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Toward ovarian cancer screening
with protein biomarkers using
dried, self-sampled cervico-vaginal fluid

Julia Hedlund Lindberg,1 Anna Widgren,2 Emma Ivansson,1 Inger Gustavsson,1 Karin Stålberg,3 Ulf Gyllensten,1

Karin Sundfeldt,4 Jonas Bergquist,2 and Stefan Enroth1,5,6,*

SUMMARY

Early detection is key for increased survival in ovarian cancer, but no general screening program exists
today due to lack of biomarkers and overall cost versus benefit over traditional clinical methods. Here,
we used dried cervico-vaginal fluid (CVF) as sampling matrix coupled with mass spectrometry for detec-
tion of protein biomarkers. We find that self-collected CVF on paper cards yields robust results and is suit-
able for high-throughput proteomics. Artificial intelligence–based methods were used to identify an
11-protein panel that separates cases from controls. In validation data, the panel achieved a sensitivity
of 0.97 (95%CI 0.91–1.00) at a specificity of 0.67 (0.40–0.87). Analyses of samples collected prior to devel-
opment of symptoms indicate that the panel is informative also of future risk of disease. Dried CVF is used
in cervical cancer screening, and our results opens the possibility for a screening program also for ovarian
cancer, based on self-collected CVF samples.

INTRODUCTION

Ovarian cancer has an estimated global incidence of 6.6 per 100,000 women per year making it the 8th most common cancer among women

across the world with over 300,000 cases reported and over 200,000 deaths.1 Detection of the cancer is usually symptom-driven, resulting in

that less than one-third of cases are discovered early, in stage I or II, leading to a poor prognosis with an overall 5-year survival rate of only 30–

50%.2 1Early detection of ovarian cancer could be facilitated by knowledge of the etiology of the cancer both by discovering precise bio-

markers and determining an optimized screening interval in relation to cancer development. However, the precursor states of ovarian cancers

have proven difficult to identify. Recent investigations have suggested that serous tubal intraepithelial carcinomas (STIC), a presumed pre-

cursor to high-grade serous ovarian carcinomas, develop slowly over up to two decades from the first occurrence of genetic predisposing

mutations.3 Recentmolecular evidence, however, from patientmaterial suggests that ovarian cancer can develop from STIC in amuch shorter

time, as rapidly as in an estimated time span of 6–7 years.4,5 Other estimates based on tumor sizes and growth6 indicate that ovarian cancer

can spend over 4 years in situ, or as stage I and II, before progressing to stages III and IV. The ovarian cancer diagnose is typically symptom-

driven and women who experience pelvic symptoms are usually first examined with computed tomography or transvaginal ultrasound (TVU),

and when these indicate an adnexal ovarian mass, surgery is used for a definitive diagnose. However, the majority of symptomatic patients

undergoing surgery do not have malign tumors but normal or benign cysts7 and more effective and targeted preoperative tools to predict

malignancy could reduce unnecessary surgery and minimize morbidity and induced premature menopause. A recent study analyzing copy

number variation at single cell level in histologically defined benign andmalign tissue across multiple cancers such as prostate cancer, ductal

breast cancer and squamous cell carcinomas suggest that, at least for the studied cancers, copy number alterations present in benign tissue

could precede tumorigenesis.8 Therefore, from a screening perspective, in order to identify all cancers at the earliest possible state, it is

important to include also women that are examined due to suspicion of ovarian cancer but diagnosed with benign conditions.

Today, to the best of our knowledge, no molecular test accurate enough to justify population-wide screening of ovarian cancer has been

described. The largest running ovarian cancer screening study, the United Kingdom Collaborative Trial of Ovarian Cancer Screening

(UKCTOCS)9 uses multi-modal screening where indications of elevated MUCIN-16 (Cancer antigen-125/CA125) triggers a follow-up with

TVU. A recent evaluation of the long-term results from the study10 concluded that although an increase could be observed in early-stage can-

cer detection, no clear reduction in mortality was detected among women participating in screening as compared to the un-screened group.
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Another large study with a similar screening strategy, theNormal RiskOvarian Screening Study (NROSS), could however drawmore promising

conclusions with a larger shift toward earlier discovery.11 One remaining issue with the multi-modal approach however is the lower sensitivity

of the biomarkers used as first line indicator, while a high specificity is obtained with TVU.11 Therefore, additional biomarkers with a higher

sensitivity for early-stage ovarian cancer are needed. Few clinical biomarkers for ovarian cancer are however available today. MUCIN-16 was

introduced as a biomarker for ovarian cancer in 198312 and is in most countries currently the only biomarker for diagnosis andmanagement of

ovarian cancer.13 However, MUCIN-16 alone has low sensitivity for early-stage cancer partly due to a large proportion of false positives re-

sulting from non-cancer gynecological conditions such as endometriosis, infections, or normal pregnancies.13 Risk-scores using combinations

of MUCIN-16 and other biomarkers such as the WAP four-disulfide core domain 2 (WFDC2 or HE4) used in the ROMA Score (Ovarian Malig-

nancy Risk Algorithm), can achieve sensitivities of 90–95%14,15 at a specificity of 75%. A lower sensitivity for detection of early-stage ovarian

cancer (stages I and II), high costs and risk of over-treatment due to low specificity prohibits population screening using these biomarkers.We

have previously shown16 that combinations of plasma protein biomarkers can separate benign tumors from ovarian cancers at a very high

sensitivity and specificity and that different biomarkers were optimal for separating early or late stages frombenign conditions.16 Interestingly,

in that study, the best performing biomarker combinations did not include MUCIN-16 suggesting that broad studies taking advantage of

high-throughput proteomics technologies without prior assumptions on what biomarkers to include could detect novel biomarkers that

outperform current gold-standards.

Self-sampled cervico-vaginal fluid (CVF) deposited on the FTA elute filter paper cards have been shown to provide accurate and cost-effi-

cient screening of cervical cancer.17,18 We have previously also shown that dried CVF on paper cards is suitable for high-throughput prote-

omics using both affinity-based methods19 and mass spectrometry.20 A recent study by Boylan et al.21 analyzed the proteomic spectra with

mass spectrometry in tumor tissue and a cervical swab from a woman diagnosed with late stage (metastatic), high-grade serous adenocar-

cinomaof ovarian or peritoneal origin. They found a large overlap in the detection of proteins between the two sample types, with 84.6% (3716

of 4392) and 88.6% (3716 of 4194) of the proteins commonly detected in the tumor and cervical swab respectively. This indicates that CVF

could reflect the expressed tumor proteome and therefore be a useful sampling matrix also for detection of ovarian cancer.

Here, we aimed to evaluate dried CVF on paper cards as sampling method for early detection of ovarian cancer. To accomplish this, we

have analyzed samples of dried CVF deposited on paper cards with mass spectrometry from both women surgically diagnosed with benign,

borderline and malign tumors, healthy controls and in samples collected up to four years before diagnose. Our results indicate that the CVF-

proteome is highly heterogeneous between individuals, that MUCIN-16 specifically is not commonly detected but, that there are promising

protein biomarker candidates for early detection of ovarian cancer.

RESULTS

The CVF proteome is highly heterogeneous between individuals

A total of 160 dried CVF samples (Table 1; Figure S1, STAR Methods) deposited on the indicating FTA card collected from 155 women were

included in the study. 104 of the samples were collected at time of diagnosis from women with a suspicion of ovarian cancer and surgically

diagnosed with benign or malign conditions in the Sahlgrenska University Hospital in Göteborg, Sweden. The 104 samples were collected

from 100 women. For two of the women three biological replicates were included to estimate intra-individual variation. An additional 16 sam-

ples were from15womenparticipating in the cervical cancer screening in Uppsala, Sweden, that later were examinedwith suspicion of ovarian

cancer. Among these samples, one woman had samples collected at separate time-points. Finally, 40 samples from symptom-free healthy

women also participating in the same cervical cancer screening program, were used as controls in the present study. All samples were

collected using a sampling brush (Viba brush) which was then applied to the colored area of the FTA elute micro card. The cards were

then left to dry 5 min before closure and stored in room temperature. The mass spectrometry analyses were carried out in two phases,

with the controls and a proportion of the cases in a first run (N = 60) and the remainder of the samples in a second run (N = 100). The

data for the controls for the first run have previously been published.20 Both mass spectrometry runs were carried out at the same facility

by the same staff (STAR Methods).

A total of 3788 proteins were detected in at least one sample (Figure 1; Table S1). The detection rate of proteins varied greatly between

individuals with 42% of the proteins detected in at least 10% of the samples, but only 6% of proteins present in at least 90% of the samples.

Specifically, WFDC2 andMUCIN-16, were detected in 64% and 16% of all samples and in 58% and 18% of the ovarian cancer samples, respec-

tively (Figure 1). A subset (N = 19) of the samples analyzed here have previously also been characterized22 with a complementary proteomics

technology, the proximity extension assay (PEA) in both separated plasma as well as the CVF deposited on FTA-cards. The affinity-based PEA

technology is highly sensitive and here, both MUCIN-16 and WFDC2 were detected in 100% of the CVF-samples. These data were used to

analyze the correlation between these twoproteins asmeasured by PEA in plasma andCVF. The correlation coefficients were 0.2 (p value 0.39)

and 0.04 (p value 0.87) forWFDC2 andMUCIN-16 respectively, and even though amore sensitive assay can detectMUCIN-16 andWFDC2 to a

higher degree in CVF, the low correlation likely prohibits similar use in ovarian cancer for these two biomarkers in CVF as compared to plasma.

We next analyzed if the observed high heterogeneity could be attributed to different sampling location for the punches on the FTA-card. This

intra-individual variance was examined by comparing results frommultiple punches from the same card for two separate samples. Figures 2A

and 2B shows two FTA-cards with deposited CVF including three 3.5mm punches. The estimated correlation coefficients between any two

pairs of punches in the two sets of replicates were all above 0.92 (Figures 2C and 2D, Spearman’s Rho, p value<machine precision, 2.2 x 10�16)

indicating that robust results are obtained regardless of where on the card the punches are taken. A comparison with randomly selected pairs

of cards, repeated 50 times (Figures 2C and 2D, gray dots) obtained amean correlation coefficient of 0.72 (+/� 0.12). Finally, we also analyzed
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if there was any general difference in protein specific detection rates obtained in the samples collected at time of diagnose compared to

those collected before diagnose and found no difference (Figure S1).Based on these analyses, we concluded that the overserved heteroge-

neity in detection rates between individuals are most likely due to real differences in concentrations in combination with limits of detection in

the technology user. The raw data were then normalized (STARMethods) and quality-controlled for detection frequency on both protein and

individual (women) level (STAR Methods). For the women with multiple biological replicates, only one (selected at random) replicate was

included in the downstream analysis. The initial quality control consisted of two steps, first only proteins detected in at least 85% of the in-

dividuals were kept and then, only individuals that hadmeasurements of at least 85% of those proteins were included in the proceeding anal-

ysis. After quality-control, 275 proteins in 139 samples were used for further analysis (Figure S1).

Univariate biomarkers in CVF for early detection of ovarian cancer

All 275 proteins passing quality control were analyzed univariately in a set of different comparisons depending on intended context. Firstly, we

examined a screening scenario aiming to separate benign, borderline and malign tumors from controls, i.e., targeting the women that are

today most commonly examined with suspicion of ovarian cancer. Secondly, we examined a triage scenario separating the benign tumors

from borderline and malign tumors. We also examined the ability to separate; controls from benign, controls or benign from ovarian cancers

(all stages), early-stage ovarian cancer (stage I and II) and late-stage cancers (stage III and IV). Lastly, we examined the ability to distinguish

early-stage cancer form late-stage cancers. In total, we conducted 10 different comparisons for each protein and using a strict adjustment for

multiple-hypothesis testing we found 17 proteins to be significantly different (p < 0.05/275/10 = 1.8 x 10�5) in at least one comparison with p

values as low as 1.3 x 10�12 (Table S2; Figure 3A). The majority (15) of these 17 proteins had the lowest p value in the screening scenario with

Peroxiredoxin-2 (UniProt P32119, controls vs. benign) and Ras-related protein Rab-10 (UniProt P61026, controls vs. early-stage ovarian cancer)

being the two exceptions. Several of these 17 proteins however, displayed statistically different levels in multiple categories (Figure 3A). The

proteins with the largest increase and decrease in mean proteins concentrations among the 17 detected biomarkers are shown in Figures 3B

and 3C, respectively. Haptoglobin (Figure 3B right panel, UniProt P00738) shows an increase in benign, borderline and malign tumors

compared to controls while Profilin-1 (Figure 3C right panel, UniProt P07737) shows a decrease. Focusing on the samples collected before

diagnosis (Figure 3BC, left panel) a similar pattern was observed in terms of increased or decreased concentrations in relation to a future

benign or malign diagnose. Haptoglobin (Figure 3B left panel) showed an increase compared to the controls in all samples (14/14) across

Table 1. Participant characteristics

Group Diagnose N Agea CA125 U/mlb

Controls Healthy 40 52.3 (3.8) n.a.

OC-BDc 16 48.7 (9.0) n.a.

Benign 7 46.4 (10.2) n.a.

Borderline 1 35 n.a.

- Stage I 1 35 n.a.

Malign 8 52.4 (6.0) n.a.

- Stage I 2 49.8 (3.0) n.a.

- Stage II 2 48.7 (11.5) n.a.

- Stage III 3e 54.4 (4.4) n.a.

- Stage IV 1 57.8 n.a.

OC-ADd 100 58.1 (14.4) 95.0 (124.5)

Benign 38 54.3 (16.8) 26.0 (17.8)

Borderline 10 51.0 (14.2) 73.0 (63.0)

- Stage I 10 51.0 (14.2) 73.0 (63.0)

Malign 52 62.3 (11.8) 421.5 (494.4)

- Stage I 15 62.5 (13.2) 93.0 (83.0)

- Stage II 5 67.0 (10.6) 71.0 (57.8)

- Stage III 20 60.2 (13.7) 889.0 (738.3)

- Stage IV 12 63.5 (6.7) 774.0 (285.4)

aReported as mean (std. dev) at sample collection.
bClinically measured MUCIN-16 (CA125) reported as median (median abs. dev.) at time of diagnosis.
cOC-BD, samples with ovarian cancer suspicion collected before diagnosis.
dOC-AD, samples with ovarian cancer suspicion collected at time of diagnosis.
eTwo samples from the same women collected at different time-points. n.a: not available.
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the full-time span and as early as more than 1400 days prior to diagnosis. Similarly, 11 of 14 samples showed a decrease in cases as compared

to controls for Profilin-1 across the full-time span (Figure 3C left panel).

A combination of 11 biomarkers in CVF for early detection of ovarian cancer

Next, we built a multivariate predictionmodel separating the controls from the benign, borderline andmalign tumors at time of diagnosis. In

this analysis, no missing values were allowed in the data why the data were first strictly filtered keeping 189 proteins in 100 samples. The

Figure 1. Protein detection rate in CVF

Protein detection rate (y axis) for each detected protein (x axis, ordered by overall detection rate) for all samples in the study (gray), ovarian cancer samples

(orange), ovarian cancers stage I and II at time of diagnosis (yellow), ovarian cancers (OvCa) stage III and IV at time of diagnosis (dark red) and controls

(magenta). Proteins are ordered by the detection rate among all samples. The detection frequencies of WFDC2 and MUCIN-16 are shown both at circles

with black borders and as additional panels. In these, horizontal lines on each bar represent the standard error of the mean (SEM). In the main panel, the

dashed gray horizontal and vertical lines correspond to 90% and 10% detection rates among all the samples. Note that the ‘‘All’’ category includes additional

categories (samples collected before diagnosis (benign and malign) and borderline ovarian cancers) that are not displayed as individual categories.

Figure 2. Technical evaluation of dried CVF and comparisons with wet plasma

(A) and (B) Photo of FTA-collection card analyzed with deposited CVF including the 3 punches used in the analysis in (C) and (D).

(C) Pairwise comparison of 3 replicated punches (A) from different places of dried CVF on a paper card (colored) and pairwise comparison of randomly selected

samples (gray). In addition to color, each pairwise comparison is plotted with a different symbol. The random selection was done by selecting a pair of samples

from the same diagnose group as the replicated analysis. The distribution of random comparisons is based on 50 randomly selected pairs.

(D) as (C) but for the card shown in (B). In all analyses of replicated punches, the correlation-coefficients (Spearman’s Rho R) between any two pairs of punches are

above 0.92.
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filtering was done by removing either the individual or proteins with the highest missing value fraction until nomissing values remained. Next,

the data were split into a training (two-thirds, N = 62) and validation set (one-third, N = 41) keeping the fraction of cases and controls similar

between the two sets. Only samples collected at time of diagnosis was used in the development of the multivariate model. The training frac-

tion was then used to perform feature selection (STARMethods) and to build a predictive model with a Naive Bayes classifier (STARMethods)

based on the proteins selected in the feature-selection step. The model returned a risk-score on the scale of 0–1 and a cut-off for malignancy

was set representing a sensitivity of at least 95% in the training data. The feature-selection extracted 11 proteins (Figure 4A) out of which 6

were also found to be significant in the univariate analysis (Figure 4A). Six or the 11 proteins had, on average, higher concentrations in controls

compared to cases (Figure 4A). A re-filtering of the individuals excluded in the very first filtering step was then done but examining only the 11

selected proteins and samples with no missing values for these 11 proteins were included in the validation data, which brought the total sam-

ple count in the validation to 47. Themodel was then applied to the samples in the validation data calculating the risk-score and subsequently

predicted as control or case using the previously defined cut-off. We found no statistical difference (DeLong’s method, p = 0.59) in the area

under curve (AUC) estimates of the receiver operating characteristics (ROC) obtained during training of the model (AUC = 0.98, 95% confi-

dence interval (CI) 0.95 to 1.00) compared to the validation proportion of the data (AUC= 0.96, 95%CI 0.91–1.00, Figure 4B). In addition, there

was no statistical difference in the sensitivity (p = 0.66, Fisher’s exact test) and specificity (p = 0.24, Fisher’s exact test) obtained in the validation

proportion of the data at the specific cut-off developed in the training data. In the validation proportion of the data, the point-estimate of

sensitivity and specificity of the model and cut-off were 97% and 67% respectively. The distribution of the risk-score in the validation propor-

tion of the data can be seen in Figure 4C. We also calculated the risk-score for the samples collected prior to diagnosis with complete ob-

servations for the 11 proteins (12 samples) and could conclude that all samples were above the cut-off across the full time span with no sig-

nificant difference between the obtained risk-scores (p = 0.81, two-sided Wilcoxon ranked based test) in the group that later was diagnosed

with ovarian cancer compared to benign conditions. Finally, we analyzed if any of the 11 proteins in themultivariatemodel were influenced by

individual age. Using all samples, we found no such influence (all p > 5.7 x 10�2, Table S3). When analyzing the three major groups (controls,

benign andmalign) separately we found 3 of the proteins to have nominally significant influence by age in the benign and control groups out

Figure 3. Univariate analysis of protein levels in CVF

(A) Schematic representation of nominally (yellow) significant, per-comparison multiple hypothesis adjusted (Bonferroni, orange) significant and overall multiple

hypothesis adjusted (Bonferroni, red) significant different protein levels in the compared groups. Gray color represents non-significant associations (p > 0.05).

Proteins are identified by UniProtID and ‘gene name’ as listed in the UniProt database.

(B) CVF-abundance levels of Haptoglobin (UniProt P00738) in samples collected before (left panel) and at time of diagnosis (right panel). The mean abundance

level in controls (labeled ‘H’) is marked with a horizontal gray dashed line in both panels. In the right panel, ‘B’ represents women with benign conditions, ‘BL’ are

borderline ovarian cancer, ‘OvCa I-II’ and ‘OvCa III-IV’ ovarian cancers stages I-II and III-IV respectively. The top and the bottom of the colored boxes represents

the 25th and 75th percentile with the whiskers at 1.5x the interquartile range. The mean is indicated in each group with a solid black line. In the samples collected

before diagnosis, the two data-points connected by a solid line are from the same woman at two different time-points.

(C) As (B) but for Profilin-1 (UniProt P07737).
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of which one remained significant after adjustment for multiple hypotheses testing. The remaining significance was detected for pyruvate

kinase PKM (UniProt ID P14618) in controls (p = 1.8 x 10�4) with higher levels observed with increasing age. There was a nominally significant

association in benign samples (p = 0.03) while no association was detected in the malign group (p = 0.25).

DISCUSSION

Here, we have evaluated dried CVF on paper cards for use in early detection of ovarian cancer. Our results show that although the CVF-pro-

teome as characterized by mass spectrometry is highly heterogeneous, several promising protein biomarkers for early detection were found.

Based on proteins robustly detected across individuals, we found a combination of 11 proteins that demonstrated accurate, reproducibly,

classification of cases and controls. An analysis of sample collected before diagnose indicate that this signal could also be detected prior

to symptom driven discovery. New and accurate biomarkers for early discovery of ovarian cancer are urgently needed to increase survival.11

Biomarkers with low sensitivity leads to cancers beingmissedwhile a low specificity results in false positives, and possible over-treatment such

as unnecessary surgery affecting fertility or introducing premature menopause. A functional screening program also needs to have a clear

impact on the treatment of the disease and should lead to increased survival and quality of life for the affected. For ovarian cancer, there

is a clear increase in survival when the cancer is detected early as compared to in later stages. Previous studies indicate that it could be

possible to detect the cancer early, as the cancer pre-stages exists several years, or even decades, before developing into cancer.3–6 Given

the relatively low population incidence for ovarian cancer, building prospective cohorts with samples collected prior to diagnosis is costly and

requires long-time commitment of the participants to visit health care centers for donation of blood samples. Blood samples commonly used

for biomarker studies, such as separated plasma or sera, also need dedicated biobanks for storage, handling and extraction requiring trained

personnel, dedicated facilities, and long-term financing.23,24 Sampling by liquid biopsy, especially as self-collected samples, has the potential

to allow participants to collect the sample when it suits them best, and to reduce cost for the health-care system.18 Collecting CVFs such as

used here, is aminimally invasive samplingmethod that can be self-administrated. Anothermethod that is suitable for self-administrated sam-

ple collection is dried blood samples (DBS).We have shown that in DBS samples from new-born screening stored at�24�C for up to 30 years,

75% of analyzed proteins remain stable over time.25 We have also reported that 17% of proteins analyzed in plasma display significant

changes in abundance levels when stored at�80�C as plasma for up to 30 years with a similar effect size as the individual age of the patient.26

This implies that cheap and efficient long-time dry storage of self-collected samples as sampling matrix is not only a feasible alternative to

current state-of-the art biobanking of liquid clinical samples at �80�C but may have significant advantages not only in terms sample prepa-

ration, storage cost but also for stability of analytes.

However, protein biomarker analyses using DBS27 or dried CVF as presented here does show differences when compared to analyses con-

ducted in coupled plasma and/or serum from the same individuals. Therefore, the collected sample types should be considered as represent-

ing different tissues when searching for biomarkers for early discovery of ovarian cancer. We20 and others28 have shown that the individual

CVF-proteome as characterized bymass spectrometry is highly heterogeneous as compared to what can be expected in plasma. In a previous

study carried out in 2014 by Boylan et al.,28 five residual Papanicolaou (Pap)-test fluid samples from healthy women were analyzed usingmass

Figure 4. Multivariate risk-score for screening

(A) Mean protein abundance levels in the healthy controls (y axis) and the benign, borderline and malign tumors (x axis) for the 11 proteins in the risk-score. Red

colored dots represent univariate significance with multiple hypothesis adjusted p values below 1.8 x 10�5.

(B) Receiver operating characteristics (ROC) curve for the predictions based on the risk-score at time of diagnosis. The dashed line corresponds to estimated

performance during training (cross-validation) and the solid line the performance achieved in the validation proportion of the data using the trained model.

The shaded gray areas correspond to 95% confidence interval in the validation proportion. The center of the red cross corresponds to the point-estimated

sensitivity and specificity in the validation proportion of the data using the model and cut-off used in the training data. The width and height of the cross

illustrate the 95% confidence interval of the estimated sensitivity and specificity.

(C) Distribution of the risk-score in specific groups of the validation data; H (healthy controls), B (benign), BL (borderline), OvCa I-II (ovarian cancer stage I and II)

and OvCa III-IV (ovarian cancer stage III and IV). The number of samples in each group is specified at the top. Each individual sample is drawn as a solid gray dot

with the top and the bottom of the colored boxes representing the 25th and 75th percentile and the whiskers at 1.5x the interquartile range. The median is

indicated in each group with a solid black line. The horizontal dashed line corresponds to the cut-off established using the training data.
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spectrometry and a normal core CVF-proteome consisting of 153 proteins was definedbased on presence in 4 out of 5 samples. In our analysis

of 40 controls, 113 of these 153 proteins were detected in at least 80% of the samples. When selecting 5 of the 40 samples at random and

requiring at least 80% detection rate, an average of 640 proteins were found across 1000 such selections (Figure S2) highlighting the very het-

erogeneous nature of the CVF-proteome and the difficulties in defining the normal state. Apart from biological variation, a possible expla-

nation to the varied results between the two investigations could also be the samplingmethod, and sample type, where the 153 proteins were

detected in cell-free residual pap test fluid collected in cervical cancer screening which is not the same sample type as used here. The pap test

specifically aims to collect cells from the cervix compared to the collection here which aims to collect fluid from the vagina. In addition, the

numbers obtained here are, however, not immediately comparable to the earlier 153 proteins, as the assaying technique has improved, and

more proteins are routinely detectable. As an example, a recent study21 investigated in detail three different sample types (tumor tissue, Pap-

smear fluid, and a cervical swab) from the same woman diagnosed with late-stage ovarian cancer and detected close to 5000 proteins across

the three sample types. They also found that the majority of these proteins were commonly detected in all three types. Specifically, in that

study, both MUCIN-16 and WFDC2 were detected in all three tissue types. In our study, neither MUCIN-16 nor WFDC2 was detected in

CVF in more than 1 of 5 ovarian cancer patients (stage I-IV) using mass spectrometry. Although the highly sensitive PEA detected both pro-

teins in 100% of the dried CVF-samples, we found no correlation between the plasma and the CVF levels from the same women at the same

time point. This indicates that these two biomarkers, although robustly detectable in CVF with sensitive assays, are not directly usable as CVF

biomarkers for ovarian cancer in the same way as in plasma.

Many of the biomarker candidates identified here in the univariate analysis have previously been implicated in ovarian cancer, but a fair

comparison is difficult to accomplish since themajority of previous studies have been based on serum, plasma or peritoneal fluid29 rather than

CVF. Haptoglobin for instance, had the largest increase in cases compared to controls in our study. Higher haptoglobin expression in hepa-

tocellular carcinoma (HCC) tissue have previously been associatedwith improved survival rates in HCC30 and elevated levels of haptoglobin in

plasma in relation to ovarian cancer has also been observed.31 On the other hand, a recent study by Garibay-Cerdenares et al.32 specifically

investigated the functional role of haptoglobin in cancer development and concluded that the protein is expressed by ovarian cancer cells,

but only after exposure to ascitic fluid. The two proteins with the strongest statistical support in our study, (EPS8-related protein 2 (EPS8L2)

and Catenin Alpha 1 (CTNNA1), both with p < 1.71 x 10�12) showed an increased expression in cases compared to controls. CTNNA1 has

been indicated as a favorable prognostic maker for renal cancer while an unfavorable prognostic marker for pancreatic cancer based on

gene expression in each respective tissue.33 Reduced expression in tumor tissue of CTNNA1 has been suggested to be a marker for

early-stage ovarian epithelial cancers with poor prognosis,34 while decreased protein expression in different ovarian cancer cell lines have

been shown to either increase or decrease sensitivity to different chemotherapies.35 A recent review36 of the role of EPS8, including the

EPS8L2 homolog, reports overexpression (as seen here) in a large variety of cancers, including ovarian cancer with involvement in tumorigen-

esis, tumor proliferation, migration, metastasis as well as drug resistance and poor prognosis. Although several candidate biomarkers were

found with strong statistical support comparing cases and controls in the screening scenario, we found no strong univariate candidates sepa-

rating the benign tumors from malignant. A total of 25 biomarkers (Table S2) were nominally statistically significant (p < 0.05) but non re-

mained significant after adjustment for multiple hypothesis testing (p < 1.8 x 10�5). The protein with the strongest statistical support in

this comparison, the Eukaryotic initiation factor 4A-I (EIF4A1) were found to have higher levels in patients with benign tumors compared

to malign (p = 1.9 x 10�3, Table S2). EIF4A1 has been implicated in several cancers,37 including gynecological cancers such as cervical and

endometrial, butmost often with higher expression in tumor tissue compared to normal associatedwith poor outcome. In summary, although

there is good evidence fromprevious studies that the biomarker candidates detected here have cancer relevance, the interpretation is limited

by the cross-tissue comparison and further investigations are needed to fully understand the functional relationships.

Amajor strength of our study is the use of samples collected on two locations, encompassing both healthy controls and women diagnosed

with benign conditions in comparison to both early and late-stage ovarian cancer as well as samples collected up to four years prior to date of

diagnosis. The use of standardized protocols for all molecular analyses carried out facilitate reproducibility of the conducted research,

although more optimized protocols or assays could have increased the detectability of proteins across the analyzed samples. The analysis

of multiple punches from the same women also strengthens our results in terms of reproducibility, as the obtained protein spectra from bio-

logical replicates are highly similar within individuals. The large inter-individual variancemost likely reflects underlyingbiologywith the protein

concentrations among primarily low abundant proteins falling under the detection limit when analyzed with mass spectrometry. This was also

observed for the subset of proteinswith available data from the highly sensitive protein extension assay (PEA) where a 100%detection ratewas

obtained from dried CVF compared to lower detection rates with mass spectrometry. Future studies employingmore sensitive technologies,

such as antibody-based, are likely to obtain larger proteomics datasets in termsof higherdetection rate across individuals and, subsequently, a

larger selection fromwhichbiomarker candidates for early detectionof ovarian cancer can be identified. This development has beenevident in

analyses conducted in plasma. For instance, in our own first study22 of 593 proteins in plasma we identified a biomarker panel consisting of 11

proteins with a sensitivity and specificity at 0.77 and 0.69 for separating benign conditions from early-stage ovarian cancer. In a subsequent

study16 of 1472 proteins, a biomarker panel with 7 proteins achieved near perfect separation of the benign conditions from early-stage ovarian

cancer, notably without MUCIN-16. On the other hand, technologies such as mass spectrometry offers a hypothesis free search for new

biomarker candidates, while antibody-based technologies rely on a preselected set of analytes. In the current study, 11 of the 17 univariate

biomarker candidates identified are not currently available among the over 5300 proteins in the commercial libraries of the PEA.

In conclusion, self-collected dried CVF deposited on paper cards is suitable for large scale proteomics with mass spectrometry and robust

results are obtained regardless of where on the surface with CVF material the punch is taken from. Our analyses identified several novel
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biomarker candidates that could be valuable as first in line test for discovery of ovarian cancer. The same sample type as used here has been

routinely used for screening of human papilloma viruses (HPVs) in cervical cancer screening, and our results opens the possibility for a future

screening program in ovarian cancer utilizing the same type of self-collected samples.

Limitations of the study

Our study is limited by difficulties in obtaining samples collected at different timepoints prior to diagnosis, which could have been used to

pinpoint a window in time where the signals start to deviate between cases and controls. Although a limited analyses, we found one of the

proteins in themultivariatemodel to be influenced by individual age. This association was found in controls only. In our univariate analysis, this

protein had higher levels in controls (Table S2) as compared to both benign andmalignmeaning that young enough healthy individuals could

have similar levels of this protein as the cases. Our material however lacks the ages-span to analyze this in detail and further investigations are

needed. We were also limited in functional interpretation of the biomarker candidates, as CVF represent a less commonly investigated tissue

type. It is clear from both our work and the previous literature, that the behavior can be different between protein biomarkers in CVF and

plasma. The study is also limited by that only Swedish samples were analyzed.
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Wäpplings Stiftelse (SE), Erik, Karin ochGösta Selanders Stiftelse (SE), Swedish Collegium for Advanced Study, Sjöbergstiftelsen, the Swedish
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Assarsson, E., Åberg, M., Selander, J., and
Enroth, S. (2021). Evaluation of 92
cardiovascular proteins in dried blood spots
collected under field-conditions: Off-the-
shelf affinity-based multiplexed assays work
well, allowing for simplified sample
collection. Bioessays 43. e2000299–9. https://
doi.org/10.1002/bies.202000299.

28. Boylan, K.L., Afiuni-Zadeh, S., Geller, M.A.,
Hickey, K., Griffin, T.J., Pambuccian, S.E., and
Skubitz, A.P. (2014). A feasibility study to
identify proteins in the residual Pap test fluid
of women with normal cytology by mass
spectrometry-based proteomics. Clin.
Proteonomics 11, 30. https://doi.org/10.
1186/1559-0275-11-30.

29. Chen, Q., Zhang, Z.H., Wang, S., and Lang,
J.H. (2019). Circulating cell-free DNA or
circulating tumor dna in the management of
ovarian and endometrial cancer.
OncoTargets Ther. 12, 11517. Preprint at
Dove Medical Press Ltd. https://doi.org/10.
2147/OTT.S227156.

30. Tai, C.S., Lin, Y.R., Teng, T.H., Lin, P.Y., Tu,
S.J., Chou, C.H., Huang, Y.R., Huang, W.C.,
Weng, S.L., Huang, H.D., et al. (2017).
Haptoglobin expression correlates with
tumor differentiation and five-year overall
survival rate in hepatocellular carcinoma.
PLoS One 12, e0171269. https://doi.org/10.
1371/JOURNAL.PONE.0171269.

31. Shield-Artin, K.L., Bailey, M.J., Oliva, K.,
Liovic, A.K., Barker, G., Dellios, N.L., Reisman,
S., Ayhan, M., and Rice, G.E. (2012).
Identification of ovarian cancer-associated
proteins in symptomatic women: A novel
method for semi-quantitative plasma
proteomics. Proteonomics Clin. Appl. 6,

ll
OPEN ACCESS

iScience 27, 109001, February 16, 2024 9

iScience
Article

https://doi.org/10.3322/CAAC.21660
https://doi.org/10.3322/CAAC.21456
https://doi.org/10.3322/CAAC.21456
https://doi.org/10.1002/PATH.5219
https://doi.org/10.1002/PATH.5219
https://doi.org/10.1016/J.AJPATH.2020.09.006
https://doi.org/10.1016/J.AJPATH.2020.09.006
https://doi.org/10.1038/s41467-017-00962-1
https://doi.org/10.1038/s41467-017-00962-1
https://doi.org/10.1371/journal.pmed.1000114
https://doi.org/10.1371/journal.pmed.1000114
https://doi.org/10.1016/j.ygyno.2018.08.025
https://doi.org/10.1016/j.ygyno.2018.08.025
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.1016/S0140-6736(15)01224-6
https://doi.org/10.1016/S0140-6736(15)01224-6
https://doi.org/10.1016/S0140-6736(21)00731-5
https://doi.org/10.1016/S0140-6736(21)00731-5
https://doi.org/10.1038/s43856-021-00037-9
https://doi.org/10.1038/s43856-021-00037-9
https://doi.org/10.1056/nejm198310133091503
https://doi.org/10.1056/nejm198310133091503
https://doi.org/10.1097/IGC.0000000000000586
https://doi.org/10.1097/IGC.0000000000000586
https://doi.org/10.1016/j.ygyno.2012.07.106
https://doi.org/10.1016/j.ygyno.2012.07.106
https://doi.org/10.3390/JCM9020299
https://doi.org/10.3390/JCM9020299
https://doi.org/10.3390/cancers14071757
https://doi.org/10.3390/cancers14071757
https://doi.org/10.1038/bjc.2017.485
https://doi.org/10.1186/S12885-020-07085-9/TABLES/2
https://doi.org/10.1186/S12885-020-07085-9/TABLES/2
https://doi.org/10.5772/64000
https://doi.org/10.5772/64000
https://doi.org/10.3390/CANCERS13112592
https://doi.org/10.3390/CANCERS13112592
https://doi.org/10.1186/S12014-020-09309-3/TABLES/1
https://doi.org/10.1186/S12014-020-09309-3/TABLES/1
https://doi.org/10.1038/s42003-019-0464-9
https://doi.org/10.1038/s42003-019-0464-9
https://doi.org/10.2147/BSAM.S100899
https://doi.org/10.1089/bio.2014.0051
https://doi.org/10.1089/bio.2014.0051
https://doi.org/10.1074/mcp.RA117.000015
https://doi.org/10.1074/mcp.RA117.000015
https://doi.org/10.1016/j.ebiom.2016.08.038
https://doi.org/10.1016/j.ebiom.2016.08.038
https://doi.org/10.1002/bies.202000299
https://doi.org/10.1002/bies.202000299
https://doi.org/10.1186/1559-0275-11-30
https://doi.org/10.1186/1559-0275-11-30
https://doi.org/10.2147/OTT.S227156
https://doi.org/10.2147/OTT.S227156
https://doi.org/10.1371/JOURNAL.PONE.0171269
https://doi.org/10.1371/JOURNAL.PONE.0171269


170–181. https://doi.org/10.1002/PRCA.
201100008.

32. Garibay-Cerdenares, O.L., Hernández-
Ramı́rez, V.I., Osorio-Trujillo, J.C., Gallardo-
Rincón, D., and Talamás-Rohana, P. (2015).
Haptoglobin and CCR2 receptor expression
in ovarian cancer cells that were exposed to
ascitic fluid: exploring a new role of
haptoglobin in the tumoral
microenvironment. Cell Adhes. Migrat. 9,
394–405. https://doi.org/10.1080/19336918.
2015.1035504.

33. Uhlén, M., Fagerberg, L., Hallström, B.M.,
Lindskog, C., Oksvold, P., Mardinoglu, A.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Stefan Enroth

(stefan.enroth@igp.uu.se).

Materials availability

This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Cervico-vaginal fluid Homo sapiens N/A

Plasma samples Homo sapiens N/A

Chemicals, peptides, and recombinant proteins

LC/MS grade water Fisher Chemical Cat#51140

DL-Dithiothreitol (DTT) Sigma-Aldrich Cat#43815

2-Iodoacetamide (IAA) Sigma-Aldrich Cat#I6125

Sequencing Grade Modified Trypsin Promega Cat#V5111

Acetonitrile, LC-MS grade, 99.8% Fisher Chemical Cat#047138.M1

Formic acid Sigma-Aldrich Cat#F0507

Ammonium bicarbonate, 99% Fisher Chemical Cat#393210010

Critical commercial assays

Proximity Extention Assay, custom version. Olink Proteomics AB www.olink.com

Deposited data

Deposited data This paper https://doi.org/10.17044/scilifelab.24241237

Data published in another paper Gutiérrez, A. L. et al.20 Identification of Candidate

Protein Biomarkers for CIN2+ Lesions from

Self-Sampled, Dried Cervico–Vaginal Fluid Using

LC-MS/MS. Cancers 2021, Vol. 13,

Page 2592 13, 2592 (2021).

https://proteomecentral.proteomexchange.org/

cgi/GetDataset?ID=PXD026064

Software and algorithms

MaxQuant software, version 1.5.1.2 https://www.biochem.mpg.de/6304115/maxquant https://www.maxquant.org/

R version 4.2.2 R Core Team (2022) https://www.R-project.org/

Adobe Illustrator version 27.9 Adobe Systems Software Ireland Limited https://www.adobe.com/products/catalog.html

Other

Viba-Brush Rover Medical Devices BV, Oss, The Netherlands https://www.roversmedicaldevices.com/cell-

sampling-devices/viba-brush/

FTA Elute Micro Card GE Healthcare, Cardiff, UK art. no WB129308

Harris Micropunch 3 mm Whatman art.no WB100038

Protein LoBind tubes 1.5 mL Eppendorf https://www.sigmaaldrich.com/SE/en/product/

sigma/ep0030108116

Speedvac system ISS110 ThermoFisher Scientific, Massachusetts, USA ThermoFisher Scientific

Q-Exactive Plus mass spectrometer Thermo Finnigan, Bremen, Germany https://www.thermofisher.com/order/catalog/

product/IQLAAEGAAPFALGMBDK
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Data and code availability

� Data. The mass spectrometry data for the controls in this paper has previously been deposited in the EMBL/PRIDE database under

accession number PXD026064. The mass spectrometry data for the remainder of the analysed samples have been deposited in the

Science for Life Laboratories (SciLifeLab) Data Repositories with the following identifier https://doi.org/10.17044/scilifelab.24241237.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The samples come from two separate collections. The first set (N=40) was the cervical cancer screening program carried out in Uppsala,

Sweden where self-sampling was applied. Details on these studies have been published before in Gustavsson et al. 201817 and Gustavsson

et al. 2019.38 The samples from the cervical cancer screening cohort were collected between 2013 and 2015. From this sample collection we

used 40 controls with eligibility defined as having negative HPV-status as characterized by the HpVIR-test,39 no overlap with the regional can-

cer registry in Uppsala, Sweden at any time before May 2021 with no records of surgery to the fallopian tubes, i.e. sterilization and salpingec-

tomy or hysterectomy. From the same collection but from a non-overlapping set of women we also included 16 samples from 15 women that

were HPV-negative at the screening sample but later (until May 2021) have been examined with suspicion of ovarian cancer after the cervical

cancer screening sample was collected. These samples were collected between 159 and 1455 days before the final diagnose wasmade. It was

not recorded when, in relation to this date, the first symptoms were noted. The second set of samples (100 women, a total of 104 samples

including 2 cards with 3 punches each) were collected by a specialist in gynaecology at a tertiary centre for gynaecologic cancer surgery, Sahl-

grenska University Hospital (Göteborg, Sweden) at time for admission to the hospital for surgery for a suspicious pelvic mass or ovarian cyst.

During the vaginal speculum examination, the sampling brush (Viba brush) was inserted and rotated in the top of the vagina, vaginal fornices,

and portio but not in the cervical canal. The brushwas then applied to the coloured area of the FTA elutemicro card and rotated one circle, left

to dry five minutes before closure and stored in room temperature. This sample collection mimics the procedure and equipment used in our

previous studies and in the cervical screening program.17,38 These samples were collected in 2015 and 2016 at time for admission 2-10 days

prior to surgical intervention and diagnose. Inclusion criteria for this cohort was admission for surgery due to suspicion of ovarian pathology.

Exclusion criteria for this cohort was surgery to the fallopian tubes, i.e. sterilization and salpingectomy or hysterectomy. Tumour stage and

serum MUCIN-16 (CA125) values were extracted from accompanying medical journal records where available. Women with suspicion of

ovarian cancer from both cohorts were surgically diagnosed with a benign, borderline or malignant histology. All samples were from Swedish

women with a mean age of 55.7 years. Stratified ages for the different groups are given in Table 1. No genotype information was available

for the participants. No information of ancestry/ethnicity nor gender was available for the participants. Informed consent was obtained from

all participants. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Regional Ethics

Committee in Uppsala, Sweden (Dnr 2012/099) and Göteborg (Dnr: 201-15).

METHOD DETAILS

Mass spectrometry

Mass-spectrometry measurements for the controls (N=40) and a subset of the cases in the second sample set (N=20) have been carried out

previously by the Mass Spectrometry facility at the Biomedical Centre, Uppsala, Sweden. The data from the controls were previously pub-

lished in Gutiérrez et al.20 Here, the remainder of the second sample set (N=84) and the 16 samples collected before diagnosis were analysed

at the same facility as used previously. The sample processing and LC-MS/MS measurements were carried out here exactly as described in

Gutiérrez et al.,20 except for an update to the version of the UniProt database used in the final annotation of the proteins. In brief, one 3.5 mm

punch was extracted from each sample. The proteins were reduced, alkylated and on-filter digested by trypsin according to a standard oper-

ating procedure. The collected peptide filtrate was vacuum centrifuged to dryness using a speedvac system. Dried peptides were resolved in

60 mL of 0.1% FA and further diluted 5 times prior to nano- LC-MS/MS. The peptides were separated in reversed-phase on a C18-column with

90 min gradient and electrosprayed on-line to a Q Exactive Plus mass spectrometer (Thermo Finnigan). Tandemmass spectrometry was per-

formed applying Higher-energy C-trap Dissociation (HCD). The acquired data (RAW files) were processed using MaxQuant software, version

1.5.1.2, and database searches were performed using the implemented Andromeda search engine.40 MS/MS spectra were correlated to a

FASTA database containing proteins fromHomo sapiens extracted from the UniProt database (release date:May 2021). A decoy search data-

base, including common contaminants and a reverse database, was used to estimate the identification false discovery rate where a rate of 1%

was accepted. The searchparameters included:maximum10ppmand 0.6Da error tolerances for the survey scan andMS/MS analysis, respec-

tively; enzyme specificity was trypsin; maximum one missed cleavage site allowed; cysteine carbamidomethylation was set as static modifi-

cation; and oxidation of methionine was set as variable modification. The search criteria for protein identification were set to at least two

matching peptides of 95% confidence level per protein.

QUANTIFICATION AND STATISTICAL ANALYSIS

First, the data from the two mass-spectrometry runs were merged based on the curated UniProtIDs as listed in the March 2022 release of the

database. A total of 3788 proteins were detected in at least one sample across all the data. The datawas then normalized on an individual level
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by dividing the label-free quantification (LFQ) measure by the total sum of LFQs for that sample. A per-protein batch-normalization was

carried out between the two runs based on the mean abundance level among the samples from the second cohort. The normalization

was done by adjusting the individual levels of the first cohort so that the mean became the same as in the second. For 2024 of the detected

protein, there was no overlapping non-missing observations in either group to perform this normalization and these proteins were removed

from further analysis. For this group of proteins, the mean percentage of samples with missing values were above 97% in each run. The re-

maining proteins were then quality controlled by requiring at least 85% non-missing observations across all samples for each protein. This

filtering kept 275 proteins. We then required each sample to have non-missing observations for at least 85% of these proteins. This filtering

removed 17 samples with individual detection frequencies ranging from 8.5 to 82.3% among the 275 proteins. The removed samples were

all cases; 1 sample collected before diagnosis (malign) and 16 at diagnose (6 benign, 2 borderline, 9 malign (1 stage I, 3 stage II, 2 stage

III and 2 stage IV). The final dataset consisted of 275 proteins in 139 samples.

The univariate analyses were performed one protein at a time, comparing two groups ofmeasurements. A two-sidedWilcoxon ranked test

was used to determine statistical significance. Here, 10 different comparisons were performed for each protein; (1) controls vs benign, border-

line and malign tumours, (2) benign tumours vs borderline and malign tumours, (3) controls vs benign, (4) controls vs ovarian cancers (all

stages), (5) controls vs early-stage ovarian cancer (stage I and II), (6) controls vs late-stage cancers (stage III and IV), (7) benign vs ovarian can-

cers (all stages), (8) benign vs early-stage ovarian cancer, (9) benign vs late-stage cancers and (10) early-stage cancer vs late- stage cancers.

Three significance levels were defined, p-values < 0.05 as nominal significance, p-values < 0.05/279 = 1.8 x 10-4 as per-testmultiple hypothesis

adjusted significance and p-values < 0.05/279/10 = 1.8 x 10-5 as multiple hypothesis adjusted significance.

The multivariate analysis was done considering only non-missing measurements. Starting from the 275 proteins in the 139 individuals, the

non-missing data was extracted by repeatedly removing the protein or individual with the highest missing fraction until no missing values

remained. After this filtering, 189 proteins remained in 100 individuals (31 controls, 23 benign, 6 borderline, 30 malign (stage I-IV;

10,1,12,7), and 10 samples collected before diagnosis (4 benign and 6 malign). From these, 62 control, benign and malign samples were

randomly selected (corresponding to two thirds) as training cohort with the remaining samples as validation cohort. A feature selection

was done on training cohort based on recursive feature selection as implemented by the ‘rfe’ function in the ‘caret’ R-package41 (version

6.0.91) using ‘nbFuncs’ as functions with method set to ‘repeatCV’ with 4 repeats. This feature selection returned 11 proteins with an accuracy

of 0.87 at a kappa of 0.75. We then re-evaluated the discarded individuals from the above missing-data filtering step specifically evaluating

only the 11 selected proteins, resulting in 22 additional non-missing samples that were added to the validation cohort. A Naı̈ve Bayes model

was then trained in the training proportion of the data using the ‘caret’ R-package employing a three-fold cross-validation schema optimising

the Laplace correction (‘fL’ parameter) from 0 to 1 in steps of 0.1, with and without kernel and bandwidth adjustment (‘adjust’ parameter) from

1 to 4 in steps of 0.1. The final model was built with ‘fL’ = 0, with kernels and ‘adjust’ = 2.4. The model returned a score in the range 0 to 1. A

threshold (cut-off) for separating the classes was determined by evaluating the receiver operating characteristics (ROC) on the training cohort

at a minimum sensitivity of 0.95, the threshold was set to 0.3384. The performance in the validation cohort compared to performance in the

training cohort was estimated using the area under curve (AUC)-measure and the sensitivity and specificity achieved at the pre-determined

threshold. Statistical difference in the AUC was determined with the DeLong’s test and a two-sided Fisher’s Exact test on the 2x2 matrix with

true/false negative/positives was used to evaluate differences in achieved sensitivity and specificity at the pre-determined threshold. The

ROC-curves were plotted using the pROC R-package42 (version 1.18.0). All other plots were made using standard R-functions. All analysis

were carried out in R43 (version 4.2.2).
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