are seen in about 65% of HZO 
cases. Unlike involvement of the eyelids or conjunctiva, 
corneal involvement can cause signifi cant visual morbid-
ity from pain, light sensitivity and vision decrement due 
to corneal neovascularization, thinning, and perforation. 
Another serious complication of HZO is acute retinal ne-
crosis (ARN). In addition, a more extreme version, pro-
gressive outer retinal necrosis, is observed in immuno-
compromised zoster patients, especially those who also 
have HIV (Wong R W, et al., 2013). Both conditions can 
lead to retinal detachment and blindness, but the progno-
sis for patients with progressive outer retinal necrosis is 
especially poor.
Most HZO cases are mild and usually result in short-
term infl ammation that resolves without topical antiviral 
treatment. Nonetheless, treatment with antivirals within 
the fi rst 72 hours after rash onset is strongly recommend-
ed. Not only can early treatment shorten the duration of 
disease, it can also ease acute pain, diminish severity and 
reduce the percentage of eye disorders in HZO patients 
from 50% to 20%-30% (Cobo L M, et al., 1986). Widely 
prescribed antivirals are acyclovir, valacyclovir, and 
famciclovir. Although all three drugs have similar effi-
cacy in treating HZO, the newer drugs, valacyclovir and 
famciclovir, have the advantage of a simpler dosing reg-
imen, higher bioavailability and the ability to decrease 
the incidence and severity of PHN (Tyring S K, 2007). 
Corticosteroids can also be applied in the fi rst few weeks 
with antiviral therapy to offer additional pain relief and 
improve cutaneous healing. Long-term corticosteroid use 
should be avoided due to adverse effects and steroids in 
general should not be used for the treatment of epithelial 

Table 3. Ocular Manifestations in Herpes Zoster Ophthalmicus

Structure involved Acute phase Late phase

Eyelid/conjunctiva Blepharitis 

Conjunctivitis

Vesicular rash

Ptosis

Eyelid retraction

Secondary Staphylococcus aureus infection

Episclera/sclera Episcleritis Self-limiting
Scleritis Focal sectoral atrophy

Cornea Epithelial (punctate or dendritic) keratitis Neurotrophic keratopathy
Stromal keratitis Corneal neovascularization

Anterior chamber Uveitis Focal iris atrophy
Secondary glaucoma

Ocular hypertension Usually self-limiting

Retina Retinal vasculitis

Retinitis

Acute retinal necrosis 

Progressive outer retinal necrosis
Cranial nerves Optic neuritis Optic atrophy

Oculomotor muscle palsies Self-limiting

 * Adapted from Opstelten W, et al.(2005), Rocha G, et al.(2010), and Shaikh S, et al.(2002).
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keratitis as mentioned previously. Late HZO manifesta-
tions do not respond as well to antiviral drugs. Rather, 
they require topical steroids to reduce infl ammation with 
patients usually remaining steroid-depend for long peri-
ods of time. Table 4 provides a more comprehensive look 
at treatment strategies for specifi c HZO complications. 
In theory, the development of cell-mediated immu-
nity to VZV from infection protects an individual from 
future episodes of varicella and zoster. However, VZV 
can still reactivate when this immunity is no longer as 
strong, such as in circumstances of immune suppression 
or from the natural decline in immune status with age. 
Preventing herpes zoster thus requires routine immune 
“boosting” in order to keep the cell-mediated immunity 
primed and effective. This generally occurs from two 
sources: periodic, asymptomatic, release of VZV from 
the ganglia and exposure to varicella-infected individ-
uals. With the gradual disappearance of wild-type VZV 
after the introduction of the varicella vaccine though, 
fewer adults are getting re-exposed to the virus, causing 
their immunity to decline. Because of this, an increase in 
the incidence of herpes zoster was expected in the years 
following varicella vaccination, but this has not yet been 
observed (Liesegang T J, 2008; Papaloukas O, et al., 
2014).
The herpes zoster vaccine, Zostavax was intended to 
substitute for the boosting effect no longer provided by 
vaccinated children. The vaccine’s ability to adequately 
heighten a person’s immunity against VZV was affi rmed 
by Weinberg et al. Moreover, they found greater VZV 
cell-mediated immune responses at onset of zoster to 

be correlated with reduced severity of disease and low-
er occurrence of PCN, demonstrating the protective 
effect of cell-mediated immunity against zoster mor-
bidity (Weinberg A, et al., 2009). Unfortunately, this in-
creased immunity can also target persistent viral DNA in 
ocular tissues of individuals with prior HZO and provoke 
the recurrence of ocular manifestations (Hwang C W, Jr., 
et al., 2013). As such, care should be taken in adminis-
tering the Zostavax vaccine in patients with a history of 
HZO to avoid the possibility of a vaccine-induced reacti-
vation. All in all, the zoster vaccine is generally safe and 
well tolerated (Simberkoff M S, et al., 2010). The pivotal 
Shingles Prevention Study indicated that Zostavax not 
only lowered the overall incidence of herpes zoster by 
53.1%, but also substantially decreased the pain and dis-
comfort in those who did develop zoster, thereby reduc-
ing the burden of illness associated with this debilitating 
disease (Keating G M, 2013; Oxman M N, et al., 2005).

CYTOMEGALOVIRUS

Background
Cytomegalovirus (CMV) is another herpesvirus that 
can affect the eyes. The species of CMV that infect hu-
mans is known as human CMV or human herpesvirus-5 
(HHV-5). Although the virus is found in all geographic 
locations, its prevalence depends on socio-economic sta-
tus, infecting 60%-70% of individuals in industrialized 
countries and virtually 100% of individuals in emerging 
countries (Fulop T, et al., 2013). CMV infection can 

Table 4. Treatment for Herpes Zoster Ophthalmicus

Ocular fi nding Treatment

Skin and lid vesicular lesions

Pain and hyperesthesia of ophthalmic 

branch dermatome

Oral acyclovir (800 mg 5x/day) for 7-10 days, valacyclovir (1000 mg 3x/day) 

for 7 days, or famciclovir (500 mg 3x/day) for 7 days

Epithelial keratitis Gentle debridement or no treatment 

Stromal keratitis Topical corticosteroid and cycloplegic agent

Neurotrophic keratitis 

Topical lubrication

Topical antibiotics for secondary infections

Protective contact lenses to prevent corneal perforation

Tarsorrhaphy 

Uveitis

Topical steroids

Oral steroids

Oral acyclovir

Episcleritis/scleritis Topical nonsteroidal anti-infl ammatory agents and/or steroids

Retinitis

Acute retinal necrosis

Progressive outer retinal necrosis

Cranial nerve involvement

Intravenous acyclovir (1500 mg per m2/day divided into 3 doses) for 7-10 

days followed by oral acyclovir (800 mg, 5x/day) for 14 weeks

Systemic steroids

Laser/surgical intervention if needed

* Adapted from Shaikh S, et al.(2002), Tyring S K, (2006).
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yield serious consequences in those with weakened im-
mune systems. It is the most significant viral cause of 
birth defects in developed countries and considered an 
AIDS-defining infection in HIV patients; indicative of 
T-cell counts dropping to low levels (Damato E G, et al., 
2002). 
CMV can be found in body fl uids such as the blood, 
saliva, urine, tears, semen and breast milk of an infected 
person. The virus is transmitted via close contact and 
through receiving transplanted organs or transfusions 
of blood. Primary CMV infection is clinically silent in 
most individuals with normal immune function. Some 
may develop a mononucleosis syndrome, presenting with 
malaise, headache and high fever that can persist for 
weeks, but is usually mild and self-limiting. The virus 
will then enter a latent state and is continually suppressed 
by cell-mediated immunity in an otherwise healthy in-
dividual. Only when an abrogation in immune respons-
es occurs will the virus reactivate to cause problems. 
Primary CMV infection in immunocompromised patients 
on the other hand, manifests as a wide range of condi-
tions. These patients usually have immature or impaired 
immune systems, for example HIV-infected individuals, 
organ transplant recipients, and newborn infants, with the 
severity of disease typically proportional to the degree 
of immunosuppression (Varani S, et al., 2011). CMV in-
fection in this population can result in CMV pneumonia, 
hepatitis, encephalitis, retinitis, seizures, coma, visual 
impairment and other problems.

Ocular manifestations
Retinitis is the most common illness caused by CMV, 
although the virus is responsible for other ocular man-
ifestations as well, including anterior uveitis, corneal 
endotheliitis, and ARN. CMV retinitis is a vision-threat-
ening opportunistic infection that arises in those who are 
immunosuppressed and in infants with congenital CMV. 
Before 1982, cases of CMV retinitis were extremely 

rare (Hennis H L, et al., 1989). With the onset of the 
AIDS epidemic, its incidence has signifi cantly risen and 
is now the most common cause of vision loss in AIDS 
patients. In addition, CMV retinitis is occurring more fre-
quently in the general population due to the increased use 
of new immunosuppressive drugs and emerging as a reg-
ular cause of infectious retinitis around the world (Bloom 
J N, et al., 1988; Hennis H L, et al., 1989).
CMV invades the retina through blood vessels and 
produces retinal lesions and hemorrhages. Without treat-
ment or improvement in immune function, the virus will 
spread to adjacent areas of healthy retina, causing dam-
age to the retina as well as the optic nerve, and resulting 
in necrosis, retinal detachment, and complete vision loss 
in just two to six months (Tyring S K, 2006). When the 
vitreous is involved, symptoms may initially present as 
blurred vision with the onset of fl oaters. This often starts 
in one eye and progresses to the other. If the macula be-
comes involved, symptoms will include a rapid loss of 
visual acuity and visual perception (Hennis H L, et al., 
1989). 
Under ophthalmoscopic examination, CMV retinitis 
has a characteristic appearance. Areas of active retinitis, 
caused by necrosis and edema, will look granular and 
cloudy-white in color. Retinal hemorrhages can also be 
seen, which occur as the virus attacks the endothelial 
cells of blood vessels. Fundus photographs of CMV ret-
initis depict one of two presentations (Figure 5). Some 
cases will show diffuse areas of white infi ltrates that are 
usually close in proximity to a major retinal vessel or 
the optic nerve (Figure 5A) (Palestine A G, 1988). This 
juxtaposition of white, granular zones of necrosis with 
regions of red retinal hemorrhage led to the classic “piz-
za pie” or “cottage cheese with ketchup” description. In 
other cases, patients may present with one or two focal 
granular infiltrates with variable amounts of associated 
hemorrhage (Figure 5B). As these lesions slowly enlarge, 
they take on a brushfire appearance and leave behind 

Figure 5. The fundus photograph of CMV retinitis is distinct. A: CMV retinitis with the classic mixture of retinal 

infection (white zones) and hemorrhage (red spots). B: Extensive retinitis in a brushfi re pattern. The upper right 

region shows retinal necrosis and atrophy that changed the retinal pigment epithelium, producing a dark pigmented 

appearance (Anderson et al., 2013) (Reuse with permission).
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necrotic retina and atrophic retinal pigment epitheli-
um (Tasman W J E A, 2013).
  Despite the gravity of this disease, CMV retinitis 
usually progresses slowly, meaning a large window of 
opportunity exists to provide treatment and hopefully 
thwart vision loss (Bowen E F, et al., 1996). Treatment of 
CMV retinitis uses antivirals in conjunction with highly 
active antiretroviral therapy (HAART). Valganciclovir, 
ganciclovir, foscarnet, and cidofovir are antiviral med-
ications that can be administered orally, intravenously 
or directly injected into the eye (Stewart M W, 2010). 
Additionally, ganciclovir implants are another available 
option. These devices are implanted into the eye and re-
lease the drug at a rate of 1g/hr for up to nine months. 
Studies have indicated that the sustained-release ganci-
clovir implant is actually more effective at treating CMV 
retinitis than intravenous ganciclovir (Musch D C, et al., 
1997). 
HAART therapy is a combination of antiretroviral 
medications whose widespread use has led to a signif-
icant reduction to the incidence of opportunistic infec-
tions, including that of primary and recurring CMV ret-
initis (Varani S, et al., 2000). HAART-induced immune 
recovery not only lessens the incidence of CMV retinitis 
by an estimated 80%, but also provides retinitis patients 
with a lower risk of progression, retinal detachment, 
visual fi eld loss and mortality. One thing to note though 
is that the benefi ts of HAART therapy are attenuated in 
CMV retinitis patients experiencing immune reconstitu-
tion. As the immune system grows stronger from antiret-
roviral therapy, covert infections may become unmasked 
and overt infections can be exacerbated (Tappuni A R, 
2011). In CMV retinitis patients whose immune status 
improves with HAART therapy, immune recovery uve-
itis will often surface in its place (Nguyen Q D, et al., 
2000) (Whitcup S M, 2000).
Even with treatment, CMV retinitis can still worsen 
and lead to blindness. Furthermore, all anti-CMV drugs 
currently licensed have limitations, in particular, the de-
velopment of drug resistance and toxicity (Schreiber A, 
et al., 2009). No CMV vaccines exist to date, although 
a few vaccine candidates are under investigation. One 
noteworthy candidate in Phase II trial is a recombinant 
glycoprotein-B subunit vaccine with a reported overall 
effi cacy of 50% in seronegative women of childbearing 
age (Sung H, et al., 2010).

OTHER HERPESVIRUSES

Epstein-Barr virus
The Epstein-Barr virus (EBV) is the most common 
causative agent of infectious mononucleosis and asso-
ciated with certain forms of cancer, such as Hodgkin’s 

lymphoma, Burkitt’s lymphoma, and nasopharyngeal car-
cinoma (Matoba A Y, 1990). The virus is usually trans-
mitted by contact with saliva and infects B-lymphocytes 
during primary infection. On rare occasion, EBV is 
connected to a variety of ocular infections encompassing 
all segments of the eye. These manifestations are at-
tributed to the virus largely on the basis of observational 
associations and seroepidemiologic data, as its genome 
has been detected in all ocular tissues except the optic 
nerve (Slobod K S, et al., 2000). The most common are 
periorbital edema and follicular conjunctivitis (Newman 
H, et al., 2013). Presentations of corneal epithelial and 
stromal infections have also been linked to EBV, as well 
as reports of EBV-induced episcleritis, keratitis, retinitis 
and uveitis. In addition, EBV has also been implicated in 
ocular tumors.
Management of EBV infections in the eye is not well 
established since the mechanisms of disease production 
are still unclear. As a whole, treatment is primarily sup-
portive. Conjunctivitis tends to resolve spontaneously 
and in other ocular scenarios, analgesia, lubricants and 
topical corticosteroids can be applied. Antiviral and in-
terferon- therapy have also been used to treat cases of 
EBV-associated ocular diseases, but met with limited 
success. 

Herpesvirus-6 and herpesvirus-8
Far less frequently, herpesvirus-6 (HHV-6) and her-
pesvirus-8 (HHV-8) may elicit ocular complications. 
HHV-6 infects almost all children before the age of 2 and 
is associated with febrile illnesses, immunodeficiency 
disorders and neurological diseases (Caserta M T, et al., 
2001). Very rarely, HHV-6 can cause optic neuritis and 
possibly dry eye and papillary conjunctivitis (Farooq A 
V, et al., 2010; Mechai F, et al., 2007; Ogata N, et al., 
2011). HHV-8, also referred to as Kaposi sarcoma-asso-
ciated herpesvirus (KSHV), can result in ocular Kaposi’s 
sarcoma and perhaps uveitis (Daibata M, et al., 2000; 
Matsuo T, et al., 2002). Kaposi’s sarcoma affects ocular 
structures in about 20%-30% of AIDS patients. Although 
other ocular adnexa can be involved, Kaposi’s sarcoma 
of the eye is typically found on the eyelid or conjuncti-
va (Tyring S K, 2006). Fortunately, ocular Kaposi’s sar-
coma is rarely vision threatening and can be treated with 
cryotherapy, surgical excision, radiation, and chemother-
apy. 

 CONCLUSION

Herpesviruses are a major contributor of infectious 
disease in humans and an important cause of ocular mor-
bidity. Most cases of herpetic eye disease are associated 
with the herpes simplex virus, varicella zoster virus, and 
cytomegalovirus, although a few other herpesviruses 
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have also been implicated in ocular disease. While these 
viruses asymptomatically infect a large proportion of the 
human population, their ability to establish latency with 
persistent lifelong infections is particularly troublesome. 
Recurrent ocular herpes infections account for the mass 
majority of visual morbidity. They can wreak devastating 
effects and lead to irreversible vision loss accompanied 
by a decreased quality of life, increased healthcare usage, 
and signifi cant cost burden. 
Antiviral medications and new therapies have ex-
panded treatment options for these patients. Such inter-
ventions can reduce the recurrence of disease, mitigate 
symptoms and lessen the long-term complications of her-
petic eye disease. However, no treatment currently exists 
to eradicate herpesviruses from the body after primary 
infection. Furthermore, the array of therapeutic strategies 
only underscores the lack of any one successful treat-
ment. The advent of effective vaccines will be critical to 
preventing herpesvirus diseases altogether and cutting 
the incidence of ocular complications. To date, only 
anti-VZV vaccines have been developed. Continuing 
research on the vaccine front has thus far provided a 
greater understanding of the complexities of herpesvirus-
es, but more progress is needed before other herpesvirus 
vaccines can be approved for general use. 
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