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Moult is a normal physiological phenomenon in poultry. Induced molting (IM) is the most
widely used and economical molting technique. By inducing moult, the laying hens can
grow new feathers during the next laying cycle and improve laying performance. However,
the lack of energy supply has a huge impact on both the liver and intestines and acts on the
intestines and liver through the “gut-liver axis”. More importantly, lipid metabolism in the
liver is closely related to the laying performance of laying hens. Therefore, in this study,
cecal metabolites and liver transcriptome data during IM of laying hens at the late stage of
laying (stop feeding method) were analyzed together to reveal the regulatory mechanism of
“gut-liver axis” affecting the laying performance of laying hens from the perspective of lipid
metabolism. Transcriptome analysis revealed that 4,796 genes were obtained, among
which 2,784 genes had significant differences (p < 0.05). Forty-nine genes were
associated with lipid metabolism, and five core genes (AGPAT2, SGPL1, SPTLC1,
PISD, and CYP51A1) were identified by WGCNA. Most of these differential genes are
enriched in steroid biosynthesis, cholesterol metabolism, drug metabolism—cytochrome
P450, synthesis and degradation of ketone bodies, PPAR signaling pathway, and bile
secretion. A total of 96 differential metabolites were obtained by correlating them with
metabolome data. Inducedmoult affects laying performance by regulating genes related to
lipid metabolism, and the cecal metabolites associated with these genes are likely to
regulate the expression of these genes through the “enterohepatic circulation”. This
experiment enriched the theoretical basis of induced moult and provided the basis for
prolonging the feeding cycle of laying hens.

Keywords: induced molting, lipid metabolism, liver, cecum, hens

1 INTRODUCTION

Molting is a natural physiological phenomenon of birds in response to seasonal changes (Abg, 2008).
During molting, the ovaries deteriorate and estrogen production decreases, resulting in reduced
laying capacity and egg production (Brake, 1993). Natural molting generally needs 4 months and
lasts a long time without uniform production time, which seriously affects the economic benefits of
operators (Belland, 2003). However, Induced molting (IM) can shorten the molting time,
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synchronize egg production, save breeding costs, and improve egg
production performance in the next cycle (Breeding et al., 1992;
Alodan and Mashaly, 1999; Berry, 2003; Sandhu et al., 2007).

IM refers to the intense and sudden stress response caused by
humans to chickens, resulting in nutritional disorders, metabolic
disorders, endocrine disorders, and promoting the rapid molting
of chickens to resume egg production (Zhang, 2021). There are
many ways to force molting, but fasting is the most popular
because it is simple and less expensive (Onbaşılar and Erol, 2007).

Studies have shown that when nutrients are deprived, the
body’s glucose is initially provided from the stores of glycogen,
but glycogen is quickly depleted (Furchtgott et al., 2009). If fasting
continues, fatty acids become the main source of energy. Lipids
break down the produced and released non-esterified fatty acids
(NEFAs) and glycerol. NEFAs are oxidized to ketone bodies
(ketogenesis) in the liver mitochondria through fatty acid D.
Glucose and ketone bodies produced by the liver are the main
metabolites of extrahepatic tissues and organs during starvation
and exercise (Li et al., 2001; Arai et al., 2003).

During fasting, the gut, as an important place for digestion and
nutrient absorption (Dou et al., 2002), loses the supply of
nutrients and energy, and then the morphological and
physiological characteristics of the gut and the homeostasis of
intestinal microbes are greatly changed (Michalsen et al., 2005;
Kohl et al., 2014; Gebert et al., 2020), which directly or indirectly
affects the health and production performance of animals
(Ferraris and Carey, 2000). There are a large number and a
wide variety of microbial communities in the gastrointestinal
tract of poultry, and the cecum is an important place for the
survival and activity of microorganisms in the digestive tract of
poultry (Zhen, 2019). The cecum is in an anerobic environment
for a prolonged period, making it a fermenter for some anerobic
bacteria, so it has the function of preventing the colonization of
pathogenic bacteria and promoting intestinal health (Gérard,
2008).

Unlike mammals, lipid metabolism in poultry takes place
mainly in the liver (Butler, 1975; Szabo et al., 2005). Although
poultry adipose tissue can also esterify a small amount of fatty
acids into triglycerides, it is not the main tissue of poultry
triglyceride (TG) production (Leveille et al., 1975; Brady et al.,
1976; Bedu et al., 2002). In order to meet the high demand for TG
and cholesterol during laying, the liver of laying hens is
particularly active in fat synthesis (Klasing, 1998) because yolk
formation requires the transport of large amounts of hepatic
lipoproteins to the developing oocytes of laying hens, whereas the
ovaries of laying hens do not synthesize lipids. Fasting reduces fat
production in the liver, cutting off the oocyte’s fat source.

With the development of multi-omics, transcriptome has been
widely used in genetic breeding and nutritional regulation of
chicken (Li et al., 2013; Li et al., 2018; Wang, 2019; As, 2021; Luo
et al., 2021), however, few researchers have focused on lipid
metabolism during IM. On the one hand, numerous studies have
shown that intermittent fasting benefits human and animal health
through lipid metabolism, significantly improving fatty liver and
non-alcoholic fatty liver disease (David, 2014; Patterson et al.,
2015). The gut and liver, on the other hand, are closely related in
embryonic origin and anatomy and interact through the “gut-

liver axis” (Compare et al., 2012; Paolella, 2014; Hussain et al.,
2020). Therefore, based on the existing studies, this study
analyzed the liver transcriptome and cecal metabolome of
laying hens and revealed the interaction between the changes
of cecal metabolites induced by hunger and liver lipid
metabolism, and the effect of intestinal microbes on the laying
performance of laying hens during IM. More importantly, it
provides a theoretical reference for the study of IM.

2 MATERIALS AND METHODS

2.1 Experimental Animals and Sampling
Ninety lady chickens at the late stage of laying (500 days of age) were
selected and divided into nine replicates with 10 chickens in each
replicate. According to the compulsory molting procedure, using the
timeline as a control, there are six key time points in this experiment
(Table 1, namely, F0 (on the day before the first day of feed breaking);
F3 (on the third day of feed breaking); F16 (on the 16th day of feed
breaking); R6 (on the sixth day of feed resuming); R16 (on the 16th
day of feed resuming); and R32 (on the 32nd day of feed resuming).
The samples (liver tissue samples and cecal contents) were collected at
each treatment period, and sequencing of the liver transcriptome and
cecal contents metabolome was commissioned by Gene Denovo
Biotechnology Co., Ltd., Guangzhou.

2.2 Transcriptome Analysis
2.2.1 RNA Extraction, cDNA Library Construction, and
Sequencing
Total RNA was extracted using a TRIzol reagent kit (Invitrogen,
Carlsbad, CA, United States) according to the manufacturer’s
protocol. RNA quality was assessed on an Agilent 2,100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States)
and checked using RNase-free agarose gel electrophoresis. After total
RNA was extracted, eukaryotic mRNA was enriched by oligo (dT)
beads, while prokaryotic mRNAwas enriched by removing rRNA by
the Ribo-ZeroTM Magnetic Kit (Epicentre, Madison, WI,
United States). Then, the enriched mRNA was fragmented into
short fragments using fragmentation buffer and reverse-
transcripted onto cDNA with random primers. Second-strand
cDNA was synthesized by DNA polymerase I, RNase H, dNTP,
and buffer. Then, the cDNA fragments were purifiedwith aQiaQuick
PCR extraction kit (Qiagen, Venlo, Netherlands), end-repaired,
poly(A) added, and ligated to Illumina sequencing adapters. The
ligation products were size-selected by agarose gel electrophoresis,
PCR-amplified, and sequenced using Illumina HiSeq2500 by Gene
Denovo Biotechnology Co. (Guangzhou, China).

2.2.2 Filtering of Clean Reads, Alignment With the
Reference Genome, and DEG Analysis
Reads obtained from the sequencer contain adapters or raw reads of
low-quality base, which will affect subsequent assembly and analysis.
Therefore, for clean reads of high quality, reads that contain the
adapter should be removed; reads (N) containing more than 10%
unknown nucleotides were removed; low-quality reads containing
more than 50% of low-quality (Q ≤ 20) bases were removed (Chen
et al., 2018). The short fragment comparison tool Bowtie2 (Version
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2.2.8) was used to compare short fragments to the ribosomal RNA
(rRNA) database. The rRNA mapping read is then removed. The
remaining clean reads are further used for assembly and gene
abundance calculation. To establish the reference index of the
genome and using HISAT2-2.2.4 to clean reads mapped to a
reference genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_
000002315.6), the other parameter is set to the default. Then,
RNA differential expression analysis was performed by DESeq2
(Love et al., 2014) software between two different groups (and by
edgeR (Smyth, 2010) between two samples). The genes/transcripts
with the parameter of false discovery rate (FDR) below 0.05 and an
absolute fold change ≥2 were considered differentially expressed
genes/transcripts.

2.2.3 Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment
Gene Ontology (GO) (Ashburner, 2000) is an international
standardized gene functional classification system that offers a
dynamic-updated controlled vocabulary and a strictly defined
concept to comprehensively describe the properties of genes and
their products in any organism. GO has three ontologies:
molecular function, cellular component, and biological process.
Genes usually interact with each other to play roles in certain
biological functions. Pathway-based analysis helps further
understand gene biological functions. Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Marisa, 2013) is the major
public pathway-related database. Pathway enrichment analysis
identified significantly enriched metabolic pathways or signal
transduction pathways in DEGs compared with the whole
genome background.

2.2.4 Weighted Gene Co-Expression Network Analysis
Analysis
WGCNA (weighted gene co-expression network analysis) is a
systems biology method for describing the correlation patterns
among genes across multiple samples. This method finds clusters
(modules) of highly correlated genes and relates modules to
external sample traits. The gene co-expression network was
constructed using the R package WGCNA (Shannon et al.,
2003) to identify modules of highly correlated genes based on
the filtering data (mean expression level ≥1 and coefficient of
variation ≥0.1). The core co-expression modules were visualized
using Cytoscape_v3.8.2.

2.3 Metabolome Analysis
2.3.1 Extraction and Detection of Metabolites
First, the samples were freeze-dried in accordance with the same
proportion. Then, 1000 uL methanol (−20°C) redissolved
lyophilized powder was transferred to a 2-ml centrifuge tube,
followed by vortex oscillation for 1 min, and centrifugation at
12,000 rpm at 4°C for 10 min. 450 μL of the supernatant was
taken in a 2-ml centrifuge tube and concentrated by a vacuum
concentrator until dry. Then, 20 μL was taken from each sample
to be tested and mixed into QC samples (QC: quality control,
used to correct the deviation of the analysis result of the mixed
sample and the error caused by the analysis instrument itself),
and the remaining samples were used to be tested for LC-MS
detection (Zelena et al., 2009; Dunn et al., 2018).

In chromatographic tests, chromatographic separation was
accomplished in a Thermo Ultimate 3,000 system equipped with
an ACQUITY UPLC® HSS T3 (150 × 2.1 mm, 1.8 µm, Waters)
column maintained at 40°C. The temperature of the autosampler
was 8°C. Gradient elution of analytes was carried out with (A)
0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile
or (C) 5 mM ammonium formate in water and (D) acetonitrile at
a flow rate of 0.25 ml/min. Injection of 2 μL of each sample was
administered after equilibration. An increasing linear gradient of
solvent B (v/v) was used as follows: 0–1 min, 2% B/D; 1–9 min,
2–50% B/D; 9–12 min, 50–98% B/D; 12–13.5 min, 98% B/D;
13.5–14 min, 98–2% B/D; 14–20 min, 2% D-positive model
(14–17 min, 2% B-negative model).

In mass spectrometry, the ESI-MSn experiments were
executed on the Thermo Q Exactive mass spectrometer with
the spray voltage of 3.8 kV and −2.5 kV in positive and negative
modes, respectively. The sheath gas and auxiliary gas were set at
30 and 10 arbitrary units, respectively. The capillary temperature
was 325°C. The analyzer scanned over a mass range of m/z 81-1
000 for a full scan at a mass resolution of 70,000. Data-dependent
acquisition (DDA) MS/MS experiments were performed with an
HCD scan. The normalized collision energy was 30 eV. Dynamic
exclusion was implemented to remove some unnecessary
information in MS/MS spectra.

2.3.2 Data Processing and Metabolite Identification
The format of raw data files was converted into mzXML format
using Proteowizard (v3.0.8789). Using R (v3.3.2) package XCMS
(Want, 2006) to perform peak identification, peak filtration, peak
alignment for each metabolite, the main parameters were set as

TABLE 1 | IM program induced by starvation.

Test period Treatment

Feed Water Light Processing time for
each stage

F0 Normal feed √ 16 h On the day before the test
F3 No feed × 8 h On the third day of fasting
F16 No feed √ 10 h On the 16th day of fasting
R6 Gradually resuming feeding √ 10 h + 0.5 h per day On the sixth day of recovery
R16 √ On the 16th day of recovery
R32 Normal feed √ 16 h On the 30th day of recovery
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follows: bw = 5, ppm = 15, peak width = c (5, 30), mzwid = 0.01,
mzdiff = 0.01, method = “centWave”. Then, mass-to-charge ratio
(m/z), retention time and intensity, and positive and negative
precursor molecules were used for subsequent analysis. The peak
intensities were batch-normalized to the total spectral intensity.
The identification of metabolites is based on the exact molecular
formula (molecular formula error <20 ppm). Then, peaks were
matched with the Metlin (http://metlin.scripps.edu) and
MoNA(https://mona.fiehnlab.ucdavis.edu//) to confirm
annotations for metabolites.

2.4 Trend Analysis
Genes and metabolites expression pattern analysis is used to cluster
metabolites of similar expression patterns for multiple samples (at
least three in a specific time point, space, or treatment dose size
order). To examine the expression pattern of all annotated genes and
metabolites, the expression data of each sample (in the order of
treatment) were normalized to 0, log2 (v1/v0), and log2 (v2/v0) and
then clustered by Short Time-series Expression Miner software
(STEM, version 1.3.11) (Ernst and Bar-Joseph, 2006).

The parameters were set as follows:

1) Maximum unit change in model profiles between time
points is 1;

2) Maximum output profile number is 20 (similar profiles will be
merged).

3) Minimum ratio of the fold change of DEGs is no less than 2.0.

The clustered profiles with a p-value ≤ 0.05 were considered
significant profiles. Then, the genes and metabolites in all or each
profile were subjected to KEGG pathway enrichment analysis.
Through the hypothesis test of the p-value calculation and FDR
(Benjamini and Hochberg, 1995) correction, the pathways with
Q_value ≤ 0.05 were defined as significantly enriched pathways.

2.5 Integrated Analysis of the
Transcriptome and Metabolome
Transcriptome and metabolome data were used to characterize the
differences in gene expression and metabolite levels (Bylesjö et al.,
2010). However, transcription and metabolism do not occur
independently in biological systems. In order to reveal the
regulatory influence mechanism between gene expression and
metabolites during starvation-induced IM, the association analysis
was carried out based on the same or similar change rules of genes or
metabolites involved in the same biological process (Csardi and
Nepusz, 2006; Kolde, 2015; Bouhaddani et al., 2016). The co-
expression network between differential genes and metabolites in
lipid metabolism was constructed using Cytoscape_v3.8.2.

3 RESULTS

3.1 Transcriptome Analysis of the Liver of
Laying Hens
In this study, we established 18 cDNA libraries with the following
designations, RNA-seq generated 44, 786, and 614 to 95, 424, and

152 raw reads for each library. After filtering the low-quality
reads, the average number of clean reads was 48, 911, and 475
(99.37%); 69,071, and 206 (99.40%); 62, 071, and 382 (99.40%);
55, 411, and 170 (99.36%); 55, 481, and 584 (99.28%); and 49, 951,
and 232 (99.34%) for the F0F0, F3F3, F16F16, R6R6, R16R16, and
R32R32 groups, respectively (Supplementary Table S1). The
clean reads were used for all further analyses, and from them
91.51–92.91% of clean tags from the RNA-seq data mapped
uniquely to the genome, while a small proportion of them
(<2.93%) were mapped multiple times to the genome
(Supplementary Table S2).

To demonstrate the source of variance in our data, PCA
analysis with two principal components (PC1 and 2) was
performed. As shown in Figure 1A, PC score plots showed
that the contribution of PC1 and 2 was 84.5% and 7.5%,
respectively. The three individual samples collected at each
time point were clustered closely together which validated the
finding of low variance in the present analysis study and showed
that the data could be used for the following analysis.

3.2 Differential Gene Expression in the Liver
at Different Stages
FPKM was used to estimate the level of gene expression, and
DEGSeq was used to examine the differential gene expression
profile. The results showed that F0-VS-R32 and R16-VS-R32 had
fewer differentially expressed genes, while F0-VS-F16, F0-VS-R6,
F16-VS-R32, and R6-VS-R32 groups had more differentially
expressed genes. Therefore, in order to further explore the
dynamic gene expression pattern during the IM of laying
hens, we conducted a study on DEGs in the F0-VS-F16, F0-
VS-R6, F16-VS-R32, and R6-VS-R32 groups (Figure 1B). The
Venn diagram shows the distribution of DEGs in the liver into
four groups with 479 genes shared among the four groups
(Figures 1C–F).

3.3 Gene Ontology Enrichment and Kyoto
Encyclopedia of Genes and Genomes
Pathway Analysis of DEGs Among the Four
Groups
All DEGs in the four groups (F0-VS-F16, F0-VS-R6, F16-VS-R32,
and R6-VS-R32) were analyzed using GO term enrichment and
KEGG pathway. To investigate the significant pathways and
related biological functions of DEGs during IM.

In our study, a total of 1722 DEGs from the F0-vs-F16 group in
the liver were used for GO term enrichment (Supplementary
Figure S1) and KEGG analyses (Figure 2A). We selected ten
pathways (p < 0.05) from GO and KEGG and analyzed them. The
GO term was mainly enriched in some pathways related to lipid
metabolism, such as lipid metabolic process, lipid localization,
lipid homeostasis, lipid biosynthetic process, sterol metabolic
process, cholesterol homeostasis, sterol homeostasis,
cholesterol metabolic process, and lipid transport. In addition,
it was also enriched in the cellular response to chemical stimuli.
KEGG was also enriched in some pathways related to lipid
metabolism, such as steroid biosynthesis, cholesterol
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metabolism, synthesis, and degradation of ketone bodies. In
addition, there were also important pathways such as the
PPAR signaling pathway, drug metabolism—other enzymes,
and bile secretion.

In the F0-vs-R6 group, a total of 2,102 DEGs in the liver were
used to performGO term (Supplementary Figure S2) and KEGG
pathway analyses (Figure 2B). GO terms (p < 0.05) were enriched
in cellular response to chemical stimulus, immune system
process, and cytokine production, and KEGG was mainly
enriched in cholesterol metabolism; valine, leucine, and
isoleucine degradation; metabolic pathways; and proteoglycans
in cancer.

A total of 1,297 DEGs from the liver of the F16-vs-R32 group
were used to perform GO term (Supplementary Figure S3). and
KEGG pathway analyses (Figure 2C). In GO term (p < 0.05),
most pathways were related to lipid metabolism, including the
lipid metabolic process, sterol metabolic process, lipid
biosynthetic process, and lipid homeostasis. In addition, there
were immune-related pathways, such as the immune system
process and regulation of immune system process. The
significant KEGG pathways were chemical carcinogenesis, drug
metabolism—cytochrome P450, metabolism of xenobiotics by
cytochrome P450, cholesterol metabolism, steroid biosynthesis,
synthesis, and degradation of ketone bodies.

In the R6-vs-R32 group, the DEGs are mainly enriched in
mitotic cell cycle, cell cycle, cell activation, cell cycle process, and
cytokine production in GO term analysis (Supplementary Figure
S4). Moreover, two immune-related pathways were also

significant. In KEGG analysis (p < 0.05) (Figure 2D), cell
cycle, cholesterol metabolism, pathways in cancer, and DNA
replication were considered significant.

3.4 Co-Expression Network Analysis With
Weighted Gene Co-Expression Network
Analysis
Between genes have mutual induction and deter expression or
synergy; these effects will result in the expression of related gene
correlation between the amount, in the case of a large sample, the
classification of gene expression was conducted more regularly, In
this study, tens of thousands of genes were divided into 19
modules (color-coded) using WGCNA analysis with similar
expression patterns, shown by the dendrogram (Figure 3A;
Supplementary Figure S5), in which each tree branch
constitutes a module, and each leaf in the branch is one gene.
Due to the time-specific expression profile of the characteristic
genes, 19 modular characteristic genes from 19 different modules
were associated with different types of IM periods (Figures 3B,
C). Through Figure 3C, we foundMM. tan, MM. green, andMM.
cyan modules that are significantly correlated with specific
samples so that corresponding modules can be selected for
further research (the module eigenvalue is equivalent to the
weighted composite value of all gene expression levels in the
module).

KEGG enrichment analysis was conducted for these three
modules, focusing only on the lipid metabolism pathway, and

FIGURE 1 | Transcriptome analysis of the liver in six periods during IM. (A) PCA analysis was used to understand the repeatability of samples in each period of IM.
(B) Overall statistics of significantly different genes in each comparison group: green represents upregulation; yellow represents downregulation. (C) Difference Venn
diagram of the relative comparison group.
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then all genes (including genes with significant differences and
genes with no significant differences) in the lipid metabolism
pathway were selected for network interaction analysis, with the
purpose of discovering those key genes neglected due to the
transient expression. As shown in Figure 3D, a total of 43 genes
were obtained through interaction. Using Cytoscape software, the
connectivity of each gene was calculated. Generally, genes with
high connectivity are regarded as hub genes. In the interaction
network, the color of the gene gradually deepened as connectivity
increased. Among them, AGPAT2F3, SGPL1, SPTLC1, PISD,
and CYP51A1 are considered to have high connectivity and are
the key genes in the network.

Then, we conducted co-expression network analysis between
the selected genes in the module analysis and all the genes
involved in lipid metabolism in the IM process (Figure 4) so
as to dig out more potential core genes, which may have little

difference in expression but are consistent with the expression
trend of these different genes. We chose the top 10 genes; they
were INS, SOAT1, ACSL1, CYP51A1, ACSL4, MSMO1,
AGPAT2, Hsd3b7, GPAM, and NSDHL.

Transcriptome data showed significant changes in genes
involved in lipid metabolism pathways in the liver of laying
hens during IM, and the expression trends of these genes were
similar to some extent (Figure 5). The expression of some
genes (AGPAT2, SGPL1, PISD, CYP51A1, MSMO1, GPAM,
and NSDHL) decreased gradually during starvation, with the
degree of downregulation of these genes increasing as
starvation time extended and gradually returning to their
pre-experiment levels when feeding resumed. On the
contrary, the expression levels of other genes (SPTLC1,
SOAT1, ACSL1, ACSL4, and HSD3B7) were increasingly
upregulated with the extension of starvation time and

FIGURE 2 | KEGG enrichment analysis of different genes in comparison groups during IM. (A) F0-vs-F16. (B) F0-vs-R6. (C) F16-vs-R32. (D) R6-vs-R32.
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decreased to pre-experiment levels after resuming feeding for
a period of time.

3.5 Metabolomics Profiling
Based on the transcriptome results, we selected five important
stages (F0, F3, F16, R6, and R32) for cecal content
metabolome sequencing of laying hens. Based on the
transcriptome results, we selected five important stages (F0,
F3, F16, R6, and R32) for cecal content metabolome
sequencing of laying hens. The ionization source of LC/MS
was electrospray ionization, which included positive (POS)
and negative (NEG) ion modes. The QC samples were
analyzed to detect the stability and repeatability of the
system. The peak retention time (RT) and peak area of
total ion chromatograms from all QC samples overlapped
well, thereby indicating that the analytical system was stable
(Supplementary Figure S6). A total of 2016 and 1,597 valid
peaks were identified in the POS and the NEG modes,
respectively, in metabolomics and matched 1781 (POS) and
1,448 (NEG) metabolites, respectively, in the metabolome
based on the in-house MS2 database.

Principal component analysis (PCA) was performed on all
samples and QC samples (Figures 6A, B), and the stability
and reliability of instrumental analysis could be obtained by
observing the dispersion between QC samples. Orthogonal
least partial square discriminant analysis (OPLS-DA) is a
derivative algorithm of PLS-DA. Compared with PLS-DA,
OPLS-DA combines two methods of orthogonal signal
correction (OSC) and PLS-DA, which can decompose the
X matrix information into two types of information related to
Y and irrelevant information. By removing the irrelevant
differences, the relevant information is concentrated in the
first predictive component. The OPLS-DA results were used
to analyze subsequent model tests and differential metabolite
screening (Supplementary Figure S7).

3.6 Differential Metabolite Screening
We combined the VIP value of multivariate statistical analysis
OPLS-DA and the t-test p-value of univariate statistical analysis
to screen the significantly differential metabolites between different
comparison groups (Saccenti et al., 2014). The threshold for
significant difference was VIP≥1 and t-test (p < 0.05). The

FIGURE 3 | WGCNA of genes in the liver. (A) Hierarchical cluster tree showing coexpression modules identified by WGCNA. Each leaf in the tree represents one
gene. The major tree branches constitute 19 modules labeled with different colors. (B) Number of genes contained in each module. (C) Expression patterns of module
genes in each sample are displayed by module eigenvalues. The value of module eigenvalues in each sample reflects the comprehensive expression level of all genes in
each sample. (D) In selected modules, genes related to lipid metabolism interact with each other in the co-expression network, and the darker the color, the
stronger the connectivity.
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metabolite results with the significant differences are shown
in (Figure 6C).

Subsequently, KEGG enrichment analysis (Figure 6D) was
conducted for the differential metabolites, and the results
showed that the differential metabolites were mainly
enriched in amino acid metabolism, cancers, carbohydrate
metabolism, cellular community eukaryotes, digestive
system, environmental adaptation, excretory system, global
and overview maps, immune system, lipid metabolism, and
nervous system.

3.7 Integrated Analysis of the
Transcriptome and Metabolome

We correlated all genes associated with lipid metabolism (genes
with significant and nonsignificant differences) with metabolome
data. As you can see (Figure 7), yellow represents genes and pink
represents metabolites. The correlations between these genes and
metabolites were all greater than 0.88 (both positive and
negative). We correlated all genes associated with lipid
metabolism (genes with significant and nonsignificant

FIGURE 4 |WGCNA of genes associated with lipid metabolism. co-expression network interaction of all lipid metabolism–related genes [including genes derived
from module analysis and genes in lipid metabolism-related pathways (did not require p < 0.05)], and the darker the color, the stronger the connectivity.
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differences) with metabolome data. We analyzed the connectivity
of these genes and metabolites, and the top 20 were CYP2D6,
CYP2J21, PISD, N-(5-acetamidopentyl) acetamide, hexamethylene
bisacetamide, ABHD4, NDUFC2, SCD, 1-[6-(benzyloxy)-3-
(tert-butyl)-2-hydroxyphenyl]Ethan1-one, CYP1A1, estrone,
2-(1,3-benzodioxol-5-yl)-5-(3-methoxybenzyl)-1,3,4-oxadiazole,
4-aminobenzoic_acid, 2-propylglutaric acid, ELOVL2, HSD17B12,
PNPLA3, RQH, 5-fluoro-2-[(3S)-1-(2-methylbenzyl)-3-pyrrolidinyl]-
1H-benzimidazole, and 2-methoxyestrone (the variation trend
of these genes and metabolites during IM is described in
Supplementary Materials).

4 DISCUSSION

4.1 Induced Molting can Improve the
Performance of Laying Hens in the Next
Laying Stage by Regulating Lipid
Metabolism
Hunger is a physiological imbalance caused by lack of food or
nutrition in the body. When the glucose level in the blood drops
to the range of hypoglycemia, the body’s compensation
mechanism will be activated (Staehr et al., 2004). Hunger will
increase the production of non-esterified fatty acids (NEFA) in
adipose tissue and start the fat mobilization mechanism (Ensling
et al., 2011). As an energy substance, fat has many advantages
compared with other macromolecules. For example, fat can be

stored in adipose tissue in the form of low water content and high
energy density. The amount of fat in the body also varies widely
(Lindström, 1991; Castellini and Rea, 1992). Lipolysis mainly
includes the hydrolysis of triglycerides and the oxidation of
fatty acids, in which the hydrolysis of triglycerides into fatty
acids and glycerol happens under the joint action of triglyceride
lipase, hormone-sensitive esterase, and lipoprotein esterase.
Fatty acid oxidation is the formation of fatty acid esters coA
under the action of esters coA synthase (ACSL) (Castellini and
Rea, 1992). During IM, laying hens experienced long periods of
starvation, and in the absence of external energy supplies,
the hens used stored body fat to obtain energy; the expression
levels of ACSL1 and ACSL4 were significantly upregulated during
starvation.

It is well known that lipid metabolism and transport in the
liver are closely related to the laying performance of laying hens
(Liu et al., 2018). Cholesterol plays an important role in lipid
metabolism. CYP51A1 (sterol 14alpha-demethylase) is a late
regulator of cholesterol synthesis (Kojima et al., 2000; Degawa,
2006). In this study, the expression level of CYP51A1 decreased
significantly in F3 and F16, which is due to the loss of energy
supply and the lack of precursor substances in cholesterol
synthesis of laying hens. After the energy supply was restored,
CYP51A1 expression was significantly upregulated. The
expression trend of MSMO1 (methylsterol monooxygenase)
and NSDHL (sterol-4alpha-carboxylate 3-dehydrogenase) in
the same pathway as CYP51A1 is similar to that of CYP51A1.
After IM, the expression level of genes in the steroid biosynthesis

FIGURE 5 | Expression trends of genes related to lipid metabolism during IM.
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pathway was downregulated and increased to the pre-experiment
level and tended to exceed the pre-experiment gene expression
level (Figure 8). Importantly, cholesterol is a precursor to
estrogen (the steroid hormone). These results indicated that
IM increased the laying rate of laying hens in the second
laying cycle at the mRNA level, which was worthy of affirmation.

In addition, PISDs (phosphatidylserine decarboxylases), also
known as phosphatidylserine decarboxylase, comprise pyridoxal
phosphate and pyruvate. It is a key enzyme in the
glycerophospholipid metabolism pathway (Marescaux, 2007).
At F3 and F16, the expression of the PISD gene was
significantly downregulated. The expression levels of PTDSS2,
SELENOI, PEMT, PLD1, PLA2G12B, DGKQ, GPCPD1, GPAM,
CEPT1, LPIN1, MBOAT2, and AGPAT2in the same pathway of
PISD also showed a similar trend in the starvation stage. This
indicates that the body preferentially uses the products of fat
mobilization for energy supply (Thouzeau et al., 1997), rather
than the production of phospholipids, which protect and regulate
metabolism under the condition of long-term starvation. The
expression levels of these genes were significantly upregulated
when feeding resumed, and the laying hens had enough energy in

their bodies. Egg lecithin is a kind of compound phospholipid
extracted from egg yolk mainly comprising phosphatidyl choline,
PC); phosphatidyl ethanolamine, PE); phosphatidyl inositol, PI);
and phasphotidyl serine (PS). From the expression of related
genes in the glycerolipid pathway, we can also see that the
glycerolipid pathway is significantly active during the recovery
stage of IM, possibly in preparation for the formation of egg yolk
in the next laying stage.

4.2 Effects of Intestinal Microflora on Laying
Performance of Laying Hens Through
the“Gut-Liver Axis”
There are a large number of relatively stablemicrobial communities in
the digestive tract of poultry. They play a very important role in
maintaining the relative stability of the poultry gastrointestinal tract
and nutrient digestion and absorption (Jiangrang, 2003; Ilina, 2016).
The cecum is the most developed site of intestinal microorganisms in
poultry (Jianhua, 2010; Kang et al., 2021; Pedroso et al., 2021).
However, studies have found that gut microbes form a mutualistic
symbiosis with their hosts during a long process of coevolution. Gut

FIGURE 6 |Metabolome analysis. Principal component analysis (PCA) was performed on all samples and quality control samples in (A) positive ion mode and (B)
negative ion mode. (C) Number of differential metabolites between the comparison groups in positive and negative ion modes. (D) KEGG enrichment analysis of
differential metabolites.
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microbes can sense changes in the intestinal environment of the host
while obtaining nutrients needed for survival, change the gene
expression of the host and their own, and establish a mutualistic
relationship with the host (Isberg and Barnes, 2002). In human
medicine, there is growing evidence that changes in human genetic
background, diet, and antibiotic treatment can affect gut microbes,
which in turn affect host metabolism (Goodrich et al., 2014; Ting,
2014; Zhang et al., 2015). At present, there are more and more studies
on the regulation of intestinal flora on metabolic diseases in the
human body. Gut microbiome composition, changes, and imbalances
are closely related to host metabolism and can affect a variety of
diseases including obesity, type 2 diabetes, and inflammatory bowel
disease. In animals, intestinal microorganisms have been confirmed to
be closely related to lipid deposition in mice, pigs, and poultry (Guo
et al., 2008; Emmanouil et al., 2010; Guo et al., 2010).

Some studies (Pi et al., 2017) have shown that the body and its
intestinal microbes can metabolize and produce some small
molecules, such as phenols, SCFAs, and bile salts, which play a
crucial role in the association of information between host cells and
host symbiotic microorganisms and in the health of the body. The
metabolites in the cecum are closely related to the life activities and
material metabolism of the body.

In this study, we also found significant changes in metabolites
in the cecum (Figure 9). In our results, colchicine content

increased significantly at F3 and F16 but decreased to the pre-
experiment level after resuming feeding. In clinical medicine,
colchicine is mainly used for the treatment of acute gout, but it
has toxic side effects; colchicine can cause liver damage in rats.
Colchicine inhibits the expression of nuclear receptor FXR,
resulting in the imbalance of bile acid regulation in
hepatocytes (Yan-Yan et al., 2018). In this study, the gene
associated with colchicine was CYP1A1(cytochrome P450
family 1 subfamily A member 1), and the expression trend of
this gene was similar to the change in colchicine content. Studies
have shown that CYP1A1 is related to hormone and metabolism
of a variety of exogenous toxic substances, such as benzopyrene
and dioxins. Moreover, the expression of CYP1A1 gene
polymorphism is closely related to the susceptibility of cervical
cancer, prostate cancer, childhood acute leukemia, lung cancer,
esophageal cancer, and other tumors (Nerurkar et al., 2000). At
F3, in terms of the growth rate of colchicine and CYPA1,
colchicine content increased faster than CYP1A1 expression.
These results indicate that cecal metabolites do affect gene
expression in the liver and further demonstrate that intestinal
microorganisms and their metabolites play a regulatory role in
the metabolic activities of the body.

Furthermore, microorganisms can also regulate lipid
metabolism. Angiopoietin-like protein 4 (ANGPTL4)

FIGURE 7 | Network interactions of key genes and differential metabolites; yellow represents genes and pink represents metabolites.
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(Aimin, 2005; Alex et al., 2013), also known as fasting inducer
factor (FIAF), is a protein closely related to fat metabolism in
animals. Studies have shown that overexpression of ANGPTL4

can induce hepatic enlargement and fatty liver formation in
mice (Aimin, 2005; Yi, 2016). Some scholars have found that
intestinal microorganisms can regulate the expression of

FIGURE 8 | Multiple genes in the F0-VS-F16 steroid biosynthesis pathway were significantly downregulated during IM.
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ANGPTL4 in intestinal epithelial cells directly or indirectly
(metabolites) (Grootaert et al., 2011). Some researchers have
also found that intestinal microbial metabolites have a
regulatory effect on host ANGPTL4, thus affecting host
lipid metabolism (Zhao et al., 2014). In this study,
ANGPTL4 was downregulated at F3 and F16 and
significantly upregulated and exceeded the expression level
at F0 after resuming feeding. The cecal metabolite associated
with ANGPTL4 is 2-propyl glutaric acid, and its content
variation trend is related to ANGPTL4.

In addition, estrogen content decreased significantly at F3
and F16 and increased significantly at R6 and R16, higher
than the level before the test, which was consistent with the
expression trend of PISD, AGPAT2, MBOAT2, and PEMT.
After 32 days of recovery, the level of estrogen in laying hens
was much higher than the level before the experiment. After
IM, the level of estrogen was regulated by increasing PISD,
AGPAT2, MBOAT2, and PEMT gene expression to stimulate

the laying performance of laying hens so as to enter a new
reproductive cycle.

In conclusion, intestinal microbes are closely related to
metabolic activities, especially lipid metabolism, of their
hosts. However, lipid metabolism in poultry liver is
closely related to laying performance. Therefore, it is
reasonable to believe that microorganisms and their
metabolites in the cecum of laying hens are related to
laying performance.

5 CONCLUSION

During IM, laying hens had a great influence on the liver and
gut, but as to the recovery of food intake, laying hens in the
second cycle of egg production rate and egg quality show
improvement, and our research results show that in the whole
experiment process, laying hens in the cecum metabolites and

FIGURE 9 | Changes in metabolite content during IM.
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genes in the liver do have interaction relations; however,
whether this relationship is two-way interaction or one-way
regulation remains to be studied, which also points out the
direction for our next research.
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