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and Richard Bergeron1,3,*

SUMMARY

Ischemic stroke is the second leading cause of death worldwide. Following an
ischemic event, neuronal death is triggered by uncontrolled glutamate release
leading to overactivation of glutamate sensitive N-methyl-D-aspartate receptor
(NMDAR). For gating, NMDARs require not only the binding of glutamate, but
also of glycine or a glycine-like compound as a co-agonist. Low glycine doses
enhance NMDAR function, whereas high doses trigger glycine-induced NMDAR
internalization (GINI) in vitro. Here, we report that following an ischemic event,
in vivo, GINI also occurs and provides neuroprotection in the presence of a
GlyT1 antagonist (GlyT1-A). Mice pretreated with a GlyT1-A, which increases syn-
aptic glycine levels, exhibited smaller stroke volume, reduced cell death, and
minimized behavioral deficits following stroke induction by either photothrom-
bosis or endothelin-1. Moreover, we show evidence that in ischemic conditions,
GlyT1-As preserve the vasculature in the peri-infarct area. Therefore, GlyT1 could
be a new target for the treatment of ischemic stroke.

INTRODUCTION

Ischemic stroke is a devastating health concern that often leaves victims with long-lasting disabilities, and

induces substantial socioeconomic costs for the individual, their loved ones and society as a whole. Limited

effective interventions are available to the at-risk population, highlighting the need to identify novel ther-

apeutic targets that can prevent neuronal death following ischemic insults.

Activity-dependent changes inN-methyl-D-aspartate receptor (NMDAR)-mediated synaptic strength are of

great importance, because they serve as themolecular trigger for synaptic responses inmany physiological

and pathological processes such as ischemic stroke. Neuronal death following an ischemic event is trig-

gered by uncontrolled glutamate release leading to the NMDAR overactivation on surrounding neurons,

inducing excessive Ca2+-influx primarily through NMDARs (Wu and Tymianski, 2018). In physiological con-

ditions, NMDARs require glutamate binding on the GluN2 subunit and glycine binding on the glycine bind-

ing site (GBS) on the GluN1 subunit (Rosenmund et al., 1998). Ascher’s group showed that glycine (Johnson

and Ascher, 1987), or a glycine-like substance (Kleckner and Dingledine, 1988), is a required co-agonist for

NMDAR activation. Moreover, Salter and co-workers reported that high doses of glycine trigger GINI,

in vitro, by promoting endocytosis of NMDAR through clathrin/dynamin-dependent machinery (Nong

et al., 2003). Unlike constitutive internalization, which requires no channel activation (Nong et al., 2003;

Nong et al., 2004), NMDAR internalization following glycine ‘‘priming’’ requires both glutamate and glycine

present in the synaptic cleft5.

Using a multidisciplinary approach, we found that during an oxygen-glucose deprivation paradigm (OGD),

in vitro, not only glutamate but also an excess of glycine is released in the extracellular space. However, this

is not sufficient to trigger GINI because the level of extracellular glycine is buffered by the glycine trans-

porter type 1 (GlyT1) (Aragon et al., 1987; Guastella et al., 1992; Smith et al., 1992; Bergeron et al.,

1998). Only when GlyT1s are antagonized, can glycine accumulate in the synaptic cleft and lead to robust

NMDAR internalization. Photothrombosis (PT) and endothelin-1 (ET-1) are paradigms that mimic ischemic
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Figure 1. Increasing exogenous glycine and D-serine concentrations results in NMDAR internalization, which is dependent on Ca2+ influx

(A) Normalized raw traces showing the effect of increasing concentrations of exogenous glycine on Schaffer Collateral NMDAR-EPSCs andmean time course

data showing the effect of a 15 mins application of various glycine concentrations.

(B) A dose-response curve of glycine and NMDAR-EPSC amplitudes.

(C) The effect of 250 mM and 1 mM glycine on NMDAR-EPSC amplitudes in the presence of a dynasore.

(D) The role of various concentrations of extracellular Ca2+ on NMDAR-EPSC amplitudes in the presence of 1 mM glycine, as well as changing intracellular

Ca2+ levels using BAPTA, nimodipine, or CPA.

(E) The effect of various concentrations of glycine on NMDAR-EPSC amplitudes in GlyT1+/� mice, compared to WT.

(F) The dose-response curve of the effects of glycine on NMDAR amplitudes in GlyT1+/� mice.

(G) The effect of 250 mM glycine on NMDAR-EPSC amplitudes in GlyT1+/� mice in the presence of dynasore.
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events, in vivo. We report that both PT and ET-1 induced a significantly smaller stroke volume, less cell

death and less behavioral deficits in mice in the presence of a GlyT1 antagonist (GlyT1-A), which increases

glycine concentrations, and hence the occupancy of the GBS. Moreover, the neuroprotective effect

induced by high occupancy of the GBS was further supported by preservation of the vascularization tree.

Overall, these data suggest that increased levels of synaptic glycine before an ischemic event may be a

means of minimizing neuronal death. We report that GlyT1-A administration before or shortly after an

ischemic event, in vivo, triggers GINI and provides neuroprotection.

RESULTS

High concentrations of glycine induce NMDAR internalization

We first determined the effects of bath application of increasing glycine concentrations on stimulation-

evoked NMDAR excitatory postsynaptic currents (NMDAR-EPSCs) recorded from CA1 pyramidal neurons

from acute hippocampal brain slices (Figure 1A). At glycine concentrations below 250 mM, NMDAR-ESPC

amplitudes were potentiated in a dose-dependent fashion (Johnson and Ascher, 1987; Bergeron et al.,

1998; Forsythe et al., 1988; Paoletti et al., 1995). However, increasing the glycine concentration to 1 mM

resulted in a significant decrease in NMDAR-EPSC amplitude (Nong et al., 2003; Han et al., 2013) and

this effect was reversible (Figure 1B). To verify that this decrease in amplitude was because of GINI, we

applied 1 mM glycine in the presence of 100 mM dynasore, a cell-permeable inhibitor of both dynamin-1

and dynamin-2, which blocks internalization (Nong et al., 2004; Kirchhausen et al., 2008). We found that

the decrease in NMDAR-EPSC amplitudes by 1 mM glycine was abolished in the presence of dynasore

(Figure 1C).

Calcium influx is required for GINI to occur

Previous studies have reported that the activity of dynamin is regulated by the Ca2+-sensitive phosphatase

calcineurin (Lai et al., 1999; Traynelis et al., 2010). Therefore, we explored the role of extracellular and intra-

cellular Ca2+ on NMDAR-EPSC amplitudes in the presence of 1 mM glycine. We examined the effects of

various external Ca2+ concentrations on the NMDAR response to 1 mM glycine application. When 1 mM

glycine was applied with low Ca2+ (1 mM), an increase in NMDAR-EPSC amplitude was observed, in

contrast to what occurred with normal Ca2+ concentrations (3.5 mM). To further confirm the role of Ca2+

in GINI, we included a Ca2+chelator BAPTA (10 mM), in the recording electrode. Here, we observed a sig-

nificant attenuation in the decrease in NMDAR-EPSC amplitude induced by 1 mM exogenous glycine.

Moreover, extracellular application of 20 mM nimodipine, a L-type Ca2+ channel blocker, also attenuated

GINI compared to control, further corroborating the data acquired with BAPTA. In contrast, depleting

intracellular Ca2+ stores by incubating hippocampal slices for 1hr in 30 mM cyclopiazonic acid (CPA), an in-

hibitor of intracellular Ca2+ pumps, had no effect on the glycine-induced decrease in NMDAR-EPSC ampli-

tude (Figure 1D). Together these data suggest that external Ca2+ influx across the plasma membrane is

required for GINI to occur.

Genetic elevation of extracellular glycine facilitates GINI

Heterozygous glycine transporter type 1 (GlyT1+/�) mice exhibit a higher level of endogenous extracellular

glycine (Gomeza et al., 2003; Tsai et al., 2004). Therefore, we hypothesized that in these mice GINI could be

triggered by lower doses of glycine. As illustrated in Figure 1E, although there was no significant effect in

the NMDAR-EPSC amplitude following bath application of 10 mM or 1 mM glycine between wild type (WT)

and GlyT1+/mice, bath application of 250 mM glycine, which potentiated the NMDAR-EPSC amplitude in

WT mice, significantly inhibited the NMDAR-EPSC amplitude in GlyT1+/� mice (Figure 1F). The decrease

of the NMDAR-EPSC amplitude induced by 250 mMglycine in GlyT1+/�mice was abolished in the presence

Figure 1. Continued

(H) The effect of low (10 mM) and high (1 mM) concentrations of glycine or D-serine concentrations on NMDAR-EPSC amplitudes.

(I) The dose-response curve of NMDAR-EPSC amplitudes to D-serine compared to glycine.

(J) The effect of 1 mM D-serine in the presence of dynasore.

(K) The effect of 10 mM D-serine while elevating endogenous glycine levels with NFPS.

(L) A dose-response curve showing the effect of exogenous D-serine levels on SR�/� mice.

(M) The effect of a higher dose of D-serine (1 mM vs. 2 mM) on NMDAR-EPSC amplitudes in SR�/�mice compared to their WT littermates. Data is mean G

SEM; statistical significance p < 0.05 *.
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of dynasore (Figure 1G). Therefore, the high levels of endogenous glycine in the GlyT1+/�mice trigger GINI

at lower exogenous glycine concentrations.

Role of glycine binding site occupancy

In addition to glycine, D-serine also activates the GBS (Kleckner and Dingledine, 1988; Papouin et al., 2012).

As illustrated in Figure 1H, the effects of increasing D-serine concentrations onNMDAR-EPSC amplitudes in

acute slices fromWTmice was also dose-dependent. Moreover, the dose-response curve of NMDAR-EPSC

amplitudes to D-serine was left-shifted relative to that of glycine because of its higher affinity to the GBS

(Wolosker et al., 1999) (Figure 1I). The decrease in NMDAR-EPSC amplitude evoked following bath appli-

cation of 1 mM D-serine was also abolished in the presence of dynasore (Figure 1J).

We next investigated whether GINI could be modulated by increasing levels of either glycine or D-serine in

WT mice. Glycine levels were increased via bath application of the selective GlyT1-A, N-[3-(40-fluoro-
phenyl)-3-(40-phenylphenoxy)propyl]sarcosine (NFPS; 300 nM) (Aubrey and Vandenberg, 2001; Herdon

et al., 2001; Mallorga et al., 2003; Liu et al., 2005; Pinto et al., 2015). As expected, there was a significant

increase in evoked NMDAR-EPSC amplitude in the presence of NFPS alone (Bergeron et al., 1998). How-

ever, when NFPS was applied together with a potentiating concentration of D-serine (10 mM), a significant

decrease in NMDAR-EPSC amplitude was observed (Figure 1K). Interestingly, when NMDARs were first

primed with high doses of glycine or D-serine, a subsequent application of a low dose of glycine or D-serine,

also induced GINI (Figure S1).

Next, we used a transgenic mouse model in which the serine racemase gene was knocked out (SR�/- mice)

(Basu et al., 2009; Balu et al., 2012; Benneyworth and Coyle, 2012), as these mice exhibit low levels of D-

serine. In both WT and SR�/- mice, a low dose of D-serine (10 mM) potentiated the evoked NMDAR-EPSC

amplitude. However, SR�/- mice required a higher dose of D-serine (2 mM) than WT mice (1 mM) to induce

a decrease in NMDAR-EPSC amplitude (Figures 1L and 1M). These findings suggest that there is a common

mechanism of action for glycine or D-serine to trigger GINI. In addition, we found that GINI was neither sub-

unit-specific (Figures S2A–S2E) nor attributed to AMPA receptor activity (Figure S2F), and not limited to the

hippocampal region (Figure S2G).

Glycine is released during oxygen-glucose deprivation

Immunohistochemical data suggests that glycine may be co-localized in glutamatergic neurons (Cubelos

et al., 2005); therefore, we hypothesized that depolarization of glutamatergic CA1 pyramidal neurons dur-

ing the oxygen-glucose deprivation (OGD) paradigm could result in detectable local glycine release (Rossi

et al., 2007). To ensure glycine was released during anOGDparadigm, we used the sniffer-patch technique,

wherein activation of glycine receptor a2 subunit indicated glycine release (Muller et al., 2013). When the

OGDperfusate was applied to the slice, there was amarked increase in the frequency of channel opening in

the patch (Figure S3A) and a significant increase in open probability (Popen) compared to control (Fig-

ure S3B). Overall, these results strongly suggest that during OGD conditions, glycine is released into the

CA1 extracellular space. Given that multiple studies have demonstrated that glycine receptors (GlyRs)

are only weakly expressed at CA1 hippocampal synapses (Muller et al., 2013; Hu et al., 2016; Chen et al.,

2015), we speculated that the target for the glycine release following OGD could be NMDARs.

OGD paradigm on acute slices, in vitro, decreases NMDAR current amplitude

In brief, we found that an OGD paradigm applied to acute slices during train stimulation induced NMDAR

internalization (Figures S3C–S3G). To further confirm that glycine is responsible, we purified glycine oxi-

dase (GO), an enzyme that catalyzes the breakdown of glycine. After demonstrating the effectiveness of

purified GO on exogenous glycine levels (Figure S3H), NMDAR-EPSC trains (20 Hz) were recorded with

GO and the decrease of the NMDAR-EPSC amplitude was abolished following OGD (Figures S3I and

S3J). Altogether, these in vitro data demonstrate that glycine levels increase during ischemia; however,

GINI is only triggered when we further elevate glycine using the train stimulation paradigm. Therefore,

we speculated that GINI could also be triggered in vivo during stroke in mice with elevated glycine levels.

Genetic elevation of brain glycine reduces infarct size following photothrombosis

Glycine has been shown to be neuroprotective in both in vitro (Hu et al., 2016) and in vivomodels of stroke

(Chen et al., 2015, 2017; Zhao et al., 2018; Qin et al., 2019); yet, proposed mechanisms have never been
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Figure 2. Elevation of extracellular glycine results in a smaller infarct volume and decreased motor behavioral deficits following photothrombotic

and endothelin-1 stroke

(A) Representative serial coronal sections of TTC-stained mouse forebrain (slice thickness 500 mM) and their corresponding box and whisker plots showing

the infarct volume when assessed 48hrs after the induction of a unilateral photothrombotic stroke in GlyT1+/� and SR�/� mice relative to WT mice.

(B) Representative TTC-stained (top) or magnetic resonance imaging (bottom) sections showing representative stroke regions observed 48hrs following the

induction of photothrombotic (PT) stroke, and a box and whisker plot showing stroke volume in saline-treated or NFPS-treated mice 24hrs before stroke

induction.

(C) The effect of 24hrs pre-stroke NFPS administration on post-stroke time to contact and time to remove in the adhesive removal task compared with saline

treatment, when evaluated 48hrs following PT stroke.
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expanded into feasible pharmacotherapies. To determine if high glycine levels could result in a decrease in

neuronal death following ischemia, we used a well-established focal ischemic paradigm, photothrombosis

(PT). Because our in vitro data demonstrate that high glycine/D-serine levels are required to trigger GINI,

one would expect that the stroke volume in GlyT1+/� mice should be smaller than that observed in WT

mice. Indeed, there was a statistically significant decrease in stroke volume in the GlyT1+/�mice compared

to WT. In contrast, stroke volumes were larger in SR�/- mice, compared to WT (Figure 2A).

Pharmacological elevation of brain glycine reduces infarct size following photothrombosis

To acutely increase the levels of endogenous glycine, WT mice were treated with NFPS 24hrs pre-stroke

(Aubrey and Vandenberg, 2001; Herdon et al., 2001; Mallorga et al., 2003; Liu et al., 2005). Forty-eight hours

following PT stroke in both the saline- and NFPS-treated cohorts, stroke volume was quantified using 2,3,5-

triphenyltetrazolium chloride (TTC) or via magnetic resonance imaging (MRI). The box-and-whisker plot

shows a statistically significant decrease in median stroke volume in the NFPS-treated mice compared

to the saline-treated mice (Figure 2B). This decrease in infarct volume following NFPS treatment is consis-

tent with what has been previously observed in the transient middle cerebral artery occlusion (tMCAO)

model of ischemic stroke (Huang et al., 2016; Dojo Soeandy et al., 2019). In addition, FluoroJade C (FJC)

staining demonstrated that the NFPS-treated mice also have significantly decreased levels of cell death

compared with the saline-treated mice (Figure S4A). Therefore, these data demonstrate that the blockade

of GlyT1 is required for the reduction of stroke volume. Interestingly, this decrease in stroke volume was

maintained when NFPS was administered up to 10mins post-stroke (Figure 2D).

Pharmacological elevation of brain glycine minimizes motor behavioral deficits following

photothrombosis

Although encouraging, a decrease in stroke volume does not necessarily correlate with a decrease in post-

stroke behavioral deficits (Pineiro et al., 2000). To determine if pre-treatment with NFPS could minimize

post-stroke behavioral deficits, we used a well-established behavioral test of motor function, the adhesive

removal test (Bouet et al., 2009). Following PT, a significant attenuation of post-stroke motor behavioral

deficits was observed in the cohort of mice treated with NFPS in both time to contact and time to remove,

with no significant stroke or drug effect on the unimpaired paw (Figure 2C).

Pre-stroke administration of NFPS decreases stroke volume and improves motor behavioral

deficits following endothelin-1 stroke

The PT stroke model does not recapitulate all of the clinical aspects of ischemia, particularly with respect to

reperfusion of the infarct (Sommer, 2017). Therefore, to ensure that the observed decrease in stroke volume

and attenuation of behavioral deficits was not an artifact of the PT stroke model, we repeated the exper-

iments using a second known model of focal stroke, the endothelin-1 (ET-1) model (Dojo Soeandy et al.,

2019). Mice pre-treated with NFPS had significantly smaller ET-1 stroke volumes compared with their sa-

line-treated counterparts (Figure 2E).

In the adhesive removal task, NFPS-treated mice showed significantly less post-stroke impairments in the

impaired paw than the saline-treated mice, in both time to contact and time to remove (Figure 2F). There

was no significant stroke or drug effect on the unimpaired paw (Supplementary adhesive and cylinder task

(Schallert et al., 2000) data for both stroke models in Figures S4B–S4E and validation of ET-1 model in Fig-

ures S5A–S5C). The horizontal ladder test was an additional assessment of motor function (Metz and

Whishaw, 2009). Following ET-1 stroke, there was a significant increase in impaired paw misses in the sa-

line-treated group; however, in the NFPS-treated group, no significant increase in misses was observed

(Figures S4F and S4G). These data demonstrate that the blockade of GlyT1 ameliorated post-stroke out-

comes in two models of stroke. Furthermore, this effect was not because of hypothermia (Figure S5E).

Figure 2. Continued

(D) Effect of various post-stroke administration time-points of NFPS treatment on stroke volume with their corresponding box and whisker plots following PT

stroke.

(E) Representative cresyl violet sections (25 mm thick) 48hrs following endothelin-1 (ET-1) stroke obtained from saline-treated and NFPS-treated mice 24hrs

prior, in which the extent of the infarct is shown within the yellow border and box and whisker plot depicting infarct volume.

(F) The effect of 24hrs pre-stroke NFPS administration on post-stroke time to contact and time to remove in the adhesive removal task compared with saline

treatment following ET-1 stroke. Data is mean G SEM; statistical significance p < 0.05 *, p < 0.01 **, p < 0.001 ***, and p < 0.0001 ****
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Therefore, these data emphasize the crucial role of GlyT1-A in the observed neuroprotection, and this is

likely occurring because of GINI.

Blocking NMDAR internalization abolishes the neuroprotective effect of NFPS on stroke

volume and behavior

GINI is driven by the recruitment of AP-2 and is mediated by A714 on the C-terminal domain of GluN1.

Glycine priming for internalization is specific to A714; therefore, this residue is necessary for priming of

NMDARs containing either GluN2A or GluN2B in recombinant systems (Han et al., 2013). To confirm

that our in vivo observations are because of GINI, we introduced a point mutation into the NMDAR

GluN1 subunit (A714L), which abolishes glycine-mediated NMDAR internalization in vitro (Han et al.,

2013). We first assessed the functionality of the mutation via transient transfection of GluN1-WT or

GluN1-A714L together with WT GluN2A subunit into HEK293 cells resulting in a functional NMDAR. Appli-

cation of 1 mM glycine in cells expressing GluN1-WT induced a significant decrease in the amplitude of the

NMDAR-EPSC, whereas in cells expressing GluN1-A714L this concentration significantly increased the

NMDAR amplitude (Figures S6A and S6B. To visually confirm that GINI was occurring, the movements of

NMDARs were tracked over time by live-cell imaging following application of 1 mM glycine (Figures 3A

and S6C; Videos S1 and S2).

This GluN1 viral construct was then packaged into an adeno-associated virus (AAV) 2/9 and injected into

the sensory-motor cortex of mice. The overall function of the NMDARs was reassessed in acute slices. A

dose of 1 mM glycine did not decrease NMDAR-EPSC amplitudes in cells infected with the AAV-GluN1-

A714L constructs (Figure S6D). The spread of the virus occupied a volume that was comparable to the

PT stroke (Figures 3B and S7A), and there were no significant differences in the PT-induced stroke volume

between the mice infected with either the AAV-GluN1-WT or the AAV-GluN1-A714L constructs (Figure 3C).

However, there was a significant decrease in stroke volume following pre-treatment with NFPS in mice in-

fected with AAV-GluN1-WT. NFPS administration had no effect on stroke volume in the mice infected with

AAV-GluN1-A714L.

The adhesive removal test was repeated on mice infected with either the AAV-GluN1-A714L mutation or

the AAV-GluN1-WT. Administration of NFPS to the mice infected with AAV-GluN1-WT resulted in a signif-

icant decrease in post-stroke time to contact and time to remove in the impaired paw (Figure 3D). Interest-

ingly, in mice infected with the AAV-GluN1-A714L (Figure 3E), there was no significant change in time to

contact and time to remove following stroke in the NFPS-treated mice. Data illustrated in Figure S5D

confirm that the injections of the AAV-GluN1-WT or -GluN1-A714L alone had no effect on behavior. Taken

together, these data confirm that GlyT1-A administration induces neuroprotection in vivo, via GINI.

Pre-stroke administration of NFPS attenuates vascular dysfunction

Stroke is primarily characterized as a vascular disease; therefore, we evaluated the impact of NFPS on

vascular function and morphology following PT stroke. Using Laser Doppler flowmetry (LDF), we found

that PT stroke induced a significant decrease in blood flow and this effect was rescued with NFPS pre-treat-

ment (Figure 4A). In GlyT1+/� mice, there was no significant change in blood flow following stroke. Inter-

estingly, in SR�/- mice, PT stroke induced a highly significant decrease in blood flow (Figure 4B).

We next assessed if NFPS could modify vascular morphology by pairing transcardial perfusions of a fluo-

rescent dye with tissue clearing and light sheet fluorescence microscopy (LSFM). This strategy allowed

Figure 3. Infection of the stroke site with the non-internalizing GluN1-A714L mutation abolishes the protective effect of elevating extracellular

glycine on stroke volume and during a behavioral task

(A) Visual representation of NMDAR internalization in GluN1-WT or GluN1-A714L transfected HEK293 cells following application of 1 mM glycine.

Transfected NMDARs are labeled in green, whereas extracellular NMDARs are additionally labeled with red cell impermeable nanobody staining.

(B) Representative images showing the extent of viral spread in the mouse forebrain following infection between mice infected with AAV-GluN1-WT or

AAV-GluN1-A714L.

(C) Box and whisker plot showing the effect of NFPS administration 24hrs before PT stroke induction in mice infected with AAV-GluN1-WT or AAV-GluN1-

A714L.

(D and E) The effect of NFPS on post-stroke time to contact and time to remove in the adhesive removal task compared with saline treatment, in mice

infected with AAV-GluN1-WT (D), and in mice infected with AAV-GluN1-A714L (E) 48hrs following PT stroke. Data is mean G SEM; statistical significance

p < 0.05 *, p < 0.01 **, and p < 0.001 ***.
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for complete labeling of the cerebral vasculature (Figure 4C; Videos S3 and S4). We first used a deep

learning segmentation model to automatically calculate stroke volume from our cleared tissue (Figures

4D, 4E, and S7B; Video S5). We observed a decrease in stroke volume in NFPS-treated mice compared

to saline-treated mice (Figure 4E). These results are consistent with data illustrated in Figure 2B. We further

explored the effect of NFPS following PT on vascular density. The PT-induced decrease in vascular density

was attenuated with NFPS treatment compared to saline-treatedmice, in the peri-infarct region (Figures 4F

and 4G). Furthermore, NFPS pre-treatment decreased the PT-induced loss in vessels of smaller diameter

and length (Figures 4H and 4I) compared to saline-treated mice, in the peri-infarct region. Taken together,

treatment with NFPS before an ischemic event protects the function and morphology of the cerebral

vasculature.

DISCUSSION

Our results demonstrate that during an ischemic event, not only glutamate but also glycine is released in

the extracellular space. In such ischemic conditions, when GlyT1s are antagonized, glycine accumulates in

the synaptic cleft, reaches the ‘‘set point,’’ and triggers GINI. This is the first report demonstrating that GINI

occurs in vivo, provides neuroprotection, and preserves brain vasculature.

Using whole-cell patch-clamp recordings, we generated dose-response curves and we measured the ef-

fects of glycine on NMDAR current amplitudes. We observed that application of low concentrations of

glycine (%250 mM) increased the NMDAR-EPSC amplitudes (Johnson and Ascher, 1987, 1992). Paradoxi-

cally, we found that application of high concentrations of glycine (>1 mM) significantly reduced the

NMDAR-EPSC amplitudes. This internalization of NMDARs has been reported to be triggered by an in-

crease in NMDAR binding to intracellular clathrin/dynamin-dependent endocytic machinery (Nong

et al., 2003; Han et al., 2013). Because the role of GlyT1s is to keep glycine concentrations below the satu-

rating level of the GBS on NMDARs (Furukawa and Gouaux, 2003) the relevance of the pivotal work from

Salter and co-workers was questioned by several groups. This low synaptic concentration of endogenous

glycine is far from the concentration required to trigger GINI (Aragon et al., 1987; Guastella et al., 1992;

Smith et al., 1992; Bergeron et al., 1998). As the effect of different doses of glycine on NMDAR-EPSCs ap-

pears to match that of the ‘‘inverted-U’’ shaped curve, we investigated the relationship between glycine

levels and NMDAR internalization using in vitro ischemic paradigms. We report evidence that synaptic

NMDARs internalize following elevation of glycine during a train of stimuli during OGD, an in vitro model

of ischemia (Rossi et al., 2000). Moreover, we show that application of a high concentration of glycine or D-

serine not only triggers GINI but also primes NMDARs for GINI. When a high dose is applied and washed

off before application of a low dose of one of the co-agonists, GINI is induced.

Interestingly, we demonstrate, in vivo, that elevation of extracellular glycine by pharmacological blockade

or genetic deletion of GlyT1 resulted in a decreased stroke volume and an attenuation of motor deficits in

mice following ischemic stroke induced by PT or ET-1. This was observed whenNFPS was administered 24 h

pre-stroke, or up to 10 min post-stroke. We also show evidence that GINI, in vivo, is directly modulating the

GluN1 subunit of NMDAR channel function during ischemic stroke as the effect of NFPS on both stroke vol-

ume and behavior is completely abolished when mice are focally infected with a viral vector expressing a

non-internalizing GluN1 receptor subunit (AAV-GluN1-A714L) (Han et al., 2013).

TheNMDAR co-agonist, glycine, has been previously shown to be neuroprotective in both in vitro (Hu et al.,

2016) and in vivo models of stroke (Chen et al., 2015, 2017, 2020; Zhao et al., 2018; Qin et al., 2019).

Figure 4. Laser doppler flowmetry blood flow and automatic segmentation of vascular data with AIVIA 9

(A) Diagram depicting laser doppler flowmetry set-up and the measured effect of NFPS on cerebral blood flow following photothrombotic (PT) stroke.

(B) Time course of post-stroke cerebral blood flow following PT in mice with varying levels of glycine or D-serine.

(C) 50 mm coronal section of brain perfused with FITC-BSA. Magnified images from the sensorimotor cortex demonstrating exact colocalization of FITC-BSA

perfusion (green) with CD31 and CollIV vascular immunostaining (purple).

(D) Colorized max projection of stroked hemisphere, and single section of raw images depicting vasculature at the stroke and below the stroke, acquired

with a light sheet microscope 48hrs following PT stroke.

(E) Stroke volume bar graph in saline- or NFPS-treated mice, calculated by an automated deep learning prediction model.

(F) Merged image demonstrating exact colocalization of AIVIA’s automatic segmentation to raw data.

(G) Density of vessels in peri-infarct region in saline- or NFPS-treated mice.

(H and I) Number of vessels in the stroke area according to diameter and to length. Data is mean G SEM; statistical significance p < 0.05 *, p < 0.01 **, p <

0.001 ***, and p < 0.0001 ****.
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However, the mechanism by which glycine affords neuroprotection during stroke in vivo remains elusive.

Recent work suggests that it is viamodulation of intracellular pathways, including the Phosphatase and ten-

sin homolog (PTEN)/protein kinase B (AKT) signaling pathway (Qin et al., 2019; Zhao et al., 2018), or vascular

endothelial growth factor receptor 2 (Chen et al., 2020). Glycine is also thought to exert its neuroprotective

effects viamediation of non-ionotropic NMDAR function (Chen et al., 2015, 2017; Hu et al., 2016), or by pro-

moting microglial polarization (Liu et al., 2019). Partial agonists at the GBS on NMDARs also afford neuro-

protection following an OGD challenge (Stanton et al., 2009) and during MCAO paradigm (Zheng et al.,

2017). Pharmacological elevation of brain glycine following NFPS administration potentiates ischemic pre-

conditioning (Pinto et al., 2015) and confers neuroprotection via global activation of ionotropic GlyRs dur-

ing transient MCAO (Huang et al., 2016). Overall, there are many ways in which glycine has been shown to

be neuroprotective, all of which may be occurring in conjunction with GINI. However, here we report for the

first time the important role of GlyTs as the blockade of these transporters minimized cell death following

an ischemic stroke in an in vivo model.

A recent review suggests that glycine and D-serine may be therapeutically beneficial by down regulating

NMDARs, such as rodent models of traumatic brain injury and lipopolysaccharide-induced neuroinflamma-

tion (Biegon et al., 2018). There is also a growing body of evidence to suggest that extracellular glycine is

neuroprotective in several rodent ischemic strokemodels (Huang et al., 2016; Zheng et al., 2017; Zhao et al.,

2018; Liu et al., 2019; Chen et al., 2020; Yamamoto et al., 2016). Moreover, the level of extracellular glycine

appears to be important in stroke outcome. A low level of glycine, corresponding to increased NMDAR

activation, appears to be deleterious. In contrast, an elevated level of glycine appears to be neuroprotec-

tive (Yao et al., 2012). These latest findings are in agreement with our data. Indeed, the transgenic GlyT1+/�

mice, which have high endogenous levels of glycine and consequently a high occupancy of the GBS, are

more resistant to PT, whereas the SR�/- mice, which have a low occupancy of the GBS, are more sensitive

to PT challenge.

Despite an overwhelming body of evidence from animal studies that implicate NMDARs in neuronal loss

(Gotti et al., 1988; Park et al., 1989; Scatton, 1994; Prass and Dirnagl, 1998), all clinical trials of drugs target-

ing one of the numerous binding sites on NMDARs have failed because of poor tolerance or lack of efficacy

(Ikonomidou and Turski, 2002; Lipton, 2004; Kalia et al., 2008). One reason for this may be the difficulty in

obtaining a therapeutic degree of NMDAR-blockade that does not interfere with critical NMDAR-depen-

dent functions in neuronal circuits (Kostandy, 2012). The widespread inhibition of NMDAR function is not

compatible with baseline synaptic transmission. As such, our data suggest that attention should turn to

modulation of NMDAR function during stroke. In this study, we show that GINI is not a direct antagonism

of NMDARs but rather a dynamic and reversible phenomenon which dampens NMDAR-mediated excito-

toxicity during ischemia while maintaining basal synaptic activity of NMDARs.

The complex vascular network of the brain and its integrity are essential for normal brain function.

Following an ischemic event, the delivery of oxygen and nutrients to neurons and glial cells are impaired.

Because the brain is highly vulnerable to compromises in blood supply, we investigated the potential

impact of NFPS in preserving brain vasculature. It has been previously reported that changes in microvas-

culature, such as density and diameter, correlate with disease states (Bennett et al., 2017). PT stroke

induced a decrease in vascular density in the peri-infarct region. We found that this decrease was attenu-

ated by a pre-treatment with NFPS. Our histogram analysis shows that vessels of 2-3 mm in diameter were

themost affected post-stroke. Application of NFPS decreased the size of vessels occluded, suggesting that

the peri-infarct region could undergo enhanced vascular remodeling during the recovery period. We

cannot conclude that the mechanism underlying this observation is directly linked to GINI. However,

increasing the level of endogenous glycine with NFPS protects the vascular network following stroke,

and ultimately leads to improved behavior outcomes.

Overall, our data demonstrate that elevation of glycine via blockade of GlyT1s before or shortly after an

ischemic event may provide a rationale for the repurposing of currently approved pharmaceuticals with

a similar mechanism of action as potential stroke treatments. For example, the glycine reuptake blocker

sarcosine is authorized for clinical use in the treatment of schizophrenia at daily doses of 1-2 g per day

and is well tolerated in these patients (Gibert-Rahola and Villena-Rodriguez, 2014; Strzelecki et al., 2014,

2015; Amiaz et al., 2015; Lin et al., 2017). Because the chronic administration of GlyT1-As have been proven

to be safe, and we observe the most robust neuroprotective effect when GlyT1-As are administered pre-
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stroke, we can envisage GlyT1-As to potentially be utilized as a preventative strategy for stroke. As our

in vivo data demonstrate the pre-clinical efficacy of this class of drugs in minimizing the deficits induced

by PT and ET-1 paradigms, and considering that several GlyT1-As have been tested and proven to be

safe and well tolerated in human clinical trials (Harvey and Yee, 2013; Shahsavar et al., 2021), GlyT1 should

be tested for a new therapeutic for ischemic stroke.

Limitations of the study

There were limitations to the present study. Although we focused on GINI and concluded that it occurs in

vivo, we did not investigate how this finding integrated with other known mechanisms of glycine in neuro-

protection, such as GlyRa activation. However, we have no reason to believe that GINI could not take place

in addition to other mechanisms. Furthermore, although we did not present imaging of GINI occurring

in vivo, we inferred it occurred based on electrophysiological recordings in acute slices and behavioral ex-

periments. Imaging this phenomenon in vivo would be interesting to investigate in future studies. Finally,

we did not investigate the mechanism by which NFPS ameliorated post-stroke vasculature as it will be the

focus of future work.

ABBREVIATIONS

AAV Adeno associated virus;

ACSF Artificial cerebrospinal fluid;

CHO Chinese Hamster Ovary;

CPA Cyclopiazonic acid;

CV Cresyl violet;

DBP Dynamin blocking peptide;

ddH2O Double distilled water;

EPSCs Excitatory postsynaptic currents;

ET-1 Endothelin-1;

FJC FluoroJade C;

GBS Glycine binding site;

GINI Glycine-induced NMDAR internalization;

GluN2A�/- NMDAR GluN2A subunit knockout;

GlyR Glycine receptor;

GlyT1 Glycine transporter type 1;

GlyT1+/� Heterozygous glycine transporter type 1;

GlyT1-A Glycine transporter type 1 antagonist;

GO Glycine oxidase;

i.p. Intraperitoneal;

LDF Laser Doppler flowmetry;

LSFM Light sheet fluorescence microscopy;

tMCAO Transient middle cerebral artery occlusion;

MRI Magnetic resonance imaging;

NFPS N-[3-(40-fluorophenyl)-3-(40-phenylphenoxy)propyl]sarcosine;
NMDAR N-methyl-D-aspartate receptor;

NMDG N-methyl-D-glucamine;

OGD Oxygen-glucose deprivation paradigm;

PBSG 0.25% (w/v) gelatin in PBS;

PBSGT 0.25% (w/v) gelatin and 0.2% Triton X-100 (v/v) in PBS;

PFA Paraformaldehyde;

Popen Open probability;

PT Photothrombosis;

RT Room temperature;

SR�/- Serine racemase knockout;

TTC 2,3,5-triphenyltetrazolium chloride;

VGAT Vesicular GABA transporter;

VGlut Vesicular glutamate transporter;

WT Wild type.
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Rabbit polyclonal anti-Collagen IV Abcam Cat#: ab19808; RRID: AB_445160

FluoTag�-X4 anti-GFP, conjugated with Alexa

Fluor 647

NanoTag Biotechnologies Cat#: N0304-AF647-L

Goat Anti-Rabbit IgG H&L (Alexa Fluor� 647) Abcam Cat#: ab150079; RRID: AB_2722623

Bacterial and virus strains

AAV2/9 GluN1 WT and A714L University of Laval This paper

NEB stable NEB Cat # C3040I

Chemicals, peptides, and recombinant proteins

Albumin-fluorescein isothiocyanate conjugate,

protein bovine (FITC-BSA)

Millipore Sigma A9771

BAPTA Thermo Fisher Scientific B1204

Cyclopiazonic acid (CPA) Tocris Biosciences Cat. No. 1235

Cresyl Violet Acetate Working Solution Electron Microscopy Sciences 26671-1A

D-APV Tocris Biosciences Cat. No. 0106

D-Serine Millipore Sigma S4250

Dynamin Blocking Peptide Tocris Biosciences Cat. No. 1774

Dyngo4a Abcam ab120689

Dynasore Hydrate Millipore Sigma D7693

Endothelin-1 (human, porcine) Abcam ab120471

Fluoro-Jade –C EMD Millipore AG325-30MG

Glycine Millipore Sigma G7126

HIVAC-F4 Shin-Etsu Chemical HIVAC-F4

Rose Bengal Tocris Biosciences Cat. No. 5168

NBQX Tocris Biosciences Cat. No. 0373

N-Butyldiethanolamine, R98.6% Sigma-Aldrich 471240

N-Methylnicotinamide Fisher Scientific M037425G

N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-

fluorophenyl)propyl]-N-methylglycine

Tocris Biosciences Cat. No. 2789

Nimodipine Millipore Sigma N149

Picrotoxin Tocris Biosciences Cat. No. 1128

Triphenyltetrazolium chloride (TTC) Sigma-Aldrich T8877

Deposited data

Analyzed data This paper N/A

Experimental models: Cell lines

Hamster: Chinese Hamster Ovary (CHO) cells N/A CRL-11268

Human: Human Embryonic Kidney (HEK) cells N/A CVCL_0045

Experimental models: Organisms/strains

Mouse: GlyT1+/-: C57Bl/6;S129 Dr. Joseph T. Coyle Laboratory (Tsai et al.,

2004)

N/A
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Julia Cappelli (jcapp082@uottawa.ca).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: SR-/-: C57Bl/6;S129 Dr. Joseph T. Coyle Laboratory (Benneyworth

and Coyle, 2012)

N/A

Mouse: WT: C57Bl/6 Charles River CR: 027

Mouse: GluN2A-/-: C57Bl/6 Sakimura et al., 1995 N/A

Oligonucleotides

NheIGluNI F

AGCTAGCATGAGCACCATGCACCTGCT

This paper N/A

EcoRVGluNI R

GATATCTCAGCTCTCCCTATGACGGG

This paper N/A

GluN1A714L F – 50P

ACAATTACGAGAGCCTGGCT

GAGGCCATCCA

This paper N/A

GluN1A714LR – 50P

GCTCTCGTAATTGTGTTTTTCCATGTGCCG

This paper N/A

GluN1shres2 F 50P

CCGCAAATTCGCTAATTACAG

CATCATGAACCTGCAGAACCGCAAGCTGG

30

This paper N/A

GluN1shres2 R

50PTCCCCATCCTCATTGAATTCCACACGGC

30

This paper N/A

Recombinant DNA

SuperEcliptic Phlourin (SEP)-tagged GluN1 Addgene #23999

GluN2A in pCDNA3.1 This paper pRB133

pAAV construct GluN1WT shRNA resistant This paper pRB 112

pAAV construct GluN1 A714 shRNA resistant This paper pRB 131

pCDNA3.1 Construct GluN1 A714L This paper pRB 144

His-tagged glycine oxidase (GO) Cornell University, NY, USA Dr. Steven Ealick

Software and algorithms

AIVIA DRVISION Version 9

Automated Stroke Volume Analysis This paper GitHub Repository: https://github.com/

JulianPitney/Glycine_Transporter-

1_Antagonist_Provides_Neuroprotection_in_

Vivo_Lightsheet_Analysis.git

ImageJ https://imagej.nih.gov/ij/ v1.52m

IMARIS Bitplane v9.2

Lightsheet Acquisition Software This paper GitHub Repository: https://github.com/

JulianPitney/Lightsheet

OriginPro OriginLab v8.5

Prism GraphPad v9.1.0

Terastitcher GitHub Repository: https://abria.github.io/

TeraStitcher/

V1.11.10
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Materials availability

Plasmids generated in this study have been deposited to Addgene and will be publicly available as of the

date of publication.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request. All original code has been

deposited at GitHub and will be publicly available as of the date of publication. DOIs are listed in the key

resources table. Any additional information required to reanalyze the data reported in this paper is avail-

able from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

All procedures in this study were carried out on female and/or male 8–10-week-old mice in accordance with

the guidelines of the Canadian Council on Animal Care and approved by the University of Ottawa Animal

Care Committee. The following transgenic mouse lines were utilized: heterozygous glycine transporter

type 1 (GlyT1+/�), serine racemase knockout (SR-/-), and N-methyl-D-aspartate receptor (NMDAR) GluN2A

subunit knockout (GluN2A-/-) mice (Kannangara et al., 2015), along with their wild type (WT) litter mates (on

C57Bl/6;S129, C57Bl/6;S129 and C57Bl/6 backgrounds respectively). In vivo behavioural experiments were

performed on C57Bl/6 WT mice from Charles River�. The animals were housed under standard conditions

and had access to chow and water ad libitum.

Cell lines

Cell culture, imaging, and electrophysiological experiments were carried out on Human Embryonic Kidney

(HEK293) cells. Sniffer-patch experiments were performed on Chinese Hamster Ovary (CHO) cells. Please

see the following sections for more information on maintenance and experimental methods.

METHOD DETAILS

Electrophysiology

Whole-cell electrophysiology on hippocampal slices and HEK293 cells. Whole-cell voltage-clamp re-

cordingswereobtained from visually identifiedCA1pyramidal cells from acute hippocampal brain slices (300mm

thick) in oxygenated artificial cerebrospinal fluid (ACSF) as previously described (Martina et al., 2004, 2005). The

cells were voltage-clampedat�65mVusing cesiummethane sulfonatebased internal solution andpostsynaptic

currents were evoked by electrical stimulation of the Schaffer collaterals with a bipolar stimulating electrode

positioned in the stratum radiatum. The intensity of the stimulation was adjusted to obtain evoked excitatory

postsynaptic currents (EPSCs). The stimulation protocol consisted of a single 100 ms current pulse (10–200 mA)

evoked every 12s. For the train stimulation protocol, 10 current pulses (100 ms long) were evoked at 50 Hz for

200 ms and then repeated once every 20s. To isolate the NMDAR-EPSC, a low concentration of MgCl2
(0.13mM) ACSFwas usedwherein the CaCl2 concentration was increased to 3.5mM tomaintain cation balance.

HEK293 cells were used for electrophysiology recordings 48–72hrs following transfection with either the

pHluorin-GluN1-WT or pHluorin-GluN1-A714L cDNA along with an equimolar ratio of the GluN2A.

NMDAR currents were evoked using pressure ejection (10psi) from a picospritzer micropipette filled with

10 mM glycine and 1 mM glutamate (Sigma-Aldrich) for a duration of 25–50 ms every 20s at a membrane

potential of �60 mV. HEK293 cells were recorded in HEPES-buffered saline external solution with low

MgCl2 using a potassium gluconate recording solution.

When required, additional drugs were applied including various concentrations of D-serine andglycine (Millipore

Sigma), as well as 300 nMN-[3-(40-fluorophenyl)-3-(40-phenylphenoxy)propyl]sarcosine (NFPS; Tocris Bioscience),

10mMBAPTA (Thermo Fisher), 30 mMcyclopiazonic acid (CPA) (Tocris Bioscience), and 20 mMnimodipine (Milli-

poreSigma). The inhibitorsof clathrin-mediatedendocytosis, 100mMdynasore (MilliporeSigma),100mMdynamin

blocking peptide (DBP; Tocris Bioscience), and 30 mMDyngo4a (Abcam) were included in the internal solution.

Sniffer-patch technique and OGD paradigm

Sniffer-patch technique. To detect glycine release, we used the ‘‘sniffer patch’’ technique (Allen, 1997;

Lee et al., 2007a; Aubrey et al., 2007; Scain et al., 2010). A Chinese Hamster Ovary (CHO) cell line stably
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transfected with the1 alpha 2 subunit of glycine receptor (GlyR) was generated (Mangin et al., 2003).

Outside-out membrane patches were excised from the CHO cells using thick-walled borosilicate glass pi-

pettes filled with a cesium chloride internal solution. Following patch excision, the electrode was placed in

the stratum radiatum of the CA1 region of the hippocampus to detect glycine release and allow channel

activation. Channel open probability (Popen) was derived by measuring the mean open time of all the single

channel events during the recording window, then dividing by the sum of the mean open and shut times.

Multiple channel openings were set as a Popen = 1 for that particular time period.

Oxygen-glucose deprivation paradigm. To mimic ischemia, the acute slices were challenged by an ox-

ygen-glucose deprivation paradigm (OGD) modified from Rossi et al. (Rossi et al., 2000). In this paradigm,

external glucose was replaced with 7 mM sucrose, and the external solution was saturated with 95%N2 / 5%

CO2 instead of 95% O2 / 5% CO2. Iodoacetate and cyanide were also added to the OGD external solution

to block glycolysis and oxidative phosphorylation.

Purification of glycine oxidase. The plasmid containing His-tagged glycine oxidase (GO) was gener-

ated from Bacillus subtilis. This plasmid was a gift from Dr. Steven Ealick (Cornell University, NY, USA).

The protein was expressed in E. coli and purified as previously described (Job et al., 2002; Settembre

et al., 2003; Molla et al., 2003; Pedotti et al., 2009; Caldinelli et al., 2009).

Surgical procedures

Photothrombosis and endothelin-1 stroke. NFPS or a vehicle control solution was injected intraperito-

neally (i.p.) into C57Bl/6 mice either 24hrs prior to stroke or 10mins/60mins/120mins post-stroke, at a dose

of 5 mg/kg. Photothrombotic (PT) (Lee et al., 2007b) or cortical endothelin-1 (ET-1) (Wang et al., 2007)

strokes were induced as previously described. Mice were anesthetized with 2.5% isoflurane in O2 and

mounted onto a stereotaxic frame. For PT strokes, a dose of 10 mg/mL of Rose Bengal (Tocris) was injected

i.p.. Immediately following the injection of the dye, the skull was exposed to visualize bregma. Using the

stereotaxic device, a 520 nm laser (�20 mW; Beta Electronics) was positioned above the sensorimotor cor-

tex (AP+0.7, ML+2.0) and turned on for 10mins to induce a permanent occlusion. For ET-1 strokes, once the

skull was exposed and a craniotomy performed for each injection site (1. AP +0.0, ML +2.0, DV -1.6; 2.

AP +0.2, ML +2.0, DV -1.4; 3. AP +0.4, ML +2.0, DV-1.3), 1mL of 2 mg/mL human, porcine ET-1 (Abcam), dis-

solved in 2.7 mg/mL L-NAME (Abcam), was injected over 5mins with a 28G 10mL Hamilton syringe to induce a

transient ischemic stroke.

Cortical infection with AAVs. Micewere anesthetizedwith 2.5% isoflurane inO2 andmounted onto a ste-

reotaxic apparatus. The intact skull was exposed to visualize bregma. The following injection sites were

measured from bregma: 1. AP +1.2, ML +2.0, DV -0.5; 2. AP +0.2, ML +2.0, DV -0.5. A craniotomy was per-

formed at each site prior to injecting 0.5mL of 10�12 PFU/mL (plaque forming units) of either a AAV-WT-

GluN1 or the mutant AAV-GluN1-A714L construct, over 5mins with a 28G 10mL Hamilton syringe. Please

refer to section entitled ‘‘Generation of WT and A714L viral constructs’’, below, for more information.

Laser Doppler Flowmetry. Laser Doppler Flowmetry (LDF) recordings following PT were performed as

previously described (Toussay et al., 2019). Mice were anesthetized with an i.p. injection of a 0.01ml/g cock-

tail consisting of 120 mg/kg ketamine and 10 mg/kg xylazine, and then mounted onto a stereotaxic appa-

ratus. Following exposure and thinning of the skull, the laser probe (Transonic Systems) was positioned

over the sensory motor cortex (AP +0.7, ML +2.0) and baseline activity was recorded for 5 mins. The laser

probe was replaced with a 520 nm laser (�20 mW; Beta Electronics) to induce PT stroke, as described

above. Following PT, LDF recordings were performed for an additional 30 mins.

A714L generation, imaging, and in vivo spread quantification

Generation of WT and A714L viral constructs. The GluN1 constructs were made by cloning the GluN1

coding region of a SuperEcliptic Phluorin (SEP)-tagged GluN1 construct (Addgene #23999) (Choi et al.,

2014) into pDrive cloning vector (pDrive cloning vector, Qiagen). We then used this as a template to create

the A714L mutant clone by site-directed mutagenesis. These cDNAs were used for transfection of HEK293

cells. For generation of GluN1-WT and GluN1-A714L adeno-associated virus (AAV), the coding fragments

of these constructs were sub-cloned into an adeno-associated viral vector, and viral constructs were then

packaged with plasmid AAV2/9 at the University of Laval.
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NMDAR internalization imaging in HEK293 cells. HEK293 cells were transiently transfected with either

pHluorin-GluN1-WT or pHluorin-GluN1-A714L cDNAs together with GluN2A cDNA. HEK293 cells were

then grown for 24-48hrs in the presence of D-APV (Tocris Bioscience). Images were acquired with an

LSM880 Confocal Microscope (Zeiss), with cells in a modified HEPES buffer (add 1 mM Glutamate, omit

0.13 mM MgCl2). A 647 nm-tagged FluoTag�-X4 anti-GFP (1:250-1:500; NanoTag Biotechnologies) was

added to tag extracellular NMDARs prior to the acute application of an internalizing dose of glycine.

The nanotags (anti-GFP nanobody) are cell impermeable and tag NMDARs on the cell surface. Therefore,

the nanotags were observed within the cell only when NMDARS had been internalized. Images were ac-

quired every 3mins over 10-12mins to visualize internalization. Internalization was deemed to have occurred

when the cell-impermeable NanoTag (647) was observed within the cell.

Viral spread quantification. Three weeks following cortical infection, mice were transcardially perfused

with 1X PBS, followed by 4% PFA. Brains were sliced into 0.5 mm coronal slices and cleared following the

SeeDB tissue clearing protocol described by Ke et al. (Ke et al., 2013). Following tissue clearing, brains were

imaged with the Zeiss LSM800 confocal microscope. All viral spread analysis was performedmanually using

Fiji.

Immunofluorescence, stroke volume quantification and cell death assay

Immunohistochemistry. Antigen retrieval was performed on slices before being washed then permeabi-

lized with 0.25% (w/v) gelatin and 0.2% Triton X-100 (v/v) in PBS (PBS-GT). Slices were incubated in primary

antibodies in PBS-GT, then washed three times with PBS-GT before the addition of fluorescent secondary

antibodies at room temperature (RT). Slices were rinsed, air-dried, and mounted onto slides (Table S1)

(Muller et al., 2013). Platelet endothelial cell adhesion molecule-1 (CD-31; 647 nm) and Collagen IV

(CollIV;647 nm) were depicted in purple and visually colocalized to filled, perfused vessels (488 nm).

Quantification of stroke volume—magnetic resonance imaging. Magnetic resonance imaging (MRI)

was performed at the University of Ottawa pre-clinical imaging core using a 7 Tesla GE/Agilent MR 901.

Mice were anaesthetized for the MRI procedure using isoflurane in O2: induction at 3%, maintenance at

1.5%. A 2D fast spin echo sequence (FSE) pulse sequence was used for the imaging, with the following pa-

rameters: slice thickness = 0.5 mm, spacing = 0 mm, field of view = 2.5 cm, matrix = 256 x 256, echo time =

41 ms, repetition time = 7000 ms, echo train length = 8, bandwidth = 16 kHz, fat saturation. Stroke lesions

demonstrated hyperintensity.

Quantification of stroke volume — triphenyltetrazolium chloride. Stroke volume quantification was

performed using 2,3,5-triphenyltetrazolium chloride (TTC; Sigma) (Hatfield et al., 1991; Benedek et al.,

2006). Forty-eight hours post-stroke, mice were deeply anesthetized with 5% isoflurane in O2 before decap-

itation for slicing on a vibratome (Leica) in cold ACSF at 0.5 mm. Slices were incubated in 2% TTC at 37�C for

10mins, then transferred to 4% paraformaldehyde (PFA) at 4�C. Brain slices were imaged from both sides

and the surface area of the infarct regions were measured on Fiji (ImageJ.com) and multiplied by the thick-

ness of the slice to obtain a final volume.

Quantification of stroke volume — cresyl violet. Forty-eight hours post-stroke, mice were transcar-

dially perfused with 1X PBS, followed by 4% PFA. Brains were collected and post-fixed in 4% PFA overnight

and then incubated in sucrose until saturation. Serial 25 mm thick coronal sections were cut on a cryostat

(Microm HM500), and collected onto positively charged Superfrost Plus Microscope Slides (Fisher Scienti-

fic). The slides were immersed in xylene and then rehydrated in decreasing concentrations of ethanol

before being placed in double distilled water (ddH2O). Once rehydrated, slides were stained with cresyl

violet (CV) (Electron Microscopy Sciences) and placed in ddH2O. Slides were then dehydrated in increasing

concentrations of ethanol before being immersed in xylene. Once removed, the slides were mounted with

DPX mounting media (Sigma). Images of CV-stained slices were acquired with the EVOS FLAuto2 inverted

epifluorescence microscope under brightfield. The surface area of the infarct regions was multiplied by the

distance between each collected slice (500 mm) to obtain a volume. The sum of all slices was used to obtain

a final stroke volume per brain.

Quantification of neuronal loss — FluoroJade C. The brain tissue preparation for FluoroJade C (FJC;

EMD Millipore) was treated exactly as that of the CV brain tissue. Slides were first immersed in 1% sodium

hydroxide in 80% ethanol, 70% ethanol and finally in ddH2O before being incubated in a 0.06% potassium
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permanganate (Sigma-Aldrich) solution. This was followed by an incubation in a 0.0001% FJC solution dis-

solved in 0.1% aqueous acetic acid and combined with 0.0001% DAPI (Santa Cruz Biotechnology), and

slides were once again rinsed with ddH2O and left to air dry. Slides were then immersed in xylene and

mounted with FluoroMountG (Sigma-Aldrich) (Ehara and Ueda, 2009). Imaging was completed with the

Zeiss AxioObserver Z1 inverted epifluorescence microscope using GFP (488/509 nm) and DAPI (359/

461 nm) filters. Analysis of the total number of degenerating neurons was performed using IMARIS 9.2 (Bit-

plane). IMARIS 9.2 was set to detect and count all green (representing degenerating neurons) and blue

(representing nuclear DNA) spots on each image and then calculate colocalization. The cells having

been tagged by both DAPI and FJC were counted as FJC positive neurons.

Tissue clearing light sheet microscopy

Tissue clearing. CUBIC tissue clearing was completed as previously described (Matsumoto et al., 2019).

Following perfusion, the tissue was post-fixed overnight in 4% PFA, then washed in 1X PBS the following

day. Following washes, tissue was submerged in half diluted CUBIC-L (1:1, CUBIC-L:Water) at 37�C over-

night. Tissue was submerged in CUBIC-L at 37�C with gentle shaking over 10 days, changing the solution

every 48hrs. Tissue was then washed in 1X PBS before being submerged in half diluted CUBIC-R+(M) (1:1,

CUBIC-R+(M):Water) overnight at RT with gentle shaking. Tissue was submerged in CUBIC-R+(M) the

following day, then replaced with fresh CUBIC-R+(M) 24hrs later. Tissue was imaged with a light sheet mi-

croscope in a refractive indexmatched imaging solution consisting of amixture of HIVAC-4 with mineral oil.

Imaging and segmentation. Imaging was performed using our custom-built light sheet microscope.

CUBIC-cleared brains were imaged using a 2.5X objective (NA0.07), 488 nm excitation laser line and

5 mm steps. Each sample was scanned as a series of tiles, then stitched into a single image using TeraS-

titcher. The stitched scans were then run through AIVIA 9 to segment and create 3D reconstructions of

the vascular network. Properties of each vessel (diameter and length) were automatically calculated by AI-

VIA 9, and then exported for analysis.

Automated quantification of stroke volume (stroke volume prediction). Stroke volume in cleared tis-

sue was calculated as follows: the areas representing stroke in each slice were identified, multiplied by their

z-depth (thickness), then summed to obtain a total volume. The stroke regions were identified in each slice

using a deep convolutional neural network (Kermany et al., 2018; Biswas and Barma, 2020; Yu et al., 2018)

which was deemed 98% accurate. The network was first pre-trained on a large data-set (Deng et al., 2009),

then further trained using 906 experimental scans.

Post-stroke vascular morphology quantification. For analysis of vascular morphology in the peri-

infarct region, transcardial FITC-BSA staining was paired with CUBIC brain clearing to allow for LSFM im-

aging. Forty-eight hours post PT stroke, mice were transcardially perfused with 20 mL 1X PBS, then 20 mL

4% PFA. Mice were then submerged in a 37�C water bath, facing down at an angle of 30� before being

perfused with 10 mL of 0.5% FITC-BSA (Sigma-Aldrich), in 2% gelatin (Sigma-Aldrich). Subsequently,

mice were submerged in an ice bath for 30mins before the brain was dissected out(Tsai et al., 2009). Brains

were collected and post-fixed in 4% PFA overnight, then cleared following the CUBIC tissue clearing pro-

tocol. Following tissue clearing, brains were imaged by LSFM. A 1.125 mm3 region of interest lateral to the

stroke site was manually selected, then analyzed using AIVIA 9 (DRVISION Technologies).

Behavioural tests

Adhesive removal test. The adhesive removal test was performed as described (Bouet et al., 2009). Mice

were trained pre-stroke daily over 5 days and tested post-stroke over 2 days. Trials began with 1 min of

habituation to an empty home cage, before strips of adhesive were placed onto both forepaws. The mouse

was then placed back into the cage and the times to contact and remove the adhesive strips were recorded

by two experimenters. Mice were allotted a maximum of 2mins to complete the task. The times to contact

and remove the pieces of adhesive tapes were compared per paw as well as pre- and post-stroke.

Horizontal ladder test. The horizontal ladder test was performed based on protocols described previ-

ously (Farr et al., 2006; Metz and Whishaw, 2009) with slight modifications. Mice underwent one day of

training prior to stroke. In the pre-stroke trials, mice crossed the ladder up to seven times or until they

had performed two acceptable runs. In turn, during the post-stroke trials, mice had three attempts to cross
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the ladder, two of which were scored. Each trial was recorded with a video camera. Scoring and analysis

were performed by an experimenter blind to the conditions. The video recordings of the best two trials

from each mouse were analyzed frame-by-frame with Noldus Observer XT program. Each limb’s step

was scored as either ‘‘correct’’, ‘‘partial’’ or ‘‘miss’’. The percentage of missed steps pre- and post-stroke

were compared.

Cylinder test. The cylinder test was performed based on protocols described (Schallert et al., 2000; Bal-

kaya et al., 2013), with slight modifications. Mice were placed in a transparent cylinder and filmed with an

overhead camera until they reared 22 times. With each rear, three types of behaviours were recorded: (A)

right paw is exclusively weight bearing; (B) left paw is exclusively weight bearing; (C) both paws are weight

bearing at the same time. The video recordings of each trial were analyzed frame-by-frame with Noldus

Observer XT program by a single experimenter blind to the conditions. The length and frequency of fore-

limb contacts to the wall of the cylinder were scored. The behaviours were expressed per paw as an average

time in relation to the sum of the independent left and right weight bearing. The average time spent on the

impaired paw (right) was compared in pre-stroke and post-stroke trials.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis

All data are presented as means G S.E.M.; n represents the number of mice or cells in each group, as indi-

cated in each figure. In most cases, statistical significance was determined by a paired, two-tailed Student’s

t-test or a two-way repeated measure ANOVA followed by Bonferroni post hoc comparisons, for multiple

group comparisons. In cases in which datasets had multiple missing values, a mixed-model (ANOVA) was

implemented by GraphPad Prism. For analyses of groups across multiple time points, a one-way ANOVA

was utilized. Statistical analyses and data presentation were completed using both OriginPro 8.5 (Origin-

Lab Software) and GraphPad Prism 8 (GraphPad Software).

For electrophysiological data, decay kinetic and amplitude analysis were performed on averaged traces.

Decay time constants were best fit with a double exponential function and expressed as a weighted

mean. Due to summation, EPSC amplitudes in the train were measured from the end of the previous

EPSC rather than from the initial baseline.

Please refer to Supplementary methods for more detailed description of all methods.
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