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Abstract
1.	 Recent	 advances	 in	 digital	 data	 collection	 have	 spurred	 accumulation	 of	 im-
mense	quantities	of	data	 that	have	potential	 to	 lead	 to	 remarkable	ecological	
insight,	but	that	also	present	analytic	challenges.	In	the	case	of	biologging	data	
from	birds,	common	analytical	approaches	to	classifying	movement	behaviors	
are	largely	inappropriate	for	these	massive	data	sets.

2.	 We	apply	a	framework	for	using	K-	means	clustering	to	classify	bird	behavior	using	
points	from	short	time	interval	GPS	tracks.	K-	means	clustering	is	a	well-	known	and	
computationally	efficient	statistical	tool	that	has	been	used	in	animal	movement	
studies	primarily	 for	 clustering	 segments	of	 consecutive	points.	To	 illustrate	 the	
utility	of	our	approach,	we	apply	K-	means	clustering	to	six	focal	variables	derived	
from	GPS	data	collected	at	1–	11	s	intervals	from	free-	flying	bald	eagles	(Haliaeetus 
leucocephalus)	throughout	the	state	of	Iowa,	USA.	We	illustrate	how	these	data	can	
be	used	to	identify	behaviors	and	life-	stage-		and	age-	related	variation	in	behavior.

3.	 After	filtering	for	data	quality,	the	K-	means	algorithm	identified	four	clusters	in	
>2	million	GPS	telemetry	data	points.	These	four	clusters	corresponded	to	three	
movement	states:	ascending,	 flapping,	and	gliding	 flight;	and	one	non-	moving	
state:	perching.	Mapping	these	states	illustrated	how	they	corresponded	tightly	
to	 expectations	 derived	 from	 natural	 history	 observations;	 for	 example,	 long	
periods	of	ascending	flight	were	often	followed	by	long	gliding	descents,	birds	
alternated	between	flapping	and	gliding	flight.

4. The K-	means	clustering	approach	we	applied	is	both	an	efficient	and	effective	
mechanism	to	classify	and	interpret	short-	interval	biologging	data	to	understand	
movement	 behaviors.	 Furthermore,	 because	 it	 can	 apply	 to	 an	 abundance	of	
very	short,	 irregular,	and	high-	dimensional	movement	data,	 it	provides	 insight	
into	small-	scale	variation	in	behavior	that	would	not	be	possible	with	many	other	
analytical approaches.
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1  |  INTRODUC TION

Recent	 advances	 in	 digital	 data	 collection	 have	 spurred	 accumu-
lation	 of	 immense	 quantities	 of	 data	 that	 have	 led	 to	 remarkable	
ecological	 insight	(Hampton	et	al.,	2013;	Lewis	et	al.,	2018;	Thums	
et	al.,	2018).	At	the	same	time,	these	advances	have	created	an	“em-
barrassment	of	riches,”	where	analysis	tools	and	technologies	used	
in	 ecology	 have	 not	 kept	 pace	 with	 the	 quantity	 of	 data	 created	
(Katzner	&	Arlettaz,	2020;	Kays	et	al.,	2015;	Williams	et	al.,	2020).	
As	a	consequence,	ecologists	may	under-	utilize	their	data	due	to	a	
lack	of	awareness	of,	or	lack	of	examples	of,	analytical	tools	available	
to	manage	and	interpret	the	huge	quantities	of	data	being	collected.

Animal	tracking	technologies,	or	“biologgers,”	are	an	example	of	
a	digital	data	collection	tool	that	has	created	unique	opportunities	
for	understanding	animal	ecology	and	behavior	(Hussey	et	al.,	2015;	
Kays	et	al.,	2015).	Biologgers	collect	data	at	time	frames	that	allow	
researchers	 to	 identify	 and	 distinguish	 between	 different	 move-
ment	behaviors,	which	is	a	common	objective	in	movement	ecology.	
Some	methods	 for	 identifying	different	behaviors	only	allow	 for	a	
binary	 behavioral	 classification,	 for	 example,	 interpatch	 vs	 intra-
patch	search	(Barraquand	&	Benhamou,	2008);	 intensive	vs	exten-
sive	 search	 (Knell	&	Codling,	 2012);	 foraging	 vs	 resting	 (Whitford	
&	Klimley,	2019);	and	soaring	vs	flapping	flight	(Katzner	&	Arlettaz,	
2020).	Various	other	methods	have	been	developed	to	more	flexibly	
analyze	animal	movement	data	with	the	intention	of	understanding	
additional	 behavioral	 modes	 (Edelhoff	 et	 al.,	 2016;	 Gurarie	 et	 al.,	
2016).	Common	analytic	 approaches	 include	Bayesian	partitioning	
modeling	 (BPM;	 Calenge,	 2006),	 behavioral	 change-	point	 analysis	
(BCPA;	Gurarie	et	al.,	2009),	or	variants	of	state-	space	models	(SSM)	
and	hidden	Markov	models	 (HMM)	 (Gurarie	et	al.,	2016;	Langrock	
et	 al.,	 2012).	 These	 tools	 can	 be	 used	 to	 analyze	 covariates	 from	
biologging	 data	 alone,	 independent	 of	 external	 predictors	 (i.e.,	
weather,	 topography,	 land	cover),	making	them	well	suited	to	sub-
sequent	statistical	analyses	linking	patterns	in	behavioral	classes	to	
patterns	in	the	environment.

A	defining	feature	of	many,	but	not	all	of	these	tools	 is	that,	 in	
ecology,	they	were	initially	applied	to	identify	behavioral	classes	in	
telemetry	 data	 collected	 over	 relatively	 long	 (minutes	 to	 hours	 or	
days),	and	sometimes	constant,	time	intervals.	As	technological	ad-
vances	now	allow	the	collection	and	transmittal	of	 telemetry	data	
collected	at	ever	shorter	time	intervals	(<60	s),	the	nature	of	these	
high-	frequency	data	offers	potential	for	new	insights	but	also	pres-
ents	 novel	 challenges	 (Kays	 et	 al.,	 2020).	 There	 are	 three	 specific	
features	 of	 short-	interval	 data	 in	 general	 that	 make	 them	 poorly	
suited	 to	 popular	 movement	 analysis	 methods	 like	 BPM,	 BCPA,	
SSMs,	 or	 HMMs.	 First,	 the	 sheer	 preponderance	 of	 data	 (on	 the	
order	 of	millions	 of	GPS	 fixes)	 calls	 for	 an	 analytic	 approach	 that	

is	 computationally	 efficient.	 Most	 movement	 analyses	 have	 been	
demonstrated	only	for	much	smaller	sample	sizes	 (e.g.,	 fewer	than	
15,000	American	bison	fixes	analyzed	by	a	pooled	HMM	analysis	in	
Langrock	et	al.,	2012;	764	northern	fur	seal	fixes	analyzed	with	BCPA	
in	Gurarie	et	al.,	2009;	433	lamprey	fixes	analyzed	with	BPM,	BCPA,	
and	SMM/HMM	in	Gurarie	et	al.,	2016).	Second,	short-	interval	data	
often	feature	an	abundance	of	short	segments	comprised	of	only	a	
few	positional	fixes,	resulting	from	data	collection	“bursts”	that	po-
tentially	occur	sparsely	over	space	and	time.	The	strength	of	BCPA,	
HMM,	and	BPM	is	in	their	ability	to	characterize	“change	points”	or	
“switches”	in	the	behaviors	of	lengthy	segments.	However,	it	is	futile	
to	try	to	identify	such	change	points	in	short-	interval	segments	that	
may	comprise	as	 few	as	 three	GPS	 fixes.	Third,	 the	 time	between	
short-	interval	observations	often	is	irregular,	and	HMMs	and	SMMs	
generally	require	that	observations	be	made	at	regular	time	or	space	
intervals	 (Patterson	 et	 al.,	 2017).	 Large	 data	 quantities	 are	 often	
dealt	with	by	subsampling	regularly	spaced	data,	but	given	the	ubiq-
uity	of	very	short	segments	in	short-	interval	data,	this	could	result	
in	a	large	loss	of	data.	Recent	methods	have	been	developed	using	
continuous-	time	Markov	chain	approaches	that	can	handle	irregular	
space/time	 intervals	 between	observations	 (Michelot	 et	 al.,	 2019;	
Wilson	et	al.,	2018),	but	these	methods	center	on	understanding	an	
animal's	 home	 range	 or	 utilization	 density	 and	 resource	 selection,	
not	on	defining	behavioral	modes.	Recently,	Adam	et	al.	(2019)	de-
veloped	methods	to	extend	HMM	to	multiple	data	streams	occurring	
at	different	time	scales,	but	even	that	approach	assumes	that	each	
time	scale	was	regularly	sampled.

One	additional	challenge	occurs	when	considering	short-	interval	
biologging	data	 from	birds.	Specifically,	avian	movement	often	oc-
curs	 by	 flight.	 In	 this	 case,	 position	 is	 three-	dimensional,	 where	
location	 is	defined	not	 just	on	the	X/Y	plane	but	also	 the	Z plane. 
This	opens	the	possibility	of	a	rich	new	suite	of	variables	to	define	
movement	 because	 velocity,	 acceleration,	 and	 deceleration	 have	
not	 just	a	horizontal	 component	but	also	a	vertical	 component.	 In	
fact,	 position	on	 the	Z	 plane,	measured	 as	 altitude	 above	 ground,	
may	be	even	more	important	for	classifying	behavior	than	is	position	
on the X/Y	 plane	 (Sur	et	 al.,	 2021).	Most	existing	 software	 imple-
mentations	of	popular	movement	analyses	including	BCPA	(Gurarie,	
2014),	HMM	(Michelot	et	al.,	2016),	or	BPM	(Calenge,	2006)	assume	
the	movement	data	comprise	a	two-	dimensional	spatial	component	
and	a	time	component.	Applications	of	HMM	that	have	explored	be-
havioral	classification	from	vertical	movement	still	only	consider	two	
dimensions	(e.g.,	Phillips	et	al.	(2015)	analyze	movement	of	tropical	
tuna	characterized	by	depth	and	water	temperature).

Characterizing	behavior	using	short-	interval	movement	data	from	
birds	 thus	 requires	 a	 computationally	 efficient	 method	 that	 can	 be	
applied	to	potentially	millions	of	observations,	an	abundance	of	very	
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short	 segment	 lengths,	 irregular	 time	 and	 space	 intervals	 between	
fixes,	 and	 high-	dimensional	 movement	 characteristics.	 Few,	 if	 any,	
tools	have	been	developed	that	specifically	address	these	issues.	One	
appealing	analytic	approach	for	grouping	individual	trajectory	points	
into	behavioral	clusters	given	these	considerations	is	the	K-	means	clus-
tering	algorithm	(Hastie	et	al.,	2009).	K-	means	clustering	is	a	popular	
unsupervised	 learning	method	 that	 aims	 to	 identify	 clusters	of	data	
points	with	similar	attributes.	An	appealing	feature	of	K-	means	clus-
tering	is	that	there	is	no	limit	on	the	dimensionality	of	the	movement	
attributes,	making	it	a	very	good	option	for	clustering	high-	dimensional	
movement	data	such	as	that	from	birds.	 In	the	animal	movement	 lit-
erature,	K-	means	 clustering	 has	 been	 applied	 to	 classify	 same-	state	
behavioral	segments	following	BCPA	(Zhang	et	al.,	2015)	but	can	also	
be	applied	directly	to	cluster	individual	points	in	a	trajectory,	allowing	
temporally	consecutive	locations	to	be	assigned	to	different	behaviors	
(Sakamoto	et	al.,	2009;	Van	Moorter	et	al.,	2010).	This	latter	application	
of	K-	means	clustering	is	particularly	attractive	for	short-	interval	data	
because	it	does	not	require	the	presence	of	long	segments	that	may	be	
missing	in	short-	interval	data	sets.	As	it	is	relatively	assumption-	free,	
K-	means	clustering	can	be	applied	to	correlated	data	without	requiring	
estimation	of	an	autocorrelation	function.	This	is	appealing	as	autocor-
relation	may	be	difficult	to	estimate	with	an	abundance	of	very	short	
temporally	 consecutive	 segments.	 Furthermore,	K-	means	 algorithms	
are	optimized	for	computational	efficiency	to	speedily	converge,	even	
when	 applied	 to	millions	 of	 data	 points,	 and	 are	 readily	 available	 in	
most	standard	statistical	software.

Here,	we	use	K-	means	clustering	to	identify	behavioral	states	as-
sociated	with	attributes	measured	at	short	 intervals	by	biologgers.	
We	apply	this	framework	to	GPS	telemetry	data	collected	at	1–	11	s	
from	bald	eagles	(Haliaeetus leucocephalus)	in	the	state	of	Iowa,	USA.	
We	show	how	attributes	associated	with	 the	K-	means	clusters	 re-
flect	biologically	relevant	behavioral	states.	Finally,	to	illustrate	how	
such	an	analysis	can	provide	insight	into	animal	ecology,	we	analyze	
the	sequentiality	and	relationship	of	these	behaviors	with	 intrinsic	
and	 extrinsic	 characteristics	 (e.g.,	 Nathan,	 2008),	 and	 we	 explore	
age-		and	stage-	related	variation	in	the	relationships.	R	code	with	an	
example	data	set	to	demonstrate	the	use	of	this	approach	is	available	
in	a	GitHub	repository.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

From	2013	to	2019,	we	tagged	100	bald	eagles	in	Missouri	(n =	1),	
Oklahoma	(n =	14),	Illinois	(n =	33),	and	Iowa	(n = 52). These included 
62	nestlings	captured	in	the	nest,	30	free-	flying	birds	captured	using	
floating	fish	traps	(Cain	&	Hodges,	1989)	or	net	guns	or	cannon	nets	
at	deer	carcasses	(Bildstein	&	Bird,	2007),	and	8	tagged	at	the	time	
of	 release	 from	 rehabilitation	 facilities.	 All	 captured	 eagles	 were	
banded	with	a	standard	United	States	Geological	Survey	(USGS)	fed-
eral	bird	band	and	outfitted	with	70-	g	Global	Positioning	System–	
Global	 System	 for	 Mobile	 communications	 (GPS-	GSM)	 telemetry	

devices	(Cellular	Tracking	Technologies,	LLC,	Rio	Grande,	NJ,	USA).	
The	 telemetry	units	were	programmed	to	collect	GPS	data	at	~3–	
10	s	intervals,	while	the	birds	were	in	flight	and	at	15-	min	intervals	
after	the	bird	had	stopped	moving	for	1	min	(i.e.,	perching).	That	said,	
the	actual	interval	between	fixes	varied	around	these	programmed	
intervals.	Whether	or	not	the	animal	was	moving	was	determined	by	
manufacturer-	designed	settings	and	based	on	parameters	reported	
from	an	onboard	accelerometer.

Telemetry	devices	were	attached	in	a	backpack	style	(Kenward,	
1985)	 using	 a	 Teflon®	 ribbon	 (Bally	 Ribbon	 Mills,	 Bally,	 PA,	 USA)	
harness.	Weight	of	the	device	and	harness	was	always	<3%	of	body	
mass.	We	aged	birds	based	on	the	 length	of	the	8th	primary	 (nest-
lings;	Bortolotti,	1984)	or	based	on	plumage	and	molt	characteristics	
(free-	flying	birds;	McCollough,	1989).	We	further	classified	free-	flying	
birds	as	juveniles	(age	~5–	12	months),	subadults	(age	1–	4.5	years),	or	
adults	(>4.5	years).	For	additional	details	on	animal	capture,	handling,	
permitting,	and	tagging,	see	Miller	et	al.	(2019)	and	Schmuecker	et	al.	
(2020).

To	understand	within-	population	variability	in	flight	behavior,	we	
manually	assigned	birds	to	one	of	three	biological	“stages”	(fledged,	
local,	 and	 long	 distance).	We	 used	 the	 term	 “fledged”	 to	 describe	
young	 eagles	 that	 had	 left	 the	 nest	 but	 that	were	 still	 dependent	
on	 their	 parents.	 This	 period	 began	 when	 a	 nestling	 fledged	 and	
ended	when	it	dispersed	from	the	natal	area.	We	determined	that	an	
eagle dispersed and was no longer dependent on its parents when 
it	took	a	directed	flight	away	from	the	natal	area	and	did	not	return	
for	>7	days	(for	additional	details,	see	Miller	et	al.,	2019).	We	used	
the	term	“long	distance”	to	describe	eagles	that	engaged	in	both	mi-
gratory	and	directed	dispersal	movements	(as	defined	in	Miller	et	al.,	
2016;	Poessel	et	al.,	2016).	Finally,	we	used	the	term	“local”	to	de-
scribe	birds	that	were	neither	fledged,	migratory,	nor	dispersive	(i.e.,	
everything	that	did	not	fit	into	the	other	two	categories).	Many	birds	
were	tracked	through	multiple	stages	and	across	multiple	years.

2.2  |  Pre- analysis processing of data

Once	collected,	we	filtered	GPS	data	to	remove	outliers	and	points	
that	 diagnostic	 data	 suggested	were	of	 low	precision	 (we	 refer	 to	
this	as	“first-	tier	filtering”).	Specifically,	we	filtered	out	data	points	
for	which	the	horizontal	or	vertical	dilution	of	precision	(HDOP	or	
VDOP)	was	>10	or	that	had	a	2-	dimensional	GPS	fix	(as	opposed	to	
3-	dimensional).	HDOP	and	VDOP	are	confidence	measures	of	 the	
GPS	horizontal	and	vertical	positions,	respectively,	where	lower	val-
ues	are	equal	to	higher	confidence.	We	also	calculated	the	altitude	
above	ground	 (AGL)	 of	 every	 location	by	 subtracting	 the	 value	of	
a	30-	m	digital	elevation	model	(Gesch	et	al.,	2002)	at	that	location	
from	the	GPS-	determined	altitude	above	sea	level	(ASL),	and	we	fil-
tered	out	all	data	points	 in	which	AGL	<	−50.	Finally,	we	carefully	
examined	outliers	with	 respect	 to	 altitude,	 speed,	 and	 other	met-
rics	 (e.g.,	 time	 between	 points,	 distance	 between	 points),	 and	we	
removed	obviously	anomalous	points.	For	additional	details	on	our	
approach	to	data	management	and	filtering,	see	Poessel	et	al.	(2018).
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We	used	the	GPS	data	 to	 identify	or	calculate	values	 for	a	set	
of	six	focal	variables	 (Table	1)	known	to	effectively	describe	eagle	
flight	(for	details	on	these	variables,	see	Katzner	et	al.,	2015).	Two	
of	these,	instantaneous	speed	(KPH)	and	meters	above	ground	level	
(AGL),	 were	 characteristics	 of	 a	 single	 GPS	 data	 point.	 The	 other	
four	were	derived	from	up	to	 three	sequential	points	 (calculations	
in	Table	1).	These	include	speed	between	two	points	(distance/time,	
Sn),	the	rate	of	gain	in	altitude	between	two	points,	that	is,	vertical	
rate	 (m	gained/s,	Vr),	 the	absolute	value	of	vertical	 rate	 (|Vr|),	 and	
the	absolute	value	of	the	turn	angle	(computed	over	three	sequen-
tial	points,	 |Angle|,	 in	radians,	package	moveHMM,	Michelot	et	al.,	
2016).	Thus,	“movement”	measured	at	each	GPS	point	was	defined	
with	a	6-	dimensional	suite	of	focal	variables.

After	 focal	 variables	 were	 defined,	 we	 conducted	 a	 series	 of	
additional	filtering	steps	(“second-	tier	filtering”).	First,	we	removed	
points	that	had	any	missing	values	for	any	of	the	six	focal	variables.	
Second,	we	 removed	points	 that	were	>11	 s	 apart.	We	chose	 the	
11-	s	threshold	based	on	inspection	of	our	data	set,	in	which	~97%	of	
the	first-	tier	filtered	data	were	≤11	s	apart.	This	requirement	also	en-
sured	that	the	derived	focal	variables	(Sn,	|Angle|,	Vr,	and	|Vr|)	were	
measured	over	similar	time	spans.	Third,	we	filtered	out	points	that	
were	not	part	of	a	segment	of	at	least	three	consecutive	points,	each	
≤11	s	apart.

The K-	means	algorithm	tends	 to	be	more	effective	at	 identify-
ing	meaningfully	distinct	clusters	if	distributions	of	variables	are	not	
highly	 skewed.	 Likewise,	 it	 is	 important	 that	 the	 variables	 used	 in	
the	clustering	are	on	a	similar	scale,	such	that	the	Euclidean	distance	
metric	underlying	the	algorithm	is	not	driven	by	variables	with	larger	
standard	deviations.	Accordingly,	we	visualized	the	distributions	of	
the	focal	variables	with	histograms	and	applied	a	square-	root	trans-
formation	to	variables	that	had	distributions	with	visually	apparent	

skew.	 Subsequently,	 we	 centered	 and	 scaled	 all	 variables	 by	 sub-
tracting	the	mean	and	dividing	by	standard	deviation.

2.3  |  K- means clustering

The K-	means	algorithm	is	a	simple	approach	for	partitioning	a	data	set	
into K	distinct,	nonoverlapping	clusters	(James	et	al.,	2013).	We	briefly	
describe	 the	 algorithm	 here	 in	 the	 context	 of	 behavioral	 classifica-
tion	by	assigning	each	of	N	GPS	points	to	one	of	K	distinct	behavioral	
modes.

Let	xi =
{
xi1, xi2,…, xip

}
 denote the p	quantitative	data	values	of	

covariates	for	the	GPS	point	at	time	Ti; i = 1,…,N,	for	N	GPS	points.	
The	algorithm	 is	 initialized	by	assigning	a	random	cluster	member-
ship	of	1	through	K	to	each	of	the	N	GPS	points.	Let	Ck denote the set 
of	points	 in	 cluster	k,	k = 1,…,K,	 and	||Ck

||	 the	number	of	points	 in	
cluster Ck.	Then,	x⋅jk =

1

�Ck�
∑

xi∈Ck
xij	 is	the	mean	of	the	 jth covariate 

among	all	points	in	Ck,	and	mk =
{
x
⋅1k , x⋅2k ,…, x

⋅pk

}
	is	the	centroid	of	

Ck.	The	algorithm	proceeds	as	follows:

1.	 For	 each	 point,	 xi,	 calculate	 di1…diK	 as	 the	 squared	 Euclidean	
distance	 of	 GPS	 point	 xi	 from	 centroid	mk:

2.	 Reassign	each	point,	xi,	 to	the	cluster	with	the	closest	centroid;	
equivalently,	 to	 the	 Ck	 for	 which	 dik	 is	 the	 smallest:

dik =

p∑

j=1

(
xij−x

⋅jk

)2
.

Ck =
{
xi: min

{
di1, di2,…, diK

}
= dik

}
.

TA B L E  1 Definitions	of	biologging	data	collected	from	bald	eagles	and	subsequent	variables	derived	from	these	data

Variable Definition Calculation
Used in 
clustering?

Square- root 
transformed?

x UTMEasting From	biologger No –	

y UTMNorthing From	biologger No –	

z Altitude	above	sea-	level	(m) From	biologger No –	

Date Date From	biologger No –	

Time Time From	biologger No –	

KPH Instantaneous	speed	(k/h) From	biologger Yes Yes

Sn Horizontal	distance	between	consecutive	points	
at Ti and Ti−1	divided	by	change	in	time	
(Ti	−	Ti−1)	(m/s)

[(xi	−	xi−1)
2 +	(yi	−	yi−1)

2]1/2/(Ti	−	Ti−1) Yes Yes

AGL Above	ground	level	(m) AGL	=	(zi	−	DEMi) Yes Yes

|Angle| Abs.	value	of	turn	angle	(radians) Yes Yes

Vertical	rate Mean	vertical	velocity,	change	in	altitude/change	
in	time	between	consecutive	sample	points	
(m/s)

(zi	−	zi−1)/(Ti	−	Ti−1) Yes No

|Vertical	rate| Absolute	value	of	vertical	rate	(m/s) Yes Yes

Note: Whether	each	variable	was	used	in	K-	means	classification	and,	if	so,	whether	it	was	first	transformed	is	also	indicated.
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3.	 Compute	 the	 new	 centroids	mk	 of	 the	 newly	 assigned	 clusters	
for	 k = 1,…,K.

The	objective	of	the	algorithm	is	to	minimize	the	total	within-	cluster	
sum	of	squared	Euclidean	distances,	WSS =

∑K

k=1

∑N

i=1
dik,	for	all	pos-

sible	definitions	of	clusters.	The	algorithm	iterates	between	steps	1–	3	
until	 the	 centroids	 and	 assigned	 cluster	memberships	 do	 not	 change	
(i.e.,	the	within-	cluster	sum	of	squares	is	minimized).	It	is	good	practice	
to	specify	numerous	“starting	points”	(initial	random	assignments	of	the	
cluster	memberships	and	hence	initial	centroids)	to	ensure	that	the	re-
sulting	cluster	definitions	are	not	a	function	of	the	initial	centroids	and	
that	a	global	minimum	for	WSS	has	truly	been	found	for	the	given	value	
of	K.	We	used	the	kmeans()	function	in	R	to	implement	the	clustering	(R	
Core	Team,	2020).	See	Data	Availability	for	access	to	example	R	code.

2.4  |  Choosing K

In	order	to	apply	the	K-	means	algorithm,	one	must	first	specify	K,	the	
number	of	clusters	to	identify.	The	algorithm	will	then	classify	each	
data	point	as	belonging	to	one	of	the	K	clusters.	Subsequently,	one	
must	determine	the	value	of	K	that	best	describes	uniquely	distinct	
groupings.	A	common,	simple	method	for	choosing	K,	often	referred	
to	 as	 the	 “elbow	method,”	 involves	 looking	 at	 a	 plot	 of	 the	 total	
within-	cluster	sum-	of-	squares	(WSS)	of	clustered	data	as	a	function	
of	K	(Hastie	et	al.,	2009).	The	WSS	measures	the	total	squared	dis-
tance	of	all	points	 from	the	centroid	of	 their	assigned	clusters.	As	
K	 increases,	the	WSS	will	decrease,	and	there	is	often	a	value	of	K 
that	corresponds	with	a	“kink”	or	“elbow”	in	the	plot	before	which	
the	WSS	steeply	descends	and	after	which	the	WSS	levels	off.	This	
“elbow”	indicates	a	K	 for	which	a	 larger	number	of	clusters	do	not	
reveal	additional	meaningfully	distinct	groupings.

It	 is	 possible	 for	 the	 elbow	method	 to	 be	 ambiguous	 about	 the	
optimal	K.	An	alternative	method	for	choosing	K is the average silhou-
ette	method	(Rousseeuw,	1987).	The	“silhouette	width”	of	a	data	point	
measures	how	close	 it	 is	on	average	 to	members	of	 its	own	cluster	
relative	 to	members	of	 the	 closest	neighboring	cluster.	A	 silhouette	
width	of	1	 indicates	 a	very	 confidently	 clustered	point;	widths	of	0	
indicate	a	point	on	 the	border	of	 two	clusters;	 and	negative	widths	
indicate	a	point	that	may	be	in	the	incorrect	cluster.	Averaging	the	sil-
houette	widths	across	the	entire	data	set	provides	a	metric	that	can	be	
compared	across	different	values	of	K,	with	higher	average	silhouette	
values	indicating	better	choice	of	K.	However,	calculating	the	silhou-
ettes	for	all	data	points	simultaneously	requires	computing	the	N × N 
distance	matrix,	which	is	not	computationally	feasible	for	a	data	set	of	
over	one	million	observations.	A	work-	around	is	to	bootstrap	the	aver-
age	silhouette	by	sampling	Nboot ≪ N	points	with	replacement	from	the	
original	data	set.	The	average	silhouette	can	then	be	computed	on	the	
bootstrap	sample	for	each	value	of	K. Repeating this process B	times	
yields B	bootstrapped	average	silhouettes	 for	each	K,	which	can	be	
plotted	as	a	function	of	K.	The	values	of	K that tend to yield the highest 
average silhouettes across the B	bootstrap	samples	are	candidates	for	
the	optimal	number	of	clusters.

There	may	be	cases	in	which	the	bootstrapped	average	silhou-
ettes	suggest	two	or	more	optimal	values	of	K.	 In	these	situations,	
it	can	be	useful	to	reduce	dimensionality	of	the	covariate	space	by	
way	of	a	principal	component	analysis	and	create	a	biplot	of	the	first	
two	principal	components	 (PCs),	color-	coded	by	K.	 Input	data	 into	
the	 principal	 component	 analysis	 are	 not	 the	 bootstrapped	 data,	
but	 instead	are	 the	 same	as	 those	used	 in	 the	K-	means	 clustering	
as	described	above	 (i.e.,	 the	GPS	data	 in	Table	1,	 transformed	and	
standardized).	 The	 first	 two	PCs	explain	 the	 largest	 proportion	of	
variability	in	the	covariates.	Creating	a	“lineup”	of	these	biplots	for	
each	value	of	K	may	provide	helpful	insight	into	the	value	of	K that 
best	describes	distinct,	biologically	relevant	behaviors.

2.5  |  Data analysis and behavioral interpretation

For	our	example	analysis	on	telemetry	data	for	bald	eagles,	we	carried	
out K-	means	clustering	for	K ∈ {2,…, 7}	with	10	randomly	chosen	initial	
cluster	assignments	 for	each	K.	We	used	both	the	elbow	method	and	
the	bootstrapped	silhouette	method	along	with	a	biplot	lineup	to	iden-
tify	an	optimal	value	for	K.	For	the	silhouettes,	we	took	B =	1000	boot-
strap	samples	each	of	size	10,000	and	averaged	the	silhouette	widths	
across	these	10,000	points	for	each	value	of	K. The clusters assigned to 
points	in	each	bootstrap	sample	were	defined	using	the	entire	data	set;	
clusters	were	not	redefined	for	each	bootstrap	sample.	Given	the	size	
of	our	data	set	and	to	avoid	overplotting,	we	investigated	biplot	lineups	
of	 several	 individual	birds	separately	 rather	 than	plotting	biplots	of	all	
birds	together	and	verified	the	similarity	of	the	biplots	across	individual	
birds.	Subsequently,	we	examined	the	behavioral	characteristics	of	each	
cluster	identified	by	the	K-	means	approach.	To	do	this,	first,	we	evalu-
ated	 the	 relationship	between	 these	clusters	and	each	 focal	covariate	
using	a	series	of	boxplots	and,	using	these	relationships,	we	determined	
a	behavioral	mode	for	each	cluster.	Second,	we	evaluated	patterns	in	se-
quentiality	of	GPS	data.	To	do	this,	we	identified	behavioral subsegments. 
These	were	defined	to	be	consecutive	points	≤11	s	apart	 in	which	all	
points	within	 the	subsegment	had	been	classified	as	belonging	 to	 the	
same	behavioral	cluster.	We	determined	the	durations	of	these	behav-
ioral	 subsegments	 and	 investigated	 the	 sequentiality	 in	 duration	 and	
classification	of	behavioral	subsegments	to	gain	further	insight	into	the	
clusters	and	patterns	of	behavior.	Third,	to	illustrate	how	this	approach	
provides	insight	into	within-	population	variability	in	flight	behavior,	we	
evaluated	age-		and	stage-	related	variation	in	the	frequency	of	behavioral	
occurrence	of	eagles	by	investigating	plots	of	the	relationship	between	
eagle	age	and	biological	stage	and	behavioral	classification.

3  |  RESULTS

3.1  |  Tracking data

We	collected	~4.2	million	GPS	data	points	from	bald	eagles	within	
Iowa.	Of	the	100	eagles	captured	in	the	Midwest	and	Great	Plains,	
57	provided	data	within	 Iowa	and	at	 time	 intervals	useful	 for	 this	
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study	 (Table	2).	These	 included	28	nestlings,	39	 juveniles,	23	sub-
adults,	and	11	adults	(many	birds	were	monitored	across	more	than	
one	 year	 and	 thus	may	 be	 represented	 in	 counts	 of	 multiple	 age	
classes).	 About	 three-	quarters	 of	 these	 data	 were	 collected	 from	
birds	in	the	local	stage	(Table	3A).

3.2  |  Pre- analysis processing

After	 first-	tier	 filtering,	we	 retained	2,793,220	high-	precision	GPS	
data	 points.	 After	 second-	tier	 filtering,	 we	 retained	 2,093,022,	
or	 36,720	±	 44,190	 points	 per	 bird	 (x ± SD;	 range:	 27–	187,570).	
Creating	segments	of	consecutive	points	≤11	s	from	each	other	re-
sulted	in	77,259	segments	that	ranged	in	length	from	3	points	and	
2	s	in	duration	(the	minimum	segment	length)	to	>3500 points and 
354	min	 (Table	3B).	Among	the	57	birds	we	analyzed,	 the	number	
of	segments	per	bird	ranged	from	2	to	8220	with	a	median	number	
of	segments	per	bird	of	1016.	The	vast	majority	of	these	segments	
were	short:	90%	of	segments	were	≤38	points	and	≤240	s;	75%	were	
≤11	points;	and	half	of	the	segments	were	≤5	points.

Distributions	of	the	six	focal	variables	associated	with	GPS	points	
are	shown	in	Figure	1.	Speed	measurements	at	GPS	points	were	bi-
modally	distributed,	with	one	peak	at	zero	(for	motionless	birds)	and	
a second at ~45	kph	(KPH)	and	~10	kph	(Sn).	In	contrast,	distributions	
of	AGL,	|Angle|,	and	|Vr|	all	were	all	positively	skewed	with	peaks	at	or	
near	zero,	while	Vr	was	symmetrically	centered	at	zero.	We	applied	a	
square-	root	transformation	to	KPH,	Sn,	AGL,	|Angle|,	and	|Vr|.	We	did	
not	transform	Vr.	All	variables	(transformed	or	not)	were	subsequently	
standardized	to	mean	= 0 and variance =	1	for	clustering.

3.3  |  K- means clustering

The	elbow	method	did	not	suggest	that	any	single	number	of	clusters	
was	optimal	(i.e.,	there	was	not	a	clearly	defined	“elbow”;	Figure	2a).	In	
contrast,	plotting	the	bootstrapped	average	silhouettes	widths	across	
K suggested that K = 2 and K = 4 yielded the highest average sil-
houettes	 (Figure	2b).	Whereas	K = 2 tended to have slightly higher 

average silhouettes than K =	4,	biplots	of	the	first	two	principal	com-
ponents	(PCs)	indicated	that	K =	2	resulted	in	one	small	and	one	much	
larger	cluster	(Figure	3).	Subsequent	investigation	indicated	the	small	
cluster	was	 perching	 points	 (see	Behavioral interpretation of clusters) 
while	all	in-	flight	points	were	grouped	into	the	large	cluster.	According	
to	Figure	2b,	K =	4	was	clearly	 the	optimal	choice	 for	breaking	this	
larger	flight	cluster	into	three	smaller	in-	flight	modes.	As	we	were	in-
terested	in	clustering	different	flight	modes	rather	than	just	flight	vs	
nonflight,	we	selected	K =	4	as	the	optimal	number	of	clusters.	The	
biplot	structures	in	Figure	3	held	when	evaluating	biplots	from	other	
individual	birds	and	from	multiple	birds	simultaneously.

The	 most	 important	 focal	 variables	 for	 differentiating	 clusters	
in	the	first	PC	dimension	were	the	two	velocity	variables	(KPH	and	
Sn;	 Figure	 4).	 The	 other	 four	 variables	 (Vr,	 |Vr|,	AGL,	 and	 |Angle|)	
were	all	more	important	for	the	second	PC	dimension.	The	first	two	
PCs	 cumulatively	 accounted	 for	 66%	of	 the	 total	variability	 in	 the	
covariates.

3.4  |  Behavioral interpretation of clusters

Once	clusters	were	defined,	we	then	identified	behavioral	modes	for	
each.	The	distribution	of	the	focal	variables	among	the	clusters	sug-
gested	movement	characteristics	that	appeared	to	be	associated	with	
specific	behavioral	modes	(Figure	5).	For	example,	points	in	cluster	1	
tended	to	have	speeds	near	zero,	were	at	low	altitude	above	ground,	
had	 little	 vertical	 change,	 and	 had	 highly	 variable	 turning	 angles	
(Table	4;	Figure	5).	This	pattern	is	consistent	with	a	bird	being	motion-
less	on	the	ground	or	in	a	tree	(i.e.,	“perching”).	In	such	a	setting,	the	
highly	variable	turning	angles	were	generated	by	repeated	small	varia-
tions	in	GPS	locations	(i.e.,	GPS	error).	Points	in	cluster	2	had	moder-
ate	velocities,	 positive	vertical	 rates,	 and	 tortuous	 flight	paths	 (high	
values	of	absolute	angle)	and	occurred	at	high	altitudes.	We	therefore	
interpreted	points	 in	cluster	2	to	be	 indicative	of	a	bird	gaining	alti-
tude	in	an	updraft	(“ascending”).	Points	in	cluster	3	were	of	moderate	
velocity	and	variable	tortuosity	while	tending	to	be	level	and	close	to	
the	ground.	We	deemed	these	points	to	be	characteristic	of	“flapping”	
flight.	Finally,	points	in	cluster	4	exhibited	fast	velocities	and	straight	
(nontortuous)	flight	paths	indicated	by	absolute	angle	values	near	zero.	
These points also occurred at high altitudes and were in descending 
flight	(negative	vertical	rates).	We	therefore	interpreted	points	in	clus-
ter	4	as	indicative	of	a	bird	gliding	from	a	thermal	(“gliding”).

Plots	of	sample	flight	paths	illustrated	these	behavioral	classifica-
tions	(Figure	6).	Ascending	flight	covered	little	ground	and	data	points	
were	clustered	together	(Figure	6a),	resulting	in	slow	(Figure	6a–	c),	
climbing	 (Figure	 6a,b)	 flight.	 Longer	 segments	 of	 consecutive	 as-
cending	points	tended	to	be	followed	by	gliding	flight	(Figure	6a,b).	
The	 gliding	 flight	 that	 followed	 ascending	 flight	 resulted	 in	 sus-
tained	directional	flight	 in	which	GPS	data	were	spatially	far	apart	
and	 that	were	 accompanied	 by	 rapid	 loss	 of	 altitude	 (Figure	 6a,b)	
at	high	speeds	(Figure	6a–	c).	Both	ascending	and	gliding	flight	were	
occasionally	interrupted	by	flapping	behaviors.	These	interruptions	
tended	 to	 be	 at	 lower	 or	 occasionally	 intermediate	 altitudes,	 and	

TA B L E  2 Number	of	bald	eagles	tagged	and	number	of	
individuals	tracked	with	GPS	telemetry,	organized	by	bird	age

Bird age Number captured Individuals tracked

Nestling 42 28

Juvenile 3 39

Subadult 2 23

Adult 10 11

Total 57 101

Note: Many	birds	were	tagged	as	nestlings	but	since	nestlings	do	not	
fly,	none	of	their	tracking	data	were	relevant	to	the	analysis	presented	
here.	Most	birds	were	captured	in	one	stage	and	tracked	into	one	or	two	
other	life	stages;	hence,	the	counts	for	each	age	class	older	than	nestling	
are	larger	than	the	numbers	of	individuals	tagged	in	each	age	class.
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they	regularly	occurred	after	gliding	but	before	ascending	flight.	Like	
gliding	 flight,	 flapping	 flight	 tended	 to	 be	 straighter	 but	 at	 slower	
velocity	(Figure	6a,b)	and	lower	altitude	(Figure	6c).

3.5  |  Relationship of behavior with age and 
movement stage

We	detected,	among	age	and	stage	classes	of	eagles,	 substantial	
differences	 in	 frequency	 of	 occurrence	 of	 each	 behavior	 type	

(Figures	7	and	8).	Recently	fledged	birds,	which	have	weaker	flying	
skills	 than	older	 birds,	were	 less	 frequently	 in	 ascending	or	 glid-
ing	 flight	and	more	often	 in	 flapping	flight	 than	were	other	birds	
(Figure	7).	Eagles	engaged	in	dispersal	or	migration	more	frequently	
exhibited	high-	altitude	behaviors	(ascending	and	gliding)	than	did	
local	birds.	Among	birds	engaged	in	local	movements,	older	eagles	
were	more	likely	to	exhibit	flapping	flight	and	less	likely	to	exhibit	
ascending	or	gliding	flight	than	were	younger	ones	(Figure	8).	Age	
differences	were	much	less	pronounced	for	migrating	or	dispersing	
birds	than	for	birds	moving	only	locally.

TA B L E  3 Summary	statistics	describing	(A)	GPS	telemetry	points	collected	from	bald	eagles	and	classified	into	behavioral	modes,	by	life	
stage	and	year	of	the	study	and	(B)	segments	of	classified	GPS	data	subsequently	used	to	illustrate	effectiveness	of	K-	means	clustering	to	
understand	animal	movement	and	characteristics	of	flight	behavior

(A)

Year

Life stage

TotalFledgling Locally moving Dispersal/migration

2016 0 2795 2901 5696	(0.3%)

2017 60,767 142,953 37,077 240,797	(11.5%)

2018 86,615 184,105 47,906 318,626	(15.2%)

2019 151,934 419,847 123,045 694,826	(33.2%)

2020 0 788,773 44,304 833,077	(39.8%)

Total 299,316	(14%) 1,538,473	(74%) 255,233	(12%) 2,093,022

(B)

Segmenta length measured in

GPS points Seconds

Minimum 3 2

25th percentile 4 19

Median 5 27

75th percentile 11 69

Maximum 3538 21,222

aEach	≥3	consecutive	points	of	≤11	s	apart.

F I G U R E  1 Distributions	of	eight	
focal	variables	associated	with	GPS	data	
collected	from	bald	eagles	in	Iowa,	USA.	
Focal	variables	were	standardized	(after	
square-	root	transform	when	necessary	
to reduce skewness) then used as input 
into a K-	means	cluster	analysis	to	classify	
flight	behavior	of	these	birds.	See	text	for	
details on analysis
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3.6  |  Analysis of behavioral subsegments

After	 clustering,	 we	 identified	 587,425	 behavioral	 subsegments,	
each	consisting	of	consecutive	points	≤11	s	apart	in	which	all	points	
within	the	subsegment	had	been	classified	as	belonging	to	the	same	
behavioral	cluster.	Of	these,	499,124	were	nonperching	subsegments	
(Table	 5).	 About	 half	 of	 nonperching	 behavioral	 subsegments	 con-
sisted	of	 a	 single	point	 (0	 s	 subsegments).	Ascending	 flight	 had	 the	
highest	prevalence	of	subsegments	consisting	of	a	single	GPS	location	
(62%	of	ascending	subsegments)	and	flapping	had	the	highest	preva-
lence	of	longer	subsegments	(22%	of	gliding	subsegments	were	>22 s).

Transitions	 from	 one	 type	 of	 behavior	 to	 another	 (i.e.,	 change	
points)	can	be	interpreted	to	gain	biological	insight	(Table	6).	Perching	
was	most	likely	to	occur	at	the	end	of	a	track.	Gliding	flight	was	most	
frequently	followed	by	flapping	flight.	Flapping	and	ascending	flights	

most	 often	 transitioned	between	 each	other,	 but	 this	 relationship	
depended	on	the	duration	of	the	subsegment	(Figure	9).	Short	peri-
ods	of	ascending	flight	were	most	often	followed	by	flapping	flight.	
In	contrast,	longer	ascending	flights	were	most	frequently	followed	
by	gliding	flight.

4  |  DISCUSSION

4.1  |  Analytic approach and insights into animal 
movement

Animal	movement	data	are	increasingly	collected	in	greater	quantity	
and	at	shorter	time	intervals.	As	these	data	have	the	potential	to	pro-
vide	important	insight	for	ecologists,	selecting	the	most	appropriate	

F I G U R E  2 Plots	of	(a)	within-	cluster	sum-	of-	squared	distances	between	each	point	and	the	cluster	centroid;	and	(b)	bootstrapped	
average	silhouette	width	as	a	function	of	number	of	specified	clusters	K.	In	(b),	the	gold	line	represents	the	mean	across	all	1000	bootstrap	
samples	of	the	average	silhouette	widths.	Cluster	centroids	were	determined	by	a	K-	means	analysis	of	standardized	GPS	telemetry	data	
collected	from	bald	eagles	in	Iowa,	USA.	See	main	text	for	additional	details	on	data	collection	and	analysis

F I G U R E  3 Examples	of	biplots	of	the	
first	two	principal	components	of	raw	GPS	
telemetry	data	collected	from	a	single	bald	
eagle	color-	coded	by	cluster	membership	
for	K ∈ {2,	3,	4,	5,	6,	7}.	Input	variables	
are those used in the K-	means	clustering	
as	described	in	the	main	manuscript	(i.e.,	
the	GPS	data	in	Table	1,	transformed	and	
standardized).	Making	these	plots	for	each	
value	of	K	in	addition	to	the	bootstrapped	
average silhouette widths provides 
additional	insight	into	which	number	of	
K	is	most	appropriate.	In	each	biplot,	the	
number	of	colors	present	equals	the	value	
of	K indicated
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analytical	method	is	a	crucial	component	of	data	interpretation.	The	
choice	of	an	analytical	approach	should	depend	on	the	research	ob-
jective,	with	consideration	of	the	complexity,	utility,	and	computa-
tional	intensity	of	the	method,	as	well	as	how	those	considerations	
are	addressed	by	packages	or	software	that	exist	for	the	implemen-
tation	(Gurarie	et	al.,	2016).

We	have	demonstrated	use	of	a	specific	clustering	algorithm,	the	
K-	means	algorithm,	as	an	efficient	method	capable	of	producing	bi-
ological	insight	when	applied	on	a	GPS-	point	basis	to	vast	amounts	
of	 short-	interval	 biologging	 data	 consisting	 of	 high-	dimensional	
movement	attributes.	The	ability	to	cluster	points	rather	than	seg-
ments	 is	 a	 crucial	 aspect	of	our	approach.	When	short	 segments	

F I G U R E  4 Loadings	and	biplot	from	
principal	component	analysis	of	GPS	
telemetry	data	collected	from	bald	eagles	
in	Iowa,	USA.	Input	data	were	the	6	focal	
variables	shown	in	Table	1	in	the	main	
text.	The	first	two	components	accounted	
for,	respectively,	45%	and	21%	of	the	total	
variability	in	the	covariates.	Points	on	
biplot	are	from	a	representative	bird	and	
are	color-	coded	by	cluster	membership	
assignment	for	K = 4 clusters

F I G U R E  5 Boxplots	of	variables	
relevant	to	clustering	short-	interval	GPS	
data	from	bald	eagles.	Boxes	visualize	
25th,	50th,	and	75th	percentiles.	Whiskers	
extend	either	to	the	most	extreme	data	
value	or	1.5	*	IQR	(IQR	=	75th–	25th	
percentile)	from	the	nearest	quartile,	
whichever	is	closest.	Variables	chosen	
were	those	with	high	factor	loadings	
from	a	principal	components	analysis	of	
GPS	variables	used	in	K-	means	clustering	
with K =	4,	as	described	in	the	main	
text.	AGL,	altitude	above	ground	level;	
KPH,	kilometers	per	hour

TA B L E  4 Qualitative	definition	of	clusters	defined	by	K-	means	clustering	of	GPS	telemetry	data	collected	from	bald	eagles

Cluster Velocity AGL Angle Vertical rate Flight mode

1 Very	slow Very	low Highly	variable Level Perching

2 Moderate High Angling Ascending Ascending

3 Moderate Low Variable Level Flapping

4 Fast High Straight Descending Gliding

Note: Velocity	was	measured	both	by	instantaneous	speed	measured	by	the	GPS	and	by	distance	divided	by	time	between	sequential	GPS	data	
points.	Altitude	above	ground	level	(AGL)	is	measured	by	the	difference	between	altitude	above	sea	level,	measured	by	the	GPS,	and	ground	
elevation	measured	by	a	digital	elevation	model	(see	main	text	for	details).	Angle	and	vertical	rate	were	calculated	over	three	GPS	data	points.	Flight	
mode	label	was	assigned	by	experts	with	a	strong	background	in	eagle	ecology	and	behavior.	Empirical	trends	for	each	of	these	measurements,	by	
cluster,	are	shown	in	Figure	6.
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are	abundant	and	consist	of	 irregular	space/time	intervals,	 it	may	
be	 difficult	 for	 segment-	based	 change-	point	 approaches	 such	 as	
BCPA,	HMM,	or	BPM	to	define	meaningful	 change	points	across	
the	entire	data	set.	For	example,	the	minimum	segment	lengths	in	
the	applications	considered	by	Zhang	et	al.	(2015),	Langrock	et	al.	
(2012),	and	Gurarie	et	al.	(2009)	were,	respectively,	266	GPS	points	

from	 little	 penguins	 Eudyptula minor,	 1427	 from	American	 bison,	
and	30	from	northern	fur	seals	Callorhinus ursinus.	By	contrast,	in	
our	data	set,	88%	of	our	segments	were	<30	GPS	points,	75%	of	
segments	were	 ≤11	 points,	 and	 the	median	 number	 of	 points	 in	
a	 segment	was	5.	For	data	 like	 these	 that	are	not	well	 suited	 for	
segmentation	analyses,	point-	based	K-	means	clustering	proves	an	

F I G U R E  6 Plots	showing	details	
of	movements	and	behaviors	of	bald	
eagles.	Movement	data	were	collected	
by	GPS	telemetry	collected	at	short	time	
intervals.	GPS	data	were	then	assigned	
to	behavioral	categories	via	K-	means	
clustering.	In	each	panel	of	the	figure,	
the	left-	most	plot	shows	the	map	of	
the	bird's	movement,	plotted	on	a	UTM	
scale.	The	top	right	plot	shows	the	flight	
speed	of	each	point	plotted	sequentially	
over	time.	The	bottom	right	plot	shows	
the	altitude	above	ground	level,	also	
plotted	sequentially	over	time.	In	all	three	
panels,	points	are	color-	coded	based	on	
the	behavioral	mode	identified	by	the	K-	
means	clustering
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effective	tool	 to	 identify	behaviors	distinguishable	as	biologically	
relevant	movement	states.

Our	approach	was	unique	in	considering	multidimensional	move-
ments	 and	 in	 its	 computational	 feasibly.	Despite	 the	 fact	 that	 the	
two	marine	 species	 considered	 in	Zhang	et	 al.	 (2015)	 and	Gurarie	
et	 al.	 (2009)	move	 in	 three	 dimensions,	 neither	 of	 these	 analyses	
went	 beyond	 simple	 2-	dimensional	 linear	 movement.	 In	 contrast,	
our	analysis	defined	behaviors	based	on	six	movement	attributes	in	
3-	dimensional	space.	Similarly,	while	existing	software	packages	for	
fitting	many	commonly	used	movement	analyses	are	not	equipped	
to	analyze	large	sets	of	high-	dimensional	movement	data,	K-	means	
clustering	was	 efficient	 at	 clustering	 nearly	 two	million	GPS	 fixes	

with	each	fix	characterized	by	a	six-	dimensional	movement	attribute	
and	did	not	rely	on	regular	time	interval	between	fixes.

While	using	solely	a	quantifiable	approach	to	choosing	K is ap-
pealing,	the	commonly	used	elbow	method	provided	no	insight	into	
which K	to	choose,	and	bootstrapping	average	silhouettes	suggested	
an	overly	simplistic	K =	2	as	the	optimal	choice.	We	therefore	relied	
not	entirely	on	a	metric-	based	approach,	but	instead	on	an	explor-
atory	and	context-	driven	approach	for	choosing	K	that	utilized	the	
bootstrapped	 silhouettes,	 a	 biplot	 lineup,	 and	 additional	 explora-
tion	of	 the	 resulting	 cluster	definitions.	We	 feel	 that	 this	decision	
is	well-	justified.	Gurarie	et	al.	(2016)	advocated	for	an	approach	to	
movement	 analysis	 that	 is	 adaptive,	 iterative,	 and	 contains	 a	 high	

F I G U R E  7 Relationship	of	behavioral	
classifications	with	life	stages	of	eagles.	
Behavioral	classifications	were	assigned	
by	experts	with	a	strong	background	in	
eagle	ecology	and	behavior	and	associated	
with K-	means	clusters	of	GPS	telemetry	
data	from	bald	eagles	in	Iowa,	USA.	Life	
stages	of	eagles	were	determined	by	gross	
movement	characteristics	of	birds	(i.e.,	
were	their	movements	migratory	or	local	
in	nature).	See	main	text	for	additional	
details	on	clustering	and	assignment	to	life	
stages.	Bold	numbers	under	bars	indicate	
marginal	percent	of	points	in	each	flight	
stage

F I G U R E  8 Relationship	of	behavioral	classifications	with	age	classes	and	life	stages	of	eagles.	Behavioral	classifications	were	assigned	
by	experts	with	a	strong	background	in	eagle	ecology	and	behavior	and	associated	with	K-	means	clusters	of	GPS	telemetry	data	from	bald	
eagles	in	Iowa,	USA.	Life	stages	of	eagles	were	determined	by	gross	movement	characteristics	of	birds	(i.e.,	were	their	movements	migratory	
or	local	in	nature).	Ages	were	estimated	when	eagles	were	marked.	See	main	text	for	additional	details	on	clustering	and	assignment	to	age	
classes	and	life	stages.	Bold	numbers	under	bars	indicate	marginal	percent	of	points	in	each	age	class	and	of	each	flight	stage
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exploratory	component,	in	contrast	to	a	prescriptive	approach	that	
relies	 on	 a	 large	 number	 of	 a priori	 assumptions.	We	 believe	 our	
approach to choosing K,	by	investigating	a	series	of	PCA	biplots	in	

conjunction	with	the	bootstrapped	silhouette	averages	led	us	to	im-
portant	biological	 insight.	 Specifically,	 our	 choice	of	K yielded not 
just	flight	vs	perching	modes,	but	also	described	biologically	relevant	
and	distinct	in-	flight	behaviors,	while	also	following	Gurarie	et	al.'s	
(2016)	vision	of	a	less	prescriptive,	more	iterative,	and	exploratory	
approach.

Even	 though	 our	 application	 of	 K-	means	 clustering	 was	 GPS-	
point	 based	 (rather	 segment-	based,	 as	 in	 Zhang	 et	 al.,	 2015),	 we	
could	 still	 gain	 insight	 from	 identifying	 and	 exploring	 characteris-
tics	 of	 and	 transitions	 between	 subsegments.	 Duration	 of	 behav-
ioral	subsegments	(consecutive	points	assigned	to	the	same	cluster)	
tended	to	be	short	and	for	all	moving	behaviors	that	we	identified	
the	most	frequent	subsegment	length	was	0	s	(one	GPS	point).	This	is	
partly	because	our	initial	filtering	resulted	in	a	large	number	of	short	
segments,	but	it	is	also	to	be	expected	from	an	approach	that	groups	
points	into	clusters	based	on	topology	rather	than	sequentiality.	Our	
results	are	consistent	with	field	observations	of	eagles	that	suggest	
that	 flight	 paths	often	 are	 comprised	of	many	 short,	 topologically	
distinct	subsegments.	For	example,	in	the	field,	it	is	common	to	see	
an	eagle	 flap	a	 few	times	 to	gain	altitude,	 then	glide	 for	10	s,	and	

TA B L E  5 Frequency	of	short-	,	medium-	,	and	long-	duration	
behavioral	subsegments	of	consecutive	points	belonging	to	one	of	
three	in-	flight	behavioral	modes	of	bald	eagles

Duration proportions of behavioral 
subsegments

Count0 s 0– 22 s >22 s

Ascending 0.62 0.24 0.14 154,087

Flapping 0.42 0.36 0.22 242,957

Gliding 0.51 0.22 0.19 102,080

Count 249,582 154,436 95,106 499,124

Note: Behavioral	modes	were	assigned	by	experts	with	a	strong	
background	in	eagle	ecology	and	behavior	and	were	associated	with	
K-	means	clusters	of	GPS	telemetry	data.	Subsegments	of	0	s	indicate	a	
single	point.	Subsegments	of	up	to	22	s	are	most	frequently	indicative	
of	3	GPS	points	(maximum	inter-	fix	interval	was	11	s).	Counts	are	
numbers	of	behavior	subsegments	of	each	category.

TA B L E  6 Transition	probabilities	for	behavior	modes	of	bald	eagles

Subsequent behavior

Perching Ascending Flapping Gliding Segment end

Initial	behavior Perching –	 0.07 0.27 0.01 0.64

Ascending 0.04 –	 0.78 0.17 0.02

Flapping 0.13 0.50 –	 0.30 0.07

Gliding 0.02 0.22 0.75 –	 0.02

Note: Behavior	labels	were	assigned	by	experts	with	a	strong	background	in	eagle	ecology	and	behavior	and	associated	with	clusters	identified	by	
K-	means	clustering.	Bolded	numbers	indicate	the	most	likely	transition	of	each	initial	behavior	(i.e.,	perching	is	most	commonly	followed	by	the	end	of	
a	subsegment).

F I G U R E  9 Relationship	of	length	of	behavioral	subsegments	identified	in	GPS	telemetry	data	and	the	behavioral	mode	of	the	next	
subsegment.	Relationships	are	shown	by	behavioral	mode.	Behavioral	classifications	were	assigned	by	experts	with	a	strong	background	in	
eagle	ecology	and	behavior	and	associated	with	K-	means	clusters	of	GPS	telemetry	data	from	bald	eagles	in	Iowa,	USA.	See	main	text	for	
additional	details	on	clustering.	Numbers	under	bars	indicate	marginal	percent	of	points	in	each	time	bracket	for	the	given	behavioral	mode
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then	 repeat	 this	 cycle	 (TAM,	TEK,	 unpublished	observations).	 The	
advantage	of	our	approach	in	allowing	very	short	or	single-	point	be-
havioral	 subsegments	offers	 flexibility	 in	 accurately	 characterizing	
acute	behavior	changes	that	are	biologically	realistic.	For	example,	
a	momentary	leveling	off	from	a	gliding	descent	may	be	most	accu-
rately	characterized	by	very	brief	flapping	flight	(Figure	6a;	see	plot	
for	meters	 above	ground	 level,	where	 long	 segments	of	blue	dots	
are	interrupted	by	one	or	two	orange	dots).	Similarly,	a	long	flapping	
flight	segment	may	be	interrupted	by	a	very	brief	ascending	segment	
(Figure	 6c;	 see	X vs Y	 plot,	 where	 long	 segments	 of	 orange	 dots	
are	interrupted	by	one	or	two	yellow	dots).	These	acute	behavioral	
changes	are	identifiable	by	virtue	of	the	short-	interval	data	collec-
tion	and	point-	based	behavioral	 classification;	 consider	 that	BCPA	
requires	 segments	of	 at	 least	30	observations	 to	 identify	multiple	
change	points	(Gurarie	et	al.,	2009).

Simultaneously	 considering	 subsegment	 duration	 and	 transition	
provides	 additional	 biological	 insight	 beyond	 that	 simply	 from	 the	
classification.	For	example,	we	noted	that	ascending	flight	was	most	
often	 followed	by	 flapping	 flight.	This	 initially	 seemed	 counterintui-
tive,	as	we	expected	ascending	in	a	thermal	to	be	followed	by	glides	
from	the	thermal.	However,	this	result	did	not	account	for	the	length	
of	the	ascending	subsegments.	When	we	considered	segment	length,	
our	results	were	more	biologically	sensible	(Figure	9).	In	fact,	most	of	
our	subsegments	were	short	(95%	were	<60	s),	and	it	is	those	short	as-
cending	subsegments	that	were	most	often	followed	by	flapping	flight.	
However,	the	longer	a	bird	ascends,	the	higher	it	goes	and	the	more	
likely	the	ascending	flight	was	followed	by	gliding	flight.	This	pattern	
in	 telemetry	data	 is	 consistent	with	our	 expectation,	 it	makes	 good	
intuitive	sense,	and	it	matches	well	with	the	maps	of	behavior	as	well	
as	field	observations	of	birds	(TAM,	TEK	unpublished	observations).

A	limitation	of	the	K-	means	algorithm	is	that	every	point	will	be	as-
signed	to	the	single	cluster	with	the	multidimensional	center	to	which	
it	is	closest.	This	can	result	in	a	great	deal	of	variability	of	the	attributes	
even	among	points	assigned	to	the	same	cluster	(which	can	be	seen	to	
some	extent	in	Figure	5),	as	well	as	“borderline”	points	that	have	been	
assigned	to	different	clusters	but	may	be	more	similar	to	each	other	
than	they	are	to	other	members	of	their	own	cluster.	Analysts	who	are	
concerned	about	the	“behavioral	purity”	of	points	assigned	to	any	one	
cluster	could	opt	 to	only	 include	points	within	a	minimum	distance	
from	each	cluster's	centroid,	though	there	is	no	published	recommen-
dation	that	we	could	find	as	to	what	this	minimum	distance	should	be.	
One	possibility	for	“softer”	cluster	assignment	is	to	use	a	method	like	
Gaussian	mixtures	clustering	(Fraley	&	Raftery,	2002),	which	assigns	
to	points	 “cluster	 responsibilities”	 that	 vary	between	0	 and	1,	with	
higher	 responsibilities	 indicating	 less	uncertain	cluster	membership.	
However,	this	method	is	derived	assuming	independent	observations,	
which	does	not	hold	in	the	case	of	biologging	data.

4.2  |  Next steps and conclusions

Typical	behavioral	modeling	of	telemetry	data	focuses	on	identify-
ing	 segments	 of	 consistent	 behavior	 and	 then	 interpreting	 those	

segments.	 Most	 approaches	 are	 exhibited	 with	 two-	dimensional	
spatial	data	and	may	not	be	useful	with	data	such	as	those	collected	
from	a	flying	animal.	The	K-	means	approach	we	used	is	a	well-	known	
statistical	tool,	but	generally,	it	is	not	used	in	a	point-	based	context	
to	 interpret	 animal	 tracking	 data.	 As	 we	 illustrate	 here,	 this	 ap-
proach	 provides	 a	 computationally	 efficient	mechanism	 to	 rapidly	
characterize	millions	of	short-	interval	animal	tracking	locations	using	
high-	dimensional	 movement	 attributes	 into	 biologically	 relevant	
behaviors	that,	 if	appropriate,	can	then	be	used	in	subsequent	be-
havioral	subsegment-	based	analyses	exploring	patterns	in	sequenti-
ality	between	and	duration	of	behavioral	modes.	Whereas	existing	
segmentation-	based	 approaches	 are	 suitable	 for	 describing	 long-	
duration	behaviors,	the	availability	of	short-	interval	telemetry	data	
offers	the	potential	for	understanding	fine-	scale	variation	in	behav-
ior.	 Point-	based	 clustering	 approaches	 such	 as	K-	means	 provide	 a	
way	for	ecologists	to	more	fully	explore	their	rich	data	in	order	to	un-
derstand	intrinsic	or	extrinsic	drivers	of	those	fine-	scale	variations.

Describing	animal	behavior,	as	we	have	done	here,	is	only	a	first	
step.	The	next	steps	would	relate	these	behavioral	classifications	to	
the	ecological,	demographic,	or	habitat-	related	correlates	or	drivers	
of	that	behavior	(Nathan,	2008).	Our	approach	lays	the	groundwork	
for	 efficient,	 effective	 behavioral	 classification,	 setting	 up	 subse-
quent	exploration	of	these	important	biological	questions.
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