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Abstract
1.	 Recent advances in digital data collection have spurred accumulation of im-
mense quantities of data that have potential to lead to remarkable ecological 
insight, but that also present analytic challenges. In the case of biologging data 
from birds, common analytical approaches to classifying movement behaviors 
are largely inappropriate for these massive data sets.

2.	 We apply a framework for using K-means clustering to classify bird behavior using 
points from short time interval GPS tracks. K-means clustering is a well-known and 
computationally efficient statistical tool that has been used in animal movement 
studies primarily for clustering segments of consecutive points. To illustrate the 
utility of our approach, we apply K-means clustering to six focal variables derived 
from GPS data collected at 1–11 s intervals from free-flying bald eagles (Haliaeetus 
leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can 
be used to identify behaviors and life-stage- and age-related variation in behavior.

3.	 After filtering for data quality, the K-means algorithm identified four clusters in 
>2 million GPS telemetry data points. These four clusters corresponded to three 
movement states: ascending, flapping, and gliding flight; and one non-moving 
state: perching. Mapping these states illustrated how they corresponded tightly 
to expectations derived from natural history observations; for example, long 
periods of ascending flight were often followed by long gliding descents, birds 
alternated between flapping and gliding flight.

4.	 The K-means clustering approach we applied is both an efficient and effective 
mechanism to classify and interpret short-interval biologging data to understand 
movement behaviors. Furthermore, because it can apply to an abundance of 
very short, irregular, and high-dimensional movement data, it provides insight 
into small-scale variation in behavior that would not be possible with many other 
analytical approaches.
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1  |  INTRODUC TION

Recent advances in digital data collection have spurred accumu-
lation of immense quantities of data that have led to remarkable 
ecological insight (Hampton et al., 2013; Lewis et al., 2018; Thums 
et al., 2018). At the same time, these advances have created an “em-
barrassment of riches,” where analysis tools and technologies used 
in ecology have not kept pace with the quantity of data created 
(Katzner & Arlettaz, 2020; Kays et al., 2015; Williams et al., 2020). 
As a consequence, ecologists may under-utilize their data due to a 
lack of awareness of, or lack of examples of, analytical tools available 
to manage and interpret the huge quantities of data being collected.

Animal tracking technologies, or “biologgers,” are an example of 
a digital data collection tool that has created unique opportunities 
for understanding animal ecology and behavior (Hussey et al., 2015; 
Kays et al., 2015). Biologgers collect data at time frames that allow 
researchers to identify and distinguish between different move-
ment behaviors, which is a common objective in movement ecology. 
Some methods for identifying different behaviors only allow for a 
binary behavioral classification, for example, interpatch vs intra-
patch search (Barraquand & Benhamou, 2008); intensive vs exten-
sive search (Knell & Codling, 2012); foraging vs resting (Whitford 
& Klimley, 2019); and soaring vs flapping flight (Katzner & Arlettaz, 
2020). Various other methods have been developed to more flexibly 
analyze animal movement data with the intention of understanding 
additional behavioral modes (Edelhoff et al., 2016; Gurarie et al., 
2016). Common analytic approaches include Bayesian partitioning 
modeling (BPM; Calenge, 2006), behavioral change-point analysis 
(BCPA; Gurarie et al., 2009), or variants of state-space models (SSM) 
and hidden Markov models (HMM) (Gurarie et al., 2016; Langrock 
et al., 2012). These tools can be used to analyze covariates from 
biologging data alone, independent of external predictors (i.e., 
weather, topography, land cover), making them well suited to sub-
sequent statistical analyses linking patterns in behavioral classes to 
patterns in the environment.

A defining feature of many, but not all of these tools is that, in 
ecology, they were initially applied to identify behavioral classes in 
telemetry data collected over relatively long (minutes to hours or 
days), and sometimes constant, time intervals. As technological ad-
vances now allow the collection and transmittal of telemetry data 
collected at ever shorter time intervals (<60 s), the nature of these 
high-frequency data offers potential for new insights but also pres-
ents novel challenges (Kays et al., 2020). There are three specific 
features of short-interval data in general that make them poorly 
suited to popular movement analysis methods like BPM, BCPA, 
SSMs, or HMMs. First, the sheer preponderance of data (on the 
order of millions of GPS fixes) calls for an analytic approach that 

is computationally efficient. Most movement analyses have been 
demonstrated only for much smaller sample sizes (e.g., fewer than 
15,000 American bison fixes analyzed by a pooled HMM analysis in 
Langrock et al., 2012; 764 northern fur seal fixes analyzed with BCPA 
in Gurarie et al., 2009; 433 lamprey fixes analyzed with BPM, BCPA, 
and SMM/HMM in Gurarie et al., 2016). Second, short-interval data 
often feature an abundance of short segments comprised of only a 
few positional fixes, resulting from data collection “bursts” that po-
tentially occur sparsely over space and time. The strength of BCPA, 
HMM, and BPM is in their ability to characterize “change points” or 
“switches” in the behaviors of lengthy segments. However, it is futile 
to try to identify such change points in short-interval segments that 
may comprise as few as three GPS fixes. Third, the time between 
short-interval observations often is irregular, and HMMs and SMMs 
generally require that observations be made at regular time or space 
intervals (Patterson et al., 2017). Large data quantities are often 
dealt with by subsampling regularly spaced data, but given the ubiq-
uity of very short segments in short-interval data, this could result 
in a large loss of data. Recent methods have been developed using 
continuous-time Markov chain approaches that can handle irregular 
space/time intervals between observations (Michelot et al., 2019; 
Wilson et al., 2018), but these methods center on understanding an 
animal's home range or utilization density and resource selection, 
not on defining behavioral modes. Recently, Adam et al. (2019) de-
veloped methods to extend HMM to multiple data streams occurring 
at different time scales, but even that approach assumes that each 
time scale was regularly sampled.

One additional challenge occurs when considering short-interval 
biologging data from birds. Specifically, avian movement often oc-
curs by flight. In this case, position is three-dimensional, where 
location is defined not just on the X/Y plane but also the Z plane. 
This opens the possibility of a rich new suite of variables to define 
movement because velocity, acceleration, and deceleration have 
not just a horizontal component but also a vertical component. In 
fact, position on the Z plane, measured as altitude above ground, 
may be even more important for classifying behavior than is position 
on the X/Y plane (Sur et al., 2021). Most existing software imple-
mentations of popular movement analyses including BCPA (Gurarie, 
2014), HMM (Michelot et al., 2016), or BPM (Calenge, 2006) assume 
the movement data comprise a two-dimensional spatial component 
and a time component. Applications of HMM that have explored be-
havioral classification from vertical movement still only consider two 
dimensions (e.g., Phillips et al. (2015) analyze movement of tropical 
tuna characterized by depth and water temperature).

Characterizing behavior using short-interval movement data from 
birds thus requires a computationally efficient method that can be 
applied to potentially millions of observations, an abundance of very 
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short segment lengths, irregular time and space intervals between 
fixes, and high-dimensional movement characteristics. Few, if any, 
tools have been developed that specifically address these issues. One 
appealing analytic approach for grouping individual trajectory points 
into behavioral clusters given these considerations is the K-means clus-
tering algorithm (Hastie et al., 2009). K-means clustering is a popular 
unsupervised learning method that aims to identify clusters of data 
points with similar attributes. An appealing feature of K-means clus-
tering is that there is no limit on the dimensionality of the movement 
attributes, making it a very good option for clustering high-dimensional 
movement data such as that from birds. In the animal movement lit-
erature, K-means clustering has been applied to classify same-state 
behavioral segments following BCPA (Zhang et al., 2015) but can also 
be applied directly to cluster individual points in a trajectory, allowing 
temporally consecutive locations to be assigned to different behaviors 
(Sakamoto et al., 2009; Van Moorter et al., 2010). This latter application 
of K-means clustering is particularly attractive for short-interval data 
because it does not require the presence of long segments that may be 
missing in short-interval data sets. As it is relatively assumption-free, 
K-means clustering can be applied to correlated data without requiring 
estimation of an autocorrelation function. This is appealing as autocor-
relation may be difficult to estimate with an abundance of very short 
temporally consecutive segments. Furthermore, K-means algorithms 
are optimized for computational efficiency to speedily converge, even 
when applied to millions of data points, and are readily available in 
most standard statistical software.

Here, we use K-means clustering to identify behavioral states as-
sociated with attributes measured at short intervals by biologgers. 
We apply this framework to GPS telemetry data collected at 1–11 s 
from bald eagles (Haliaeetus leucocephalus) in the state of Iowa, USA. 
We show how attributes associated with the K-means clusters re-
flect biologically relevant behavioral states. Finally, to illustrate how 
such an analysis can provide insight into animal ecology, we analyze 
the sequentiality and relationship of these behaviors with intrinsic 
and extrinsic characteristics (e.g., Nathan, 2008), and we explore 
age- and stage-related variation in the relationships. R code with an 
example data set to demonstrate the use of this approach is available 
in a GitHub repository.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

From 2013 to 2019, we tagged 100 bald eagles in Missouri (n = 1), 
Oklahoma (n = 14), Illinois (n = 33), and Iowa (n = 52). These included 
62 nestlings captured in the nest, 30 free-flying birds captured using 
floating fish traps (Cain & Hodges, 1989) or net guns or cannon nets 
at deer carcasses (Bildstein & Bird, 2007), and 8 tagged at the time 
of release from rehabilitation facilities. All captured eagles were 
banded with a standard United States Geological Survey (USGS) fed-
eral bird band and outfitted with 70-g Global Positioning System–
Global System for Mobile communications (GPS-GSM) telemetry 

devices (Cellular Tracking Technologies, LLC, Rio Grande, NJ, USA). 
The telemetry units were programmed to collect GPS data at ~3–
10 s intervals, while the birds were in flight and at 15-min intervals 
after the bird had stopped moving for 1 min (i.e., perching). That said, 
the actual interval between fixes varied around these programmed 
intervals. Whether or not the animal was moving was determined by 
manufacturer-designed settings and based on parameters reported 
from an onboard accelerometer.

Telemetry devices were attached in a backpack style (Kenward, 
1985) using a Teflon® ribbon (Bally Ribbon Mills, Bally, PA, USA) 
harness. Weight of the device and harness was always <3% of body 
mass. We aged birds based on the length of the 8th primary (nest-
lings; Bortolotti, 1984) or based on plumage and molt characteristics 
(free-flying birds; McCollough, 1989). We further classified free-flying 
birds as juveniles (age ~5–12 months), subadults (age 1–4.5 years), or 
adults (>4.5 years). For additional details on animal capture, handling, 
permitting, and tagging, see Miller et al. (2019) and Schmuecker et al. 
(2020).

To understand within-population variability in flight behavior, we 
manually assigned birds to one of three biological “stages” (fledged, 
local, and long distance). We used the term “fledged” to describe 
young eagles that had left the nest but that were still dependent 
on their parents. This period began when a nestling fledged and 
ended when it dispersed from the natal area. We determined that an 
eagle dispersed and was no longer dependent on its parents when 
it took a directed flight away from the natal area and did not return 
for >7 days (for additional details, see Miller et al., 2019). We used 
the term “long distance” to describe eagles that engaged in both mi-
gratory and directed dispersal movements (as defined in Miller et al., 
2016; Poessel et al., 2016). Finally, we used the term “local” to de-
scribe birds that were neither fledged, migratory, nor dispersive (i.e., 
everything that did not fit into the other two categories). Many birds 
were tracked through multiple stages and across multiple years.

2.2  |  Pre-analysis processing of data

Once collected, we filtered GPS data to remove outliers and points 
that diagnostic data suggested were of low precision (we refer to 
this as “first-tier filtering”). Specifically, we filtered out data points 
for which the horizontal or vertical dilution of precision (HDOP or 
VDOP) was >10 or that had a 2-dimensional GPS fix (as opposed to 
3-dimensional). HDOP and VDOP are confidence measures of the 
GPS horizontal and vertical positions, respectively, where lower val-
ues are equal to higher confidence. We also calculated the altitude 
above ground (AGL) of every location by subtracting the value of 
a 30-m digital elevation model (Gesch et al., 2002) at that location 
from the GPS-determined altitude above sea level (ASL), and we fil-
tered out all data points in which AGL < −50. Finally, we carefully 
examined outliers with respect to altitude, speed, and other met-
rics (e.g., time between points, distance between points), and we 
removed obviously anomalous points. For additional details on our 
approach to data management and filtering, see Poessel et al. (2018).
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We used the GPS data to identify or calculate values for a set 
of six focal variables (Table 1) known to effectively describe eagle 
flight (for details on these variables, see Katzner et al., 2015). Two 
of these, instantaneous speed (KPH) and meters above ground level 
(AGL), were characteristics of a single GPS data point. The other 
four were derived from up to three sequential points (calculations 
in Table 1). These include speed between two points (distance/time, 
Sn), the rate of gain in altitude between two points, that is, vertical 
rate (m gained/s, Vr), the absolute value of vertical rate (|Vr|), and 
the absolute value of the turn angle (computed over three sequen-
tial points, |Angle|, in radians, package moveHMM, Michelot et al., 
2016). Thus, “movement” measured at each GPS point was defined 
with a 6-dimensional suite of focal variables.

After focal variables were defined, we conducted a series of 
additional filtering steps (“second-tier filtering”). First, we removed 
points that had any missing values for any of the six focal variables. 
Second, we removed points that were >11  s apart. We chose the 
11-s threshold based on inspection of our data set, in which ~97% of 
the first-tier filtered data were ≤11 s apart. This requirement also en-
sured that the derived focal variables (Sn, |Angle|, Vr, and |Vr|) were 
measured over similar time spans. Third, we filtered out points that 
were not part of a segment of at least three consecutive points, each 
≤11 s apart.

The K-means algorithm tends to be more effective at identify-
ing meaningfully distinct clusters if distributions of variables are not 
highly skewed. Likewise, it is important that the variables used in 
the clustering are on a similar scale, such that the Euclidean distance 
metric underlying the algorithm is not driven by variables with larger 
standard deviations. Accordingly, we visualized the distributions of 
the focal variables with histograms and applied a square-root trans-
formation to variables that had distributions with visually apparent 

skew. Subsequently, we centered and scaled all variables by sub-
tracting the mean and dividing by standard deviation.

2.3  |  K-means clustering

The K-means algorithm is a simple approach for partitioning a data set 
into K distinct, nonoverlapping clusters (James et al., 2013). We briefly 
describe the algorithm here in the context of behavioral classifica-
tion by assigning each of N GPS points to one of K distinct behavioral 
modes.

Let xi =
{
xi1, xi2,…, xip

}
 denote the p quantitative data values of 

covariates for the GPS point at time Ti; i = 1,…,N, for N GPS points. 
The algorithm is initialized by assigning a random cluster member-
ship of 1 through K to each of the N GPS points. Let Ck denote the set 
of points in cluster k, k = 1,…,K, and ||Ck

|| the number of points in 
cluster Ck. Then, x⋅jk =

1

�Ck�
∑

xi∈Ck
xij is the mean of the jth covariate 

among all points in Ck, and mk =
{
x
⋅1k , x⋅2k ,…, x

⋅pk

}
 is the centroid of 

Ck. The algorithm proceeds as follows:

1.	 For each point, xi, calculate di1…diK as the squared Euclidean 
distance of GPS point xi from centroid mk:

2.	 Reassign each point, xi, to the cluster with the closest centroid; 
equivalently, to the Ck for which dik is the smallest:

dik =

p∑

j=1

(
xij−x

⋅jk

)2
.

Ck =
{
xi: min

{
di1, di2,…, diK

}
= dik

}
.

TA B L E  1 Definitions of biologging data collected from bald eagles and subsequent variables derived from these data

Variable Definition Calculation
Used in 
clustering?

Square-root 
transformed?

x UTMEasting From biologger No –

y UTMNorthing From biologger No –

z Altitude above sea-level (m) From biologger No –

Date Date From biologger No –

Time Time From biologger No –

KPH Instantaneous speed (k/h) From biologger Yes Yes

Sn Horizontal distance between consecutive points 
at Ti and Ti−1 divided by change in time 
(Ti − Ti−1) (m/s)

[(xi − xi−1)
2 + (yi − yi−1)

2]1/2/(Ti − Ti−1) Yes Yes

AGL Above ground level (m) AGL = (zi − DEMi) Yes Yes

|Angle| Abs. value of turn angle (radians) Yes Yes

Vertical rate Mean vertical velocity, change in altitude/change 
in time between consecutive sample points 
(m/s)

(zi − zi−1)/(Ti − Ti−1) Yes No

|Vertical rate| Absolute value of vertical rate (m/s) Yes Yes

Note: Whether each variable was used in K-means classification and, if so, whether it was first transformed is also indicated.
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3.	 Compute the new centroids mk of the newly assigned clusters 
for k = 1,…,K.

The objective of the algorithm is to minimize the total within-cluster 
sum of squared Euclidean distances, WSS =

∑K

k=1

∑N

i=1
dik, for all pos-

sible definitions of clusters. The algorithm iterates between steps 1–3 
until the centroids and assigned cluster memberships do not change 
(i.e., the within-cluster sum of squares is minimized). It is good practice 
to specify numerous “starting points” (initial random assignments of the 
cluster memberships and hence initial centroids) to ensure that the re-
sulting cluster definitions are not a function of the initial centroids and 
that a global minimum for WSS has truly been found for the given value 
of K. We used the kmeans() function in R to implement the clustering (R 
Core Team, 2020). See Data Availability for access to example R code.

2.4  |  Choosing K

In order to apply the K-means algorithm, one must first specify K, the 
number of clusters to identify. The algorithm will then classify each 
data point as belonging to one of the K clusters. Subsequently, one 
must determine the value of K that best describes uniquely distinct 
groupings. A common, simple method for choosing K, often referred 
to as the “elbow method,” involves looking at a plot of the total 
within-cluster sum-of-squares (WSS) of clustered data as a function 
of K (Hastie et al., 2009). The WSS measures the total squared dis-
tance of all points from the centroid of their assigned clusters. As 
K increases, the WSS will decrease, and there is often a value of K 
that corresponds with a “kink” or “elbow” in the plot before which 
the WSS steeply descends and after which the WSS levels off. This 
“elbow” indicates a K for which a larger number of clusters do not 
reveal additional meaningfully distinct groupings.

It is possible for the elbow method to be ambiguous about the 
optimal K. An alternative method for choosing K is the average silhou-
ette method (Rousseeuw, 1987). The “silhouette width” of a data point 
measures how close it is on average to members of its own cluster 
relative to members of the closest neighboring cluster. A silhouette 
width of 1 indicates a very confidently clustered point; widths of 0 
indicate a point on the border of two clusters; and negative widths 
indicate a point that may be in the incorrect cluster. Averaging the sil-
houette widths across the entire data set provides a metric that can be 
compared across different values of K, with higher average silhouette 
values indicating better choice of K. However, calculating the silhou-
ettes for all data points simultaneously requires computing the N × N 
distance matrix, which is not computationally feasible for a data set of 
over one million observations. A work-around is to bootstrap the aver-
age silhouette by sampling Nboot ≪ N points with replacement from the 
original data set. The average silhouette can then be computed on the 
bootstrap sample for each value of K. Repeating this process B times 
yields B bootstrapped average silhouettes for each K, which can be 
plotted as a function of K. The values of K that tend to yield the highest 
average silhouettes across the B bootstrap samples are candidates for 
the optimal number of clusters.

There may be cases in which the bootstrapped average silhou-
ettes suggest two or more optimal values of K. In these situations, 
it can be useful to reduce dimensionality of the covariate space by 
way of a principal component analysis and create a biplot of the first 
two principal components (PCs), color-coded by K. Input data into 
the principal component analysis are not the bootstrapped data, 
but instead are the same as those used in the K-means clustering 
as described above (i.e., the GPS data in Table 1, transformed and 
standardized). The first two PCs explain the largest proportion of 
variability in the covariates. Creating a “lineup” of these biplots for 
each value of K may provide helpful insight into the value of K that 
best describes distinct, biologically relevant behaviors.

2.5  |  Data analysis and behavioral interpretation

For our example analysis on telemetry data for bald eagles, we carried 
out K-means clustering for K ∈ {2,…, 7} with 10 randomly chosen initial 
cluster assignments for each K. We used both the elbow method and 
the bootstrapped silhouette method along with a biplot lineup to iden-
tify an optimal value for K. For the silhouettes, we took B = 1000 boot-
strap samples each of size 10,000 and averaged the silhouette widths 
across these 10,000 points for each value of K. The clusters assigned to 
points in each bootstrap sample were defined using the entire data set; 
clusters were not redefined for each bootstrap sample. Given the size 
of our data set and to avoid overplotting, we investigated biplot lineups 
of several individual birds separately rather than plotting biplots of all 
birds together and verified the similarity of the biplots across individual 
birds. Subsequently, we examined the behavioral characteristics of each 
cluster identified by the K-means approach. To do this, first, we evalu-
ated the relationship between these clusters and each focal covariate 
using a series of boxplots and, using these relationships, we determined 
a behavioral mode for each cluster. Second, we evaluated patterns in se-
quentiality of GPS data. To do this, we identified behavioral subsegments. 
These were defined to be consecutive points ≤11 s apart in which all 
points within the subsegment had been classified as belonging to the 
same behavioral cluster. We determined the durations of these behav-
ioral subsegments and investigated the sequentiality in duration and 
classification of behavioral subsegments to gain further insight into the 
clusters and patterns of behavior. Third, to illustrate how this approach 
provides insight into within-population variability in flight behavior, we 
evaluated age- and stage-related variation in the frequency of behavioral 
occurrence of eagles by investigating plots of the relationship between 
eagle age and biological stage and behavioral classification.

3  |  RESULTS

3.1  |  Tracking data

We collected ~4.2 million GPS data points from bald eagles within 
Iowa. Of the 100 eagles captured in the Midwest and Great Plains, 
57 provided data within Iowa and at time intervals useful for this 
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study (Table 2). These included 28 nestlings, 39 juveniles, 23 sub-
adults, and 11 adults (many birds were monitored across more than 
one year and thus may be represented in counts of multiple age 
classes). About three-quarters of these data were collected from 
birds in the local stage (Table 3A).

3.2  |  Pre-analysis processing

After first-tier filtering, we retained 2,793,220 high-precision GPS 
data points. After second-tier filtering, we retained 2,093,022, 
or 36,720 ±  44,190 points per bird (x  ±  SD; range: 27–187,570). 
Creating segments of consecutive points ≤11 s from each other re-
sulted in 77,259 segments that ranged in length from 3 points and 
2 s in duration (the minimum segment length) to >3500 points and 
354 min (Table 3B). Among the 57 birds we analyzed, the number 
of segments per bird ranged from 2 to 8220 with a median number 
of segments per bird of 1016. The vast majority of these segments 
were short: 90% of segments were ≤38 points and ≤240 s; 75% were 
≤11 points; and half of the segments were ≤5 points.

Distributions of the six focal variables associated with GPS points 
are shown in Figure 1. Speed measurements at GPS points were bi-
modally distributed, with one peak at zero (for motionless birds) and 
a second at ~45 kph (KPH) and ~10 kph (Sn). In contrast, distributions 
of AGL, |Angle|, and |Vr| all were all positively skewed with peaks at or 
near zero, while Vr was symmetrically centered at zero. We applied a 
square-root transformation to KPH, Sn, AGL, |Angle|, and |Vr|. We did 
not transform Vr. All variables (transformed or not) were subsequently 
standardized to mean = 0 and variance = 1 for clustering.

3.3  |  K-means clustering

The elbow method did not suggest that any single number of clusters 
was optimal (i.e., there was not a clearly defined “elbow”; Figure 2a). In 
contrast, plotting the bootstrapped average silhouettes widths across 
K suggested that K  =  2 and K  =  4 yielded the highest average sil-
houettes (Figure 2b). Whereas K = 2 tended to have slightly higher 

average silhouettes than K = 4, biplots of the first two principal com-
ponents (PCs) indicated that K = 2 resulted in one small and one much 
larger cluster (Figure 3). Subsequent investigation indicated the small 
cluster was perching points (see Behavioral interpretation of clusters) 
while all in-flight points were grouped into the large cluster. According 
to Figure 2b, K = 4 was clearly the optimal choice for breaking this 
larger flight cluster into three smaller in-flight modes. As we were in-
terested in clustering different flight modes rather than just flight vs 
nonflight, we selected K = 4 as the optimal number of clusters. The 
biplot structures in Figure 3 held when evaluating biplots from other 
individual birds and from multiple birds simultaneously.

The most important focal variables for differentiating clusters 
in the first PC dimension were the two velocity variables (KPH and 
Sn; Figure 4). The other four variables (Vr, |Vr|, AGL, and |Angle|) 
were all more important for the second PC dimension. The first two 
PCs cumulatively accounted for 66% of the total variability in the 
covariates.

3.4  |  Behavioral interpretation of clusters

Once clusters were defined, we then identified behavioral modes for 
each. The distribution of the focal variables among the clusters sug-
gested movement characteristics that appeared to be associated with 
specific behavioral modes (Figure 5). For example, points in cluster 1 
tended to have speeds near zero, were at low altitude above ground, 
had little vertical change, and had highly variable turning angles 
(Table 4; Figure 5). This pattern is consistent with a bird being motion-
less on the ground or in a tree (i.e., “perching”). In such a setting, the 
highly variable turning angles were generated by repeated small varia-
tions in GPS locations (i.e., GPS error). Points in cluster 2 had moder-
ate velocities, positive vertical rates, and tortuous flight paths (high 
values of absolute angle) and occurred at high altitudes. We therefore 
interpreted points in cluster 2 to be indicative of a bird gaining alti-
tude in an updraft (“ascending”). Points in cluster 3 were of moderate 
velocity and variable tortuosity while tending to be level and close to 
the ground. We deemed these points to be characteristic of “flapping” 
flight. Finally, points in cluster 4 exhibited fast velocities and straight 
(nontortuous) flight paths indicated by absolute angle values near zero. 
These points also occurred at high altitudes and were in descending 
flight (negative vertical rates). We therefore interpreted points in clus-
ter 4 as indicative of a bird gliding from a thermal (“gliding”).

Plots of sample flight paths illustrated these behavioral classifica-
tions (Figure 6). Ascending flight covered little ground and data points 
were clustered together (Figure 6a), resulting in slow (Figure 6a–c), 
climbing (Figure 6a,b) flight. Longer segments of consecutive as-
cending points tended to be followed by gliding flight (Figure 6a,b). 
The gliding flight that followed ascending flight resulted in sus-
tained directional flight in which GPS data were spatially far apart 
and that were accompanied by rapid loss of altitude (Figure 6a,b) 
at high speeds (Figure 6a–c). Both ascending and gliding flight were 
occasionally interrupted by flapping behaviors. These interruptions 
tended to be at lower or occasionally intermediate altitudes, and 

TA B L E  2 Number of bald eagles tagged and number of 
individuals tracked with GPS telemetry, organized by bird age

Bird age Number captured Individuals tracked

Nestling 42 28

Juvenile 3 39

Subadult 2 23

Adult 10 11

Total 57 101

Note: Many birds were tagged as nestlings but since nestlings do not 
fly, none of their tracking data were relevant to the analysis presented 
here. Most birds were captured in one stage and tracked into one or two 
other life stages; hence, the counts for each age class older than nestling 
are larger than the numbers of individuals tagged in each age class.
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they regularly occurred after gliding but before ascending flight. Like 
gliding flight, flapping flight tended to be straighter but at slower 
velocity (Figure 6a,b) and lower altitude (Figure 6c).

3.5  |  Relationship of behavior with age and 
movement stage

We detected, among age and stage classes of eagles, substantial 
differences in frequency of occurrence of each behavior type 

(Figures 7 and 8). Recently fledged birds, which have weaker flying 
skills than older birds, were less frequently in ascending or glid-
ing flight and more often in flapping flight than were other birds 
(Figure 7). Eagles engaged in dispersal or migration more frequently 
exhibited high-altitude behaviors (ascending and gliding) than did 
local birds. Among birds engaged in local movements, older eagles 
were more likely to exhibit flapping flight and less likely to exhibit 
ascending or gliding flight than were younger ones (Figure 8). Age 
differences were much less pronounced for migrating or dispersing 
birds than for birds moving only locally.

TA B L E  3 Summary statistics describing (A) GPS telemetry points collected from bald eagles and classified into behavioral modes, by life 
stage and year of the study and (B) segments of classified GPS data subsequently used to illustrate effectiveness of K-means clustering to 
understand animal movement and characteristics of flight behavior

(A)

Year

Life stage

TotalFledgling Locally moving Dispersal/migration

2016 0 2795 2901 5696 (0.3%)

2017 60,767 142,953 37,077 240,797 (11.5%)

2018 86,615 184,105 47,906 318,626 (15.2%)

2019 151,934 419,847 123,045 694,826 (33.2%)

2020 0 788,773 44,304 833,077 (39.8%)

Total 299,316 (14%) 1,538,473 (74%) 255,233 (12%) 2,093,022

(B)

Segmenta length measured in

GPS points Seconds

Minimum 3 2

25th percentile 4 19

Median 5 27

75th percentile 11 69

Maximum 3538 21,222

aEach ≥3 consecutive points of ≤11 s apart.

F I G U R E  1 Distributions of eight 
focal variables associated with GPS data 
collected from bald eagles in Iowa, USA. 
Focal variables were standardized (after 
square-root transform when necessary 
to reduce skewness) then used as input 
into a K-means cluster analysis to classify 
flight behavior of these birds. See text for 
details on analysis
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3.6  |  Analysis of behavioral subsegments

After clustering, we identified 587,425 behavioral subsegments, 
each consisting of consecutive points ≤11 s apart in which all points 
within the subsegment had been classified as belonging to the same 
behavioral cluster. Of these, 499,124 were nonperching subsegments 
(Table 5). About half of nonperching behavioral subsegments con-
sisted of a single point (0  s subsegments). Ascending flight had the 
highest prevalence of subsegments consisting of a single GPS location 
(62% of ascending subsegments) and flapping had the highest preva-
lence of longer subsegments (22% of gliding subsegments were >22 s).

Transitions from one type of behavior to another (i.e., change 
points) can be interpreted to gain biological insight (Table 6). Perching 
was most likely to occur at the end of a track. Gliding flight was most 
frequently followed by flapping flight. Flapping and ascending flights 

most often transitioned between each other, but this relationship 
depended on the duration of the subsegment (Figure 9). Short peri-
ods of ascending flight were most often followed by flapping flight. 
In contrast, longer ascending flights were most frequently followed 
by gliding flight.

4  |  DISCUSSION

4.1  |  Analytic approach and insights into animal 
movement

Animal movement data are increasingly collected in greater quantity 
and at shorter time intervals. As these data have the potential to pro-
vide important insight for ecologists, selecting the most appropriate 

F I G U R E  2 Plots of (a) within-cluster sum-of-squared distances between each point and the cluster centroid; and (b) bootstrapped 
average silhouette width as a function of number of specified clusters K. In (b), the gold line represents the mean across all 1000 bootstrap 
samples of the average silhouette widths. Cluster centroids were determined by a K-means analysis of standardized GPS telemetry data 
collected from bald eagles in Iowa, USA. See main text for additional details on data collection and analysis

F I G U R E  3 Examples of biplots of the 
first two principal components of raw GPS 
telemetry data collected from a single bald 
eagle color-coded by cluster membership 
for K ∈ {2, 3, 4, 5, 6, 7}. Input variables 
are those used in the K-means clustering 
as described in the main manuscript (i.e., 
the GPS data in Table 1, transformed and 
standardized). Making these plots for each 
value of K in addition to the bootstrapped 
average silhouette widths provides 
additional insight into which number of 
K is most appropriate. In each biplot, the 
number of colors present equals the value 
of K indicated
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analytical method is a crucial component of data interpretation. The 
choice of an analytical approach should depend on the research ob-
jective, with consideration of the complexity, utility, and computa-
tional intensity of the method, as well as how those considerations 
are addressed by packages or software that exist for the implemen-
tation (Gurarie et al., 2016).

We have demonstrated use of a specific clustering algorithm, the 
K-means algorithm, as an efficient method capable of producing bi-
ological insight when applied on a GPS-point basis to vast amounts 
of short-interval biologging data consisting of high-dimensional 
movement attributes. The ability to cluster points rather than seg-
ments is a crucial aspect of our approach. When short segments 

F I G U R E  4 Loadings and biplot from 
principal component analysis of GPS 
telemetry data collected from bald eagles 
in Iowa, USA. Input data were the 6 focal 
variables shown in Table 1 in the main 
text. The first two components accounted 
for, respectively, 45% and 21% of the total 
variability in the covariates. Points on 
biplot are from a representative bird and 
are color-coded by cluster membership 
assignment for K = 4 clusters

F I G U R E  5 Boxplots of variables 
relevant to clustering short-interval GPS 
data from bald eagles. Boxes visualize 
25th, 50th, and 75th percentiles. Whiskers 
extend either to the most extreme data 
value or 1.5 * IQR (IQR = 75th–25th 
percentile) from the nearest quartile, 
whichever is closest. Variables chosen 
were those with high factor loadings 
from a principal components analysis of 
GPS variables used in K-means clustering 
with K = 4, as described in the main 
text. AGL, altitude above ground level; 
KPH, kilometers per hour

TA B L E  4 Qualitative definition of clusters defined by K-means clustering of GPS telemetry data collected from bald eagles

Cluster Velocity AGL Angle Vertical rate Flight mode

1 Very slow Very low Highly variable Level Perching

2 Moderate High Angling Ascending Ascending

3 Moderate Low Variable Level Flapping

4 Fast High Straight Descending Gliding

Note: Velocity was measured both by instantaneous speed measured by the GPS and by distance divided by time between sequential GPS data 
points. Altitude above ground level (AGL) is measured by the difference between altitude above sea level, measured by the GPS, and ground 
elevation measured by a digital elevation model (see main text for details). Angle and vertical rate were calculated over three GPS data points. Flight 
mode label was assigned by experts with a strong background in eagle ecology and behavior. Empirical trends for each of these measurements, by 
cluster, are shown in Figure 6.
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are abundant and consist of irregular space/time intervals, it may 
be difficult for segment-based change-point approaches such as 
BCPA, HMM, or BPM to define meaningful change points across 
the entire data set. For example, the minimum segment lengths in 
the applications considered by Zhang et al. (2015), Langrock et al. 
(2012), and Gurarie et al. (2009) were, respectively, 266 GPS points 

from little penguins Eudyptula minor, 1427 from American bison, 
and 30 from northern fur seals Callorhinus ursinus. By contrast, in 
our data set, 88% of our segments were <30 GPS points, 75% of 
segments were ≤11 points, and the median number of points in 
a segment was 5. For data like these that are not well suited for 
segmentation analyses, point-based K-means clustering proves an 

F I G U R E  6 Plots showing details 
of movements and behaviors of bald 
eagles. Movement data were collected 
by GPS telemetry collected at short time 
intervals. GPS data were then assigned 
to behavioral categories via K-means 
clustering. In each panel of the figure, 
the left-most plot shows the map of 
the bird's movement, plotted on a UTM 
scale. The top right plot shows the flight 
speed of each point plotted sequentially 
over time. The bottom right plot shows 
the altitude above ground level, also 
plotted sequentially over time. In all three 
panels, points are color-coded based on 
the behavioral mode identified by the K-
means clustering
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effective tool to identify behaviors distinguishable as biologically 
relevant movement states.

Our approach was unique in considering multidimensional move-
ments and in its computational feasibly. Despite the fact that the 
two marine species considered in Zhang et al. (2015) and Gurarie 
et al. (2009) move in three dimensions, neither of these analyses 
went beyond simple 2-dimensional linear movement. In contrast, 
our analysis defined behaviors based on six movement attributes in 
3-dimensional space. Similarly, while existing software packages for 
fitting many commonly used movement analyses are not equipped 
to analyze large sets of high-dimensional movement data, K-means 
clustering was efficient at clustering nearly two million GPS fixes 

with each fix characterized by a six-dimensional movement attribute 
and did not rely on regular time interval between fixes.

While using solely a quantifiable approach to choosing K is ap-
pealing, the commonly used elbow method provided no insight into 
which K to choose, and bootstrapping average silhouettes suggested 
an overly simplistic K = 2 as the optimal choice. We therefore relied 
not entirely on a metric-based approach, but instead on an explor-
atory and context-driven approach for choosing K that utilized the 
bootstrapped silhouettes, a biplot lineup, and additional explora-
tion of the resulting cluster definitions. We feel that this decision 
is well-justified. Gurarie et al. (2016) advocated for an approach to 
movement analysis that is adaptive, iterative, and contains a high 

F I G U R E  7 Relationship of behavioral 
classifications with life stages of eagles. 
Behavioral classifications were assigned 
by experts with a strong background in 
eagle ecology and behavior and associated 
with K-means clusters of GPS telemetry 
data from bald eagles in Iowa, USA. Life 
stages of eagles were determined by gross 
movement characteristics of birds (i.e., 
were their movements migratory or local 
in nature). See main text for additional 
details on clustering and assignment to life 
stages. Bold numbers under bars indicate 
marginal percent of points in each flight 
stage

F I G U R E  8 Relationship of behavioral classifications with age classes and life stages of eagles. Behavioral classifications were assigned 
by experts with a strong background in eagle ecology and behavior and associated with K-means clusters of GPS telemetry data from bald 
eagles in Iowa, USA. Life stages of eagles were determined by gross movement characteristics of birds (i.e., were their movements migratory 
or local in nature). Ages were estimated when eagles were marked. See main text for additional details on clustering and assignment to age 
classes and life stages. Bold numbers under bars indicate marginal percent of points in each age class and of each flight stage
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exploratory component, in contrast to a prescriptive approach that 
relies on a large number of a priori assumptions. We believe our 
approach to choosing K, by investigating a series of PCA biplots in 

conjunction with the bootstrapped silhouette averages led us to im-
portant biological insight. Specifically, our choice of K yielded not 
just flight vs perching modes, but also described biologically relevant 
and distinct in-flight behaviors, while also following Gurarie et al.'s 
(2016) vision of a less prescriptive, more iterative, and exploratory 
approach.

Even though our application of K-means clustering was GPS-
point based (rather segment-based, as in Zhang et al., 2015), we 
could still gain insight from identifying and exploring characteris-
tics of and transitions between subsegments. Duration of behav-
ioral subsegments (consecutive points assigned to the same cluster) 
tended to be short and for all moving behaviors that we identified 
the most frequent subsegment length was 0 s (one GPS point). This is 
partly because our initial filtering resulted in a large number of short 
segments, but it is also to be expected from an approach that groups 
points into clusters based on topology rather than sequentiality. Our 
results are consistent with field observations of eagles that suggest 
that flight paths often are comprised of many short, topologically 
distinct subsegments. For example, in the field, it is common to see 
an eagle flap a few times to gain altitude, then glide for 10 s, and 

TA B L E  5 Frequency of short-, medium-, and long-duration 
behavioral subsegments of consecutive points belonging to one of 
three in-flight behavioral modes of bald eagles

Duration proportions of behavioral 
subsegments

Count0 s 0–22 s >22 s

Ascending 0.62 0.24 0.14 154,087

Flapping 0.42 0.36 0.22 242,957

Gliding 0.51 0.22 0.19 102,080

Count 249,582 154,436 95,106 499,124

Note: Behavioral modes were assigned by experts with a strong 
background in eagle ecology and behavior and were associated with 
K-means clusters of GPS telemetry data. Subsegments of 0 s indicate a 
single point. Subsegments of up to 22 s are most frequently indicative 
of 3 GPS points (maximum inter-fix interval was 11 s). Counts are 
numbers of behavior subsegments of each category.

TA B L E  6 Transition probabilities for behavior modes of bald eagles

Subsequent behavior

Perching Ascending Flapping Gliding Segment end

Initial behavior Perching – 0.07 0.27 0.01 0.64

Ascending 0.04 – 0.78 0.17 0.02

Flapping 0.13 0.50 – 0.30 0.07

Gliding 0.02 0.22 0.75 – 0.02

Note: Behavior labels were assigned by experts with a strong background in eagle ecology and behavior and associated with clusters identified by 
K-means clustering. Bolded numbers indicate the most likely transition of each initial behavior (i.e., perching is most commonly followed by the end of 
a subsegment).

F I G U R E  9 Relationship of length of behavioral subsegments identified in GPS telemetry data and the behavioral mode of the next 
subsegment. Relationships are shown by behavioral mode. Behavioral classifications were assigned by experts with a strong background in 
eagle ecology and behavior and associated with K-means clusters of GPS telemetry data from bald eagles in Iowa, USA. See main text for 
additional details on clustering. Numbers under bars indicate marginal percent of points in each time bracket for the given behavioral mode
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then repeat this cycle (TAM, TEK, unpublished observations). The 
advantage of our approach in allowing very short or single-point be-
havioral subsegments offers flexibility in accurately characterizing 
acute behavior changes that are biologically realistic. For example, 
a momentary leveling off from a gliding descent may be most accu-
rately characterized by very brief flapping flight (Figure 6a; see plot 
for meters above ground level, where long segments of blue dots 
are interrupted by one or two orange dots). Similarly, a long flapping 
flight segment may be interrupted by a very brief ascending segment 
(Figure 6c; see X vs Y plot, where long segments of orange dots 
are interrupted by one or two yellow dots). These acute behavioral 
changes are identifiable by virtue of the short-interval data collec-
tion and point-based behavioral classification; consider that BCPA 
requires segments of at least 30 observations to identify multiple 
change points (Gurarie et al., 2009).

Simultaneously considering subsegment duration and transition 
provides additional biological insight beyond that simply from the 
classification. For example, we noted that ascending flight was most 
often followed by flapping flight. This initially seemed counterintui-
tive, as we expected ascending in a thermal to be followed by glides 
from the thermal. However, this result did not account for the length 
of the ascending subsegments. When we considered segment length, 
our results were more biologically sensible (Figure 9). In fact, most of 
our subsegments were short (95% were <60 s), and it is those short as-
cending subsegments that were most often followed by flapping flight. 
However, the longer a bird ascends, the higher it goes and the more 
likely the ascending flight was followed by gliding flight. This pattern 
in telemetry data is consistent with our expectation, it makes good 
intuitive sense, and it matches well with the maps of behavior as well 
as field observations of birds (TAM, TEK unpublished observations).

A limitation of the K-means algorithm is that every point will be as-
signed to the single cluster with the multidimensional center to which 
it is closest. This can result in a great deal of variability of the attributes 
even among points assigned to the same cluster (which can be seen to 
some extent in Figure 5), as well as “borderline” points that have been 
assigned to different clusters but may be more similar to each other 
than they are to other members of their own cluster. Analysts who are 
concerned about the “behavioral purity” of points assigned to any one 
cluster could opt to only include points within a minimum distance 
from each cluster's centroid, though there is no published recommen-
dation that we could find as to what this minimum distance should be. 
One possibility for “softer” cluster assignment is to use a method like 
Gaussian mixtures clustering (Fraley & Raftery, 2002), which assigns 
to points “cluster responsibilities” that vary between 0 and 1, with 
higher responsibilities indicating less uncertain cluster membership. 
However, this method is derived assuming independent observations, 
which does not hold in the case of biologging data.

4.2  |  Next steps and conclusions

Typical behavioral modeling of telemetry data focuses on identify-
ing segments of consistent behavior and then interpreting those 

segments. Most approaches are exhibited with two-dimensional 
spatial data and may not be useful with data such as those collected 
from a flying animal. The K-means approach we used is a well-known 
statistical tool, but generally, it is not used in a point-based context 
to interpret animal tracking data. As we illustrate here, this ap-
proach provides a computationally efficient mechanism to rapidly 
characterize millions of short-interval animal tracking locations using 
high-dimensional movement attributes into biologically relevant 
behaviors that, if appropriate, can then be used in subsequent be-
havioral subsegment-based analyses exploring patterns in sequenti-
ality between and duration of behavioral modes. Whereas existing 
segmentation-based approaches are suitable for describing long-
duration behaviors, the availability of short-interval telemetry data 
offers the potential for understanding fine-scale variation in behav-
ior. Point-based clustering approaches such as K-means provide a 
way for ecologists to more fully explore their rich data in order to un-
derstand intrinsic or extrinsic drivers of those fine-scale variations.

Describing animal behavior, as we have done here, is only a first 
step. The next steps would relate these behavioral classifications to 
the ecological, demographic, or habitat-related correlates or drivers 
of that behavior (Nathan, 2008). Our approach lays the groundwork 
for efficient, effective behavioral classification, setting up subse-
quent exploration of these important biological questions.
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