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Purpose. The aim of this study is to develop and compare performance of radiomics signatures using texture features extracted
from noncontrast enhanced CT (NECT) and contrast enhanced CT (CECT) images for preoperative predicting risk categorization
and clinical stage of thymomas. Materials and Methods. Between January 2010 and October 2018, 199 patients with surgical
resection andhistopathologically confirmed thymomawere enrolled in this retrospective study.We extracted 841 radiomics features
separately fromvolume of interest (VOI) inNECT andCECT images.The featureswith poor reproducibility andhighly redundancy
were removed. Then a least absolute shrinkage and selection operator method (LASSO) logistic regression model with 10-fold
cross validation was used for further feature selection and radiomics signatures build. The predictive performances of radiomics
signatures were assessed by receiver operating characteristic (ROC) analysis. The areas under the receiver operating characteristic
curve (AUC) between radiomics signatures were compared by usingDelong test.Result. In differentiating high risk thymomas from
low risk thymomas, the AUC, sensitivity, and specificity were 0.801(95% CI 0.740–0.863), 0.752 and 0.767 for radiomics signature
based onNECT images, and 0.827 (95%CI 0.771 -0.884), 0.798, and 0.722 for radiomics signature based on CECT images. But there
was no significant difference (p=0.365) between them. In differentiating advanced stage thymomas from early stage thymomas, the
AUC, sensitivity, and specificity were 0.829 (95%CI 0.757-0.900), 0.712, and 0.806 for radiomics signature based on NECT images
and 0.860 (95%CI 0.803-0.917), 0.699, and 0.889 for radiomics signature based onCECT images.Therewas no significant difference
(p=0.069) between them. The accuracy was 0.819 for radiomics signature based on NECT images, 0.869 for radiomics signature
based on CECT images, and 0.779 for radiologists. Both radiomics signatures had a better performance than radiologists. But there
was significant difference (p = 0.025) only between CECT radiomics signature and radiologists. Conclusion. Radiomics signatures
based on texture analysis from NECT and CECT images could be utilized as noninvasive biomarkers for differentiating high risk
thymomas from low risk thymomas and advanced stage thymomas from early stage thymoma. As a quantitative method, radiomics
signature can provide complementary diagnostic information and help to plan personalized treatment for patients with thymomas.

1. Introduction

Thymomas are themost commonprimary neoplasms of ante-
rior mediastinal masses, accounting for 47% of mediastinal
neoplasms [1]. WHO classification which was proposed in
1999 classified thymomas into five types (A, AB, B1, B2, and
B3) based on the morphology of epithelial cells as well as
the lymphocyte-to-epithelial cell ratio [2, 3]. The Masaoka
staging system based on anatomic extent of tumor and
microscopic invasive properties of the tumor on surgical
resection is the most widely used system in clinical practice
[4]. These two systems have an important implication in

determining treatment strategies and are considered to be
independent prognostic factors [5–8].

According to previous study, type B2 and type B3 thy-
momas had more invasive behavior compared with types
A, AB, and B1. And also patients with type B2 and type
B3 thymomas had higher tumor recurrence rate and lower
survival rate than patients with types A, AB, and B1 [7].
Thymomas of type A, AB, or B1 had more chances to
be completely resected than type B2 or B3 [8]. Therefore
many studies divided thymomas into low risk group (type
A, type AB, and type B1) and high risk group (type B2,
type B3) [9, 10]. The advanced stage of thymoma invades
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into adjacent organs and vessels. The early stage thymoma
only spreads into fat surrounding the thymus or mediastinal
pleura [4]. Postoperative classification Masaoka stage of
thymoma is very important for evaluating surgical risk. Some
previous study indicated that neoadjuvant therapy provided a
survival benefit for patients with stage III thymomas [10–13].
Thus, postoperative prediction of Masaoka stage of thymoma
guides decisions about neoadjuvant therapy.

Radiomics based on the high-dimensional quantitative
features extracted from CT or MR imaging data can nonin-
vasively quantify tumor heterogeneity and show underlying
malignant features [14, 15]. Radiomics models were used to
classify tumor stage and predict lymph node metastasis and
prognosis [16–29]. Although previous studies demonstrated
that texture analysis based on CT images could differentiate
high risk thymomas from low risk thymomas, only 2D texture
features were analyzed and the sample sizes were small [30,
31]. Our study focused on building radiomic signatures based
on 3D texture analysis to differentiate high risk thymomas
from low risk thymomas and advanced stage thymomas
from early stage thymomas. We also compared the predictive
performance between radiomic signatures based on NECT
and CECT images.

2. Materials and Methods

2.1. Patients. This retrospective analysis was approved by the
Ethics Review Board. The need to obtain informed con-
sent was waived. Patients who underwent surgical resection
between January 2010 and October 2018 with pathologically
confirmed thymomas were retrospectively retrieved in our
institution. Inclusion criteria were as follows: (1) underwent
tumor resection and pathologically diagnosed thymoma;
(2) no previous treatment before CT scan; (3) underwent
contrast enhanced CT imaging within two weeks before
surgery; (4) available for clinical data and surgical record.
Exclusion criteria were: (1) small tumor diameter (longest
diameter < 9mm); (2) poor image quality due to artifacts or
other reasons. Finally a total of 199 patients were enrolled
in our study and 79 patients were excluded (Figure 1). The
Masaoka clinical stage and WHO histologic classification of
thymomas were confirmed by reviewing the surgical findings
and pathological examinations.

2.2. Image Acquisition. All patients underwent chest CT
scans before and after intravenous administration of iod-
inated contrast agent (Visipaque 320, Amersham Health,
Cork, Ireland) with 64-MDCT (Defnition, Siemens Health-
care, Erlangen, Germany), 128-MDCT (iCT, Philips Health-
care, Amsterdam, Netherlands), or 320-MDCT (Aquilion
One, Toshiba Medical Systems Corp., Tokyo, Japan). The CT
scans were acquired with following clinical protocol: 3mm
slice thickness, reconstruction interval 3mm, tube voltage
100-120 kV and tube current 80-300mA, high-resolution
matrix size 512 × 512, and FOV 500mm. A total of 80mL
of contrast material had been administered by an antecubital
vein at a rate of 2.5 ml/s.The contrast enhancedCT scanswere
performed with 30s delay.

Archive data of postoperative

pathologically diagnosed

thymoma from January 2010 to

October 2018 (n=278)

Available CECT image data in

our institution

(n=231)

Study population

(n= 199)

Poor image quality (20)

Small tumor diameter (3) 

Recurrent tumor (3) 

Incomplete clinical data (6)

Figure 1: Patients selection flow diagram.

2.3. Segmentation. Segmentations of entire tumor were per-
formed by two experienced radiologist (S.W. and Z.M.L.;
reader 1 and 2, with more than 10 years of experience
in chest CT study interpretation, respectively) who were
blind for pathology results with 3D Slicer software (version
4.10, www.slicer.org) [32]. The segmentations of VOI were
separately performed in 40 randomly chosen images by both
readers and interobserver reproducibility of texture feature
was analyzed. The segmentations for the other images were
completed by reader 1. To segment entire volume of tumor
in all axial CT images, we took a method combining semi-
automated and manual segmentation together. Firstly, we
used threshold tool to determine a threshold range (0HU-
140HU) and saved results to selected segmentation. Secondly
wemanually separated the lesion from the large blood vessels
and chest wall. Finally, we used identify islands tool to create
a unique segmentation. The VOI masks outlined in CECT
images were applied to NECT images. Sometimes we redrew
the VOI inNECT images due tomovement of heart and lung.
The process of segmentation took about 30 minutes for each
patient and was displayed in Figure 2.

2.4. Image Feature Extraction. Extractions of radiomics
features from VOIs were performed by using an exten-
sion of 3D Slicer software called SlicerRadiomics (V2.10,
http://download.slicer.org.) [33]. SlicerRadiomics encapsu-
lated with pyradiomics library is an extension of 3D Slicer
software and can calculate a variety of radiomics features.The
extension applies wavelet filter to VOIs and yields 8 derived
images. Radiomics features are subdivided into the following
classes:

First-Order Statistics (18 features)
Shape-Based (13 features)
Gray Level Co-Occurence Matrix (23 features)
Gray Level Run Length Matrix (16 features)

http://www.slicer.org
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Figure 2: The process of segmentation. (a) Enhanced axial CT scan revealed the presence of a round mass in the left anterior mediastinum.
(b) VOIs were drawn in all axial CT images. (c) VOI masks extracted from CT scans. (d) VOI masks were applied to NECT images.

Gray Level Size Zone Matrix (16 features)
NeigbouringGrayToneDifferenceMatrix (5 features)
Gray Level Dependence Matrix (14 features)

Radiomics features perVOI included 13 shape descriptors
and 828 features extracted fromoriginal and 8 derived images
obtained by applying Wavelet filters. A total of 841 radiomics
features were separately extracted from NECT and CECT
VOIs for each patient. The details of radiomics features were
described in supplementary data (available here).

2.5. Clinical Staging by Radiologist Interpretation. Two chest
radiologists (W.S. and Z.M.L., with more than 10 years of
experience in chest CT study interpretation, respectively)
who were blind to the histologic classification and clinical
information reviewed the chest CT scans. Decisions concern-
ing the tumor stage were reached by consensus. The tumor
stage was evaluated by radiologist based on the presence of
mediastinal fat infiltration, pleural and pericardial effusion,
invasion of the great vessels, pleural metastases, lymph node
enlargement (short-axis diameter > 10mm), and metastases
[34].

2.6. Statistical Analysis. All statistical analyses were per-
formed using R software (version 3.5.1, https://www.r-
project.org/). The LASSO regression model and ROC curve
analysis were conducted based on “glmnet” and “pROC”
packages, respectively.

Radiomics feature selection was separately done in 841
features extracted from NECT and CECT VOIs. To improve
predictive performance of model and avoid overfitting,
dimension reductionwas performed based on reproducibility
and redundancy. Firstly, the ICC values of each feature
were calculated to evaluate the interobserver reproducibility.
Only the features with ICC value ≥0.9 were selected for
further analysis. Secondly, we used Pearson’s correlation
matrix method to eliminate redundant features. The corre-
lation coefficient between each feature was calculated and
the features with correlation coefficient ≥0.9 were removed
until there was no correlation coefficient ≥0.9 in correlation
matrix. The features selected by above two steps were applied
to LASSO logistic regression model after standardized.

A LASSO logistic regression model with 10-fold cross-
validation was used to further select radiomics features
and build radiomics signatures. LASSO logistic regression
model was introduced to improve the prediction accuracy
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and interpretability of regression models by altering the
model fitting process to select only a subset of the provided
covariates for use in the final model rather than using all
of them [35]. Radiomics signatures were calculated from
selected features weighted by their regression coefficients for
each patient.

Radiomics signatures between groups (low risk group
and high risk group, advanced stage group, and early stage
group) were tested by Mann–Whitney U test. Potential
predictive performance of radiomics signatures was evalu-
ated by ROC analysis. The AUC, accuracy, sensitivity, and
specificity of radiomics signatures were calculated at cutoff
point of Youden index (the highest sum of sensitivity plus
specificity). A technique of bootstrapping (2000 samples) was
used for internal validation. TheAUCs of radiomics signature
between NECT images and CECT images were compared
by using Delong test [36]. The accuracy between radiomics
signatures and radiologists’ interpretation was compared by
using Chi-square test.

3. Result

3.1. Patients Characteristics. Of all the patients, 80 patients
were male, 119 patients were female. The age of patients
ranged from 30 to 80 years. Thoracoscopic or thoracoscopic
assisted thymectomies were performed in 144 patients and
other patients underwent thoracotomies. The clinical and
histopathology data of patients was showed in Table 1. There
were 109 patients (19 type A, 44 type AB, and 46 type B1)
with low risk thymomas and 90 patients (68 type B2, 22
type B3) with high risk thymomas. The Masaoka clinical
stage was stage I in 123 patients, stage II in 41 patients,
stage III in 27 patients, and stage IV in 8 patients. There
were 164 patients with early stage thymomas, 35 patients
with advanced thymomas. 72 patients were asymptomatic.
The most common symptoms were myasthenia gravis in 47
patients, followed by chest comfort or pain in 31 patients,
cough or dyspnea in 30 patients, and other reasons in 19
patients.

3.2. Radiomics Signature Building. For differentiating high
risk thymomas from low risk thymomas, two independent
radiomics signatures were built separately from NECT and
CECT images. LASSOmodel based onNECT images selected
24 radiomics features and 34 radiomics features were selected
forCECTmodel.The top 10 features contributed to radiomics
signature weighted by standardized regression coefficient
were displayed on Figure 3.

The other two independent radiomics models were
built separately from NECT and CECT images to differ-
entiate advanced stage thymomas from early stage thymo-
mas. LASSO model selected 3 radiomics features to build
radiomics signature based on NECT images and 5 radiomics
features to build radiomics signature based on CECT images.
The contributions of radiomics signature weighted by stan-
dardized regression coefficient were displayed on Figure 4.
The radiomics feature of “orginalshapSphericity” was the
most significant affecting factor for both NECT and CECT
radiomics signatures.

Table 1: Characteristics of patients and tumors.

Characteristic Patients
Sex

Male 80
Female 119

WHO Classification
A 19
AB 44
B1 46
B2 68
B3 22

Masaoka Staging
Stage I 123
Stage II 41
Stage III 27
Stage IV 8

Symptom
No 72
Myasthenia gravis 47
Chest comfort or pain 31
Cough or dyspnea 30
Other reasons 10

Surgical Treatment
Thoracoscopic thymectomy 144
Thoracotomy 55

CT scans
iCT 98
Definition64 34
Aquilion/640 67

3.3. Predictive Performance of the Radiomics Signature. There
were significant difference between groups (low risk and
high risk groups, advanced stage, and early stage groups) in
radiomics signatures (P<0.05) (Figure 5). In discriminating
high risk thymomas from low risk thymomas, the AUCs
were 0.801 (95% CI 0.740–0.863) for radiomics signature
based on NECT images and 0.827 (95% CI 0.771 -0.884) for
radiomics signature based on CECT images. The sensitivity
and specificity were 0.752 and 0.767 at optimal cutoff value
(-0.104) for radiomics signature based on NECT images,
0.798 and 0.722 at optimal cut-off value (-0.110) for radiomics
signature based on CECT images. However there was no
significant difference between radiomics signatures based on
CECT and NECT images (p=0.365) to discriminate high risk
thymomas from low risk thymomas (Figure 6).

In differentiating advanced stage thymomas from
early stage thymomas, AUC, sensitivity, and specificity for
radiomics signature based on NECT images were 0.829
(95%CI 0.757-0.900), 0.712 and 0.806 (optimal cut-off value
was -1.534), 0.860 (95%CI 0.803-0.917), 0.699 and 0.889
(optimal cut-off value was -1.545) for radiomics signature
based on CECT images. There was no significant difference
between CECT and NECT radiomics signatures (p=0.069)
(Figure 7).The accuracy of radiomics signatures was 0.819 for
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Figure 3:The top 10 features contributed to radiomics signatures based onNECT images (a) and CECT images (b) weighted by standardized
regression coefficients according to LASSO logistic regression model to differentiate high risk thymomas from low risk thymomas.

NECT, 0.869 for CECT, and 0.779 for radiologists. Radiomics
signatures had a better performance than radiologists’
interpretation. But there was significant difference (p= 0.025)
only between CECT radiomics signature and radiologists.

4. Discussion

The WHO classification and Masaoka clinical stage were
predictive factors for recurrence and overall survival for
patients with thymomas [5–8]. Preoperative prediction of
histologic subtypes and clinical stage of thymomas can help
to plan personalized treatment. Our study demonstrated that
radiomics signatures based on NECT and CECT images
had a good predictive performance in distinguishing high
risk thymomas from low risk thymomas and advanced stage
thymomas from early stage thymomas.

Some previous study attempted to differentiate high risk
thymomas from low risk thymomas [30, 31]. Yasaka K et
al. built radiomics model by logistic regression analysis
and obtained high diagnostic performance. The AUCs for
differentiating high risk thymomas from low risk thymomas
was 0.89 formean0c and 0.87 for combination ofmean0u and
entropy6u [31]. However in our study, the AUCs of radiomics
signatures were 0.83 for CECT radiomics signature, 0.80 for
NECT radiomics signature, which were lower than previous
study. We thought the different radiomics features extracted
from 2D or 3D texture analysis and the different classifiers
were themain reasons that caused the difference. In our study,
high-dimensional radiomics features up to 841 features were
obtained. The feature engineering was very important for
high-dimensional radiomics features to avoid overfitting. The
features with poor reproducibility and highly redundancy
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Figure 4: Attributingweights of radiomics features based onNECT images (a) andCECT images (b) selected by LASSOmodel to differentiate
advanced thymomas from early thymomas.

were removed in our study, which might affect the AUCs of
radiomics signatures. Finally, only a small amount of features
were selected to build regressionmodel. In previous study, the
sample size would influence construction of reliable logistic
regression models.

Recently radiomics was used to differentiate malignant
tumors from benign tumors, predict prognosis and clinical
staging of tumor, which attracted considerable attention
[16–29]. Previous studies demonstrated that presence of
contour, capsule, septum, and homogenous enhancement
was helpful to distinguish low-risk thymomas from high-risk
thymomas and carcinomas [9, 34, 37]. Abdel Razek AA et
al. reported that significant difference was found between
high risk thymomas and low risk thymomas in ADC values
obtained from diffusion weighted MR imaging [10]. In our
study we only included patients with thymomas and excluded
patients with thymic carcinomas (type C). Histological het-
erogeneity between thymomas and thymic carcinomas could
affect texture analysis. Previous study demonstrated that high
risk thymomas are more heterogeneous compared with low
risk thymomas. Many studies confirmed that proteogenomic
and phenotypic information could be predicted by texture

analysis [38, 39]. Radiomics signatures based on NECT and
CECT images have almost same predictive performance in
classifying the risk of thymomas. The NECT scan is routinely
performed for every patient in clinic, and radiomics signature
can easily be calculated based on NECT images.

The NECT and CECT radiomics signatures obtained
similar predictive performance in differentiating advanced
stage thymomas from early stage thymomas. However both
radiomics signatures obtained higher accuracy than radiolo-
gist interpretation. Previous studies proved a close relation-
ship between preoperative CT thymoma staging and post-
operative Masaoka clinical staging. Although the weighted
kappa coefficient was 0.819, which represented a strong
consistency between CT stage and clinical stage [40], the
accuracy of four clinical CT stage was only 0.68. We believed
that the accuracy would greatly improve if binary classifica-
tions were used instead of four classifications. The radiomics
model can be used to discriminate advanced stage from
early stage thymomas and it can provide complementary
diagnostic information for patients with thymomas.

Several studies showed an improvement in classification
accuracy when using 3D texture analysis compared with 2D
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Figure 5: (a) A boxplot shows difference between low risk thymomas and high risk thymomas in radiomics signature based onNECT images.
(b) A boxplot shows difference between low risk and high risk thymomas, in radiomics signature based on CECT images. (c) A boxplot shows
difference between advanced stage and early stage thymomas, in radiomics signature based on NECT images. (d) A boxplot shows difference
between advanced stage and early stage thymomas, in radiomics signature based on CECT images.
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Figure 6: ROC curves analysis of radiomics signatures based on CECT images and NECT images for differentiating high risk thymomas
from low risk thymomas.

texture analysis [25, 41]. Previous study demonstrated 3D
texture analysis showed 12% improvement in AUC and 19%
in overall classification accuracy compared with 2D texture
analysis in classification of childhood brain tumors [41].
Texture analysis based on one slice might not be sufficient
to build a reliable classification model, because the features

presenting heterogeneities across the tumor volume would
not be included in model. And also 3D texture analysis could
be able to capture inter-slice features that were completely
ignored in the traditional 2D approach. However the 3D seg-
mentation of the lesion ismore complex and time-consuming
than 2D segmentation. Further study would be needed to
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Figure 7: ROC curves analysis of radiomics signatures for differentiating advanced thymoma from early stage thymomas.

compared 3D and 2D texture analysis in classification the risk
of thymomas.

Our study had several limitations. First, sample size
between advanced and early stage patients was imbalanced.
We evaluated predictive performance of radiomics signatures
by ROC curves analysis, which was unaffected by imbalanced
sample size. However in order to evaluated model proposed
in our study, databases with balanced sample size are still
needed. Secondly, all of the CT scans were performed in one
single clinical center by 3 different CT scanners. Different
CT scanners have significant difference parameters in CT
scanning and reconstruction algorithm, which can affect
texture analysis [42]. Thirdly, overfitting is an important
problem in machine learning when dealing with high-
dimensional features with small sample size. In our study 841
texture features were calculated and sample size was 199, so
we attempted to mitigate overfitting by using 10-fold cross-
validation. Fourthly, the TNM staging system adopted by
the Union for International Cancer Control (UICC) in 2016
for thymic epithelial tumors was not used in our study [43].
Further study will be needed to reveal the relationship with
texture feature and TNM staging system.

5. Conclusions

Radiomics signatures based on texture analysis extracted
fromNECT and CECT scan could be utilized as noninvasive
biomarkers for differentiating high risk thymomas from low
risk thymomas and advanced stage thymomas from early
stage thymoma. As a quantitative method, radiomics sig-
nature can provide complementary diagnostic information
and help to plan personalized treatment for patients with
thymomas.
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The R code used to support the findings of this study is
available from the corresponding author upon request.

Disclosure

Our research did not receive specific funding.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Supplementary Materials

The supplementary material contains various radiomics
features that can be extracted by using “PyRadiomics” in
our study. The details of radiomics features are described
in https://pyradiomics.readthedocs.io/en/latest/index.html.
(Supplementary Materials)

References

[1] Y. Fujii, “Published guidelines for management of thymoma,”

oracic Surgery Clinics, vol. 21, no. 1, pp. 125–129, 2011.

[2] S. Suster and C. A. Moran, “Histologic classification of thy-
moma: the world health organization and beyond,” Hematol-
ogy/Oncology Clinics of North America, vol. 22, no. 3, pp. 381–
392, 2008.

[3] H. Tazelaar, A. P. Burke, G. Watanabe et al., “WHO Classifica-
tion of tumors. pathology and genetics of tumors of the lung,
pleura, thymus and heart”.

http://downloads.hindawi.com/journals/bmri/2019/3616852.f1.docx


BioMed Research International 9

[4] A. Masaoka, Y. Monden, K. Nakahara, and T. Tanioka, “Follow-
up study of thymomas with special reference to their clinical
stages,” Cancer, vol. 48, no. 11, pp. 2485–2492, 1981.

[5] P. Ströbel, A. Bauer, B. Puppe et al., “Tumor recurrence and
survival in patients treated for thymomas and thymic squamous
cell carcinomas: a retrospective analysis,” Journal of Clinical
Oncology, vol. 22, no. 8, pp. 1501–1509, 2004.

[6] K. Kondo, K. Yoshizawa,M. Tsuyuguchi et al., “WHOhistologic
classification is a prognostic indicator in thymoma,”
eAnnals
of 
oracic Surgery, vol. 77, no. 4, pp. 1183–1188, 2004.

[7] G. Chen, A. Marx, W.-H. Chen et al., “New WHO histologic
classification predicts prognosis of thymic epithelial tumors:
A clinicopathologic study of 200 thymoma cases from China,”
Cancer, vol. 95, no. 2, pp. 420–429, 2002.

[8] Q. Miller, M. J. Moulton, and J. Pratt, “Surgical treatment of
thymoma,” Current surgery, vol. 59, no. 1, pp. 101–105, 2002.

[9] J. Sadohara, K. Fujimoto, N. L. Müller et al., “Thymic epithelial
tumors: comparison of CT and MR imaging findings of low-
risk thymomas, high-risk thymomas, and thymic carcinomas,”
European Journal of Radiology, vol. 60, no. 1, pp. 70–79, 2006.

[10] A. A. K. A. Razek,M.Khairy, andN.Nada, “Diffusion-weighted
MR imaging in thymic epithelial tumors: Correlation with
world health organization classification and clinical staging,”
Radiology, vol. 273, no. 1, pp. 268–275, 2014.

[11] F. Venuta, E. A. Rendina, F. Longo et al., “Long-term outcome
after multimodality treatment for stage III thymic tumors,”
e
Annals of 
oracic Surgery, vol. 76, no. 6, pp. 1866–1872, 2003.

[12] F. Venuta, E. A. Rendina, E. O. Pescarmona et al., “Multimodal-
ity treatment of thymoma: A prospective study,” 
e Annals of

oracic Surgery, vol. 64, no. 6, pp. 1585–1592, 1997.

[13] Y. Otani, I. Yoshida, S. Ishikawa et al., “Neoadjuvant intra-
arterial infusion chemotherapy for invasive thymoma,” Oncol-
ogy Reports, vol. 4, no. 1, pp. 23–25, 1997.

[14] B. Ganeshan andK. A.Miles, “Quantifying tumour heterogene-
ity with CT,” Cancer Imaging, vol. 13, no. 1, pp. 140–149, 2013.

[15] K. A. Miles, B. Ganeshan, and M. P. Hayball, “CT texture
analysis using the filtration-histogram method: What do the
measurements mean?” Cancer Imaging, vol. 13, no. 3, pp. 400–
406, 2013.

[16] X. Xu, X. Zhang, Q. Tian et al., “Quantitative identification of
nonmuscle-invasive andmuscle-invasive bladder carcinomas: a
multiparametric MRI radiomics analysis,” Journal of Magnetic
Resonance Imaging, vol. 49, no. 5, pp. 1489–1498, 2019.

[17] Y.-B. Xi, F. Guo, Z.-L. Xu et al., “Radiomics signature: A poten-
tial biomarker for the prediction of MGMT promoter methy-
lation in glioblastoma,” Journal of Magnetic Resonance Imaging,
vol. 47, no. 5, pp. 1380–1387, 2018.

[18] Y.-Q. Huang, C.-H. Liang, L. He et al., “Development and vali-
dation of a radiomics nomogram for preoperative prediction of
lymph node metastasis in colorectal cancer,” Journal of Clinical
Oncology, vol. 34, no. 18, pp. 2157–2164, 2016.

[19] A. Algohary, S. Viswanath, R. Shiradkar et al., “Radiomic fea-
tures on MRI enable risk categorization of prostate cancer
patients on active surveillance: Preliminary findings,” Journal of
Magnetic Resonance Imaging, vol. 48, no. 3, pp. 818–828, 2018.

[20] F. Bianconi, M. L. Fravolini, R. Bello-Cerezo, M. Minestrini,
M. Scialpi, and B. Palumbo, “Evaluation of shape and textural
features from CT as prognostic biomarkers in non-small cell
lung cancer,” Anticancer Reseach, vol. 38, no. 4, pp. 2155–2160,
2018.

[21] V.D.A. Corino, E.Montin, A.Messina et al., “Radiomic analysis
of soft tissues sarcomas can distinguish intermediate fromhigh-
grade lesions,” Journal of Magnetic Resonance Imaging, vol. 47,
no. 3, pp. 829–840, 2018.

[22] J. R. Ferreira Junior,M. Koenigkam-Santos, F. E. G. Cipriano, A.
T. Fabro, andP.M.D.Azevedo-Marques, “Radiomics-based fea-
tures for pattern recognition of lung cancer histopathology and
metastases,” Computer Methods and Programs in Biomedicine,
vol. 159, pp. 23–30, 2018.

[23] G. Wang, L. He, C. Yuan, Y. Huang, Z. Liu, and C. Liang, “Pre-
treatment MR imaging radiomics signatures for response pre-
diction to induction chemotherapy in patients with nasopha-
ryngeal carcinoma,” European Journal of Radiology, vol. 98, pp.
100–106, 2018.

[24] H. B. Suh, Y. S. Choi, S. Bae et al., “Primary central nervous
system lymphoma and atypical glioblastoma: Differentiation
using radiomics approach,” European Radiology, vol. 28, no. 9,
pp. 3832–3839, 2018.

[25] R. Ortiz-Ramón, A. Larroza, S. Ruiz-España, E. Arana, and D.
Moratal, “Classifying brain metastases by their primary site of
origin using a radiomics approach based on texture analysis: a
feasibility study,” European Radiology, vol. 28, no. 11, pp. 4514–
4523, 2018.

[26] T. P. Coroller, V. Agrawal, E. Huynh et al., “Radiomic-based
pathological response prediction from primary tumors and
lymph nodes in NSCLC,” Journal of 
oracic Oncology, vol. 12,
no. 3, pp. 467–476, 2017.

[27] M. Bogowicz, O. Riesterer, K. Ikenberg et al., “Computed
tomography radiomics predicts HPV status and local tumor
control after definitive radiochemotherapy in head and neck
squamous cell carcinoma,” International Journal of Radiation
Oncology ∙ Biology ∙ Physics, vol. 99, no. 4, pp. 921–928, 2017.

[28] T. Fan, H. Malhi, B. Varghese et al., “Computed tomography-
based texture analysis of bladder cancer: differentiating urothe-
lial carcinoma from micropapillary carcinoma,” Abdominal
Radiology, vol. 44, no. 1, pp. 201–208, 2019.

[29] B. Zhang, J. Tian, D. Dong et al., “Radiomics features of
multiparametric MRI as novel prognostic factors in advanced
nasopharyngeal carcinoma,” Clinical Cancer Research, vol. 23,
no. 15, pp. 4259–4269, 2017.

[30] A. Iannarelli, B. Sacconi, F. Tomei et al., “Analysis of CT fea-
tures and quantitative texture analysis in patients with thymic
tumors: correlation with grading and staging,” La radiologia
medica, vol. 123, no. 5, pp. 345–350, 2018.

[31] K. Yasaka, H. Akai, M. Nojima et al., “Quantitative com-
puted tomography texture analysis for estimating histological
subtypes of thymic epithelial tumors,” European Journal of
Radiology, vol. 92, pp. 84–92, 2017.

[32] A. Fedorov, R. Beichel, J. Kalpathy-Cramer et al., “3D slicer
as an image computing platform for the quantitative imaging
network,”Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1323–
1341, 2012.

[33] J. J. M. Van Griethuysen, A. Fedorov, C. Parmar et al., “Compu-
tational radiomics system to decode the radiographic pheno-
type,” Cancer Research, vol. 77, no. 21, pp. e104–e107, 2017.

[34] E. M. Marom, M. A. Milito, C. A. Moran et al., “Computed
tomography findings predicting invasiveness of thymoma,”
Journal of 
oracic Oncology, vol. 6, no. 7, pp. 1274–1281, 2011.

[35] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths
for generalized linear models via coordinate descent,” Journal of
Statistical So�ware, vol. 33, no. 1, pp. 1–22, 2010.



10 BioMed Research International

[36] X. Robin, N. Turck, A. Hainard et al., “pROC: an open-source
package for R and S+ to analyze and compare ROC curves,”
BMC Bioinformatics, vol. 12, article 77, 2011.

[37] N. Tomiyama, T. Johkoh, N. Mihara et al., “Using the World
Health Organization classification of thymic epithelial neo-
plasms to describe CT findings,” American Journal of Roentgen-
ology, vol. 179, no. 4, pp. 881–886, 2002.

[38] J. Yu, Z. Shi, Y. Lian et al., “Noninvasive IDH1 mutation
estimation based on a quantitative radiomics approach for
grade II glioma,” European Radiology, vol. 27, no. 8, pp. 3509–
3522, 2017.

[39] Y. Li, X. Liu, Z. Qian et al., “Genotype prediction of ATRX
mutation in lower-grade gliomas using an MRI radiomics
signature,” European Radiology, vol. 28, no. 7, pp. 2960–2968,
2018.

[40] Y.-J. Qu, G.-B. Liu, H.-S. Shi, M.-Y. Liao, G.-F. Yang, and Z.-X.
Tian, “Preoperative CTfindings of thymoma are correlatedwith
postoperative Masaoka clinical stage,” Academic Radiology, vol.
20, no. 1, pp. 66–72, 2013.

[41] A. E. Fetit, J. Novak, A. C. Peet, and T. N. Arvanitits, “Three-
dimensional textural features of conventional MRI improve
diagnostic classification of childhood brain tumours,” NMR in
Biomedicine, vol. 28, no. 9, pp. 1174–1184, 2015.

[42] D. Mackin, X. Fave, L. Zhang et al., “Measuring computed
tomography scanner variability of radiomics features,” Inves-
tigative Radiology, vol. 50, no. 11, pp. 757–765, 2015.

[43] Union for International Cancer Control, TNM Classification of
Malignant Tumors, Wiley Blackwell, Oxford, UK, 8th edition,
2016.


