
RESEARCH ARTICLE

Validation of an automated shape-matching

algorithm for biplane radiographic spine

osteokinematics and radiostereometric

analysis error quantification

Craig C. KageID
1, Mohsen Akbari-Shandiz2, Mary H. Foltz1, Rebekah L. Lawrence1, Taycia

L. BrandonID
3, Nathaniel E. Helwig4,5, Arin M. EllingsonID

1,6,7*

1 Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota,

Minneapolis, Minnesota, United States of America, 2 Rehabilitation Medicine Research Center, Department

of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, United States of America,

3 Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of

America, 4 Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of

America, 5 School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America,

6 Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis,

Minnesota, United States of America, 7 Department of Orthopaedic Surgery, University of Minnesota,

Minneapolis, Minnesota, United States of America

* ellin224@umn.edu

Abstract

Biplane radiography and associated shape-matching provides non-invasive, dynamic, 3D

osteo- and arthrokinematic analysis. Due to the complexity of data acquisition, each system

should be validated for the anatomy of interest. The purpose of this study was to assess our

system’s acquisition methods and validate a custom, automated 2D/3D shape-matching

algorithm relative to radiostereometric analysis (RSA) for the cervical and lumbar spine.

Additionally, two sources of RSA error were examined via a Monte Carlo simulation: 1) static

bead centroid identification and 2) dynamic bead tracking error. Tantalum beads were

implanted into a cadaver for RSA and cervical and lumbar spine flexion and lateral bending

were passively simulated. A bead centroid identification reliability analysis was performed

and a vertebral validation block was used to determine bead tracking accuracy. Our sys-

tem’s overall root mean square error (RMSE) for the cervical spine ranged between 0.21–

0.49mm and 0.42–1.80˚ and the lumbar spine ranged between 0.35–1.17mm and 0.49–

1.06˚. The RMSE associated with RSA ranged between 0.14–0.69mm and 0.96–2.33˚ for

bead centroid identification and 0.25–1.19mm and 1.69–4.06˚ for dynamic bead tracking.

The results of this study demonstrate our system’s ability to accurately quantify segmental

spine motion. Additionally, RSA errors should be considered when interpreting biplane vali-

dation results.
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Introduction

Back pain is the most debilitating musculoskeletal impairment afflicting today’s society [1].

Annual low back pain prevalence has been estimated to be between 22–65% [2] and more

recently, one-month prevalence has been estimated to be as high as 30.8% [3]. Neck pain is sim-

ilarly pervasive, with annual prevalence reported to be between 30–50% in adults [4]. Low back

pain and neck pain often progress into chronic conditions ranking first and fourth, respec-

tively, in years lived with disability [1]. Standard clinical assessment of low back and neck pain

is currently limited and typically includes a subjective interview, physical examination, and

may include standard radiographs or advanced imaging such as computed tomography (CT)

or magnetic resonance imaging (MRI) [5, 6]. Despite the increasing utilization of diagnostic

imaging, evidence is immerging that these imaging techniques may only offer nominal insight

into the mechanisms of spine pain [4, 5, 7–10]. This may be due to the limitation of current

clinical imaging techniques that generally capture static, two-dimensional (2D) images of the

spine; often in non-functional, non-weightbearing positions. Optical motion capture systems,

which are commonly used in research, allow for the attainment of dynamic, functional, three-

dimensional (3D) motion analysis. However, these systems are prone to skin/marker motion

artifact, marker placement error, and are not capable of accurately determining the underlying

osteokinematic motion [11, 12].

Biplane radiography overcomes these limitations and is capable of producing highly-accurate,

segmental osteokinematics [13–18]. As such, biplane radiography captures functional, real-time

bone motion and holds promise for advancing spine care from a diagnostic, prognostic, and

treatment perspective. Although this developing technology holds great potential, several impor-

tant steps must be addressed prior to utilizing such a system. Most biplane radiographic systems

are custom-made with independently adjustable components and, therefore, require a validation

process to ensure appropriate accuracy. This is especially important due to the potential of an

increase of radiation exposure associated with radiographic imaging if inappropriate acquisi-

tions are acquired. Additionally, radiographic techniques can vary greatly at different regions of

the body; therefore, it is important to consider joint-specific validation to ensure maximum

accuracy and minimization of radiation exposure.

The post-processing of biplane images to determine osteokinematics is known as 2D/3D

shape-matching. This process requires hours of manual-alignment or semi-automated track-

ing of the bone model over the two radiographic projections and is a significant limitation of

this data collection methodology. Therefore, developing an automated 2D/3D shape-matching

algorithm is critical to utilizing biplane radiography. To-date, only a few labs have demon-

strated the feasibility and validity of shape-matching at the spine [14, 16, 19–21].

Radiostereometric analysis (RSA), which involves the tracking of implantable tantalum

beads within the bones of interest, has been widely used to validate biplane systems and shape-

matching algorithms and is considered the “gold standard” for tracking osteokinematics [13–

16, 19]. However, there is inherent error associated with bead centroid identification, both on

the static CT images (i.e. static bead centroid identification error) and on the dynamic radio-

graphic images during kinematic tracking (i.e. dynamic bead tracking error). Static bead cen-

troid identification is sensitive to errors due to CT image distortion, potential artifact from

adjacent implanted beads [16], and human error. Dynamic bead tracking errors result in addi-

tional error in the definition of bead-based coordinate systems, especially for closely approxi-

mated beads, which is a particular challenge at the spine due to the small size of the vertebrae.

Further, dynamic bead tracking is sensitive to bead occlusion from adjacent beads, low-resolu-

tion images, and radiographic distortion. [22]. Although the accuracy of RSA has been well-

documented using inter-bead distances [16, 19, 22, 23], this metric is not directly related to
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kinematic measures of interest (i.e. relative position and orientation). Further, the influences

of static bead centroid identification and dynamic bead tracking errors have not been exam-

ined. Therefore, the practical functional accuracy of RSA is unclear. A Monte Carlo simulation

approach offers a solution to quantify and understand these inherent errors. This is done by

systematically varying the individual bead centroid locations and thus altering the resultant

local coordinate systems–when applied to the anatomic coordinate system, this provides

meaningful quantification of error for a specific setup.

Therefore, the purpose of this study was to verify our custom biplane video-radiography

system’s data acquisition methods and validate our custom, automated 2D/3D shape-matching

algorithm using CT bone models against RSA for cervical and lumbar spine kinematics in a

cadaveric specimen. Additionally, this study examined two potential sources of error inherent

within the current gold standard of RSA; static bead centroid identification and dynamic bead

tracking error and applied these errors to our testing setup using a Monte Carlo simulation

approach.

Materials and methods

With approval from the University of Minnesota Anatomy Bequest Program (and associated

informed consent), a fresh-frozen, cadaveric specimen (male, 55 years of age, 1.8 m, 70.3 kg)

fully intact from the torso superiorly, was obtained from the University of Minnesota Anatomy

Bequest Program. The specimen had no prior history of spine surgery, pathology, or metal

implants. The specimen was screened for spinal range of motion (ROM) and appropriate

anthropometrics to ensure safe specimen handling within the laboratory environment and

appropriate sizing for the CT scanner.

Procedures

Bead placement and bone models. The specimen was thawed at room temperature prior

to bead placement and dynamic motion assessment. Four, 1.6 mm tantalum beads were surgi-

cally implanted into the cortical bone of vertebrae C4-C6 and L3-L4 for RSA [14–16, 19, 20].

An anterior approach was used for the cervical spine and a posterior approach for the lumbar

spine. Beads locations were pre-drilled and beads were inserted with a spring-loaded injector

and secured with liquid adhesive. The surgical sites were sutured to ensure stable bead place-

ment and to minimize soft tissue disruption.

CT images were acquired following bead implantation (Siemens Somatom Sensation 64; For-

chheim, Germany; 120 kVp; 0.23 × 0.23 × 0.60 mm for the cervical spine and 0.30 × 0.30 × 0.60

mm for the lumbar spine). Bone models were segmented from the CT scan for spinal levels

C4-C6 and L3-L4 and bead centroids were identified (Mimics; Materialise, Plymouth, MI,

USA). Each cervical spine bone model’s anatomic coordinate system was constructed by identi-

fying the following anatomic landmarks: anterior/superior vertebral body and the most lateral/

superior left and most lateral/superior right vertebral notches. Each lumbar spine bone model’s

anatomic coordinate system was constructed by identifying the following landmarks: anterior/

superior vertebral body, most lateral/superior vertebral body left and right. Each vertebrae was

then assigned a local coordinate system from the anatomic landmarks applied to the anterior/

superior vertebral body (Fig 1: X-axis = positive anteriorly, Y-axis = positive left, Z-axis = posi-

tive superiorly) [24]. Prior to 2D/3D shape-matching, beads in the CT were masked consistent

with surrounding bone quality to avoid bias (ImageJ/Fiji; US NIH, Bethesda, MD, USA) [16].

Cervical spine dynamic cadaveric motion assessment. Cervical spine motion data was

collected using a custom biplane radiographic imaging system (Imaging Systems and Ser-

vices, Inc.; Painesville, OH, USA) consisting of two high-speed cameras (Xcitex ProCapture,
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Woburn, MA, USA) and two 16-inch image intensifiers (Thales 9447 QX; North American

Imaging, Aurora, OH, USA) (Fig 2). The specimen was secured to a height-adjustable chair

in the biplane field of view. The images intensifiers were oriented with a 55˚ interbeam

angle and with one system oriented in the medial-lateral direction, parallel to the horizontal

and the second system in the anterior-oblique direction, 8˚ above the horizontal (Fig 2).

Dynamic images were obtained with a radiographic wedge filter (Ferlic Filter Co., LLC;

White Bear Lake, MN, USA) using the following technique: 70 kV, 250 mA, 3.5 ms, at 60 Hz

Fig 1. 2D/3D shape-matching schematic. 2D/3D shape-matching with biplane radiographic images and associated digitally

reconstructed radiographs (DRR’s) for (Left) cervical spine and (Right) lumbar spine with inset C4 and L4 CT bone models and local

coordinate systems.

https://doi.org/10.1371/journal.pone.0228594.g001

Fig 2. Biplane radiography setup. (Left) Cervical spine setup with two offset systems and interbeam angle of 55˚, 16” image

intensifiers and high-speed cameras. One system is oriented parallel to the horizontal and the other is oriented above the horizontal.

(Right) Lumbar spine setup with attached attenuator and orthogonal systems. One system is oriented parallel to the horizontal and

the other is oriented above the horizontal Note: Validation was performed using a cadaveric specimen; however, the setup is
demonstrated with a live subject. Lumbar acquisition was performed with the cadaveric specimen inverted and the AP system oriented
8° above the horizontal.

https://doi.org/10.1371/journal.pone.0228594.g002
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and 152 cm source-to-image receptor-distance (SID) [14, 16]. Passive motion of the head

was elicited by a long-handled apparatus for three trials of flexion (from an extended posi-

tion) and lateral bending through the available ROM–the average trial time was 3.03 sec-

onds. Images for biplane calibration and undistortion were acquired using a precision-

machined (<0.025 mm) 64-bead calibration cube and undistortion grid (XMA Lab; Brown

University, RI, USA) [25, 26].

Lumbar spine dynamic cadaveric motion assessment. The specimen was inverted and

secured to a height adjustable chair in the biplane field of view. A custom-attenuator was

affixed to the lumbar spine to reduce radiographic “wash-out” of the vertebrae [27]. The image

intensifiers were oriented with a 90˚ interbeam angle with one system oriented in the medial-

lateral direction, parallel to horizontal and the second system in the anterior-posterior direc-

tion, 8˚ above the horizontal (Fig 2). Radiographic images were obtained with the following

technique: 78–82 kV, 630 and 200 mA (medial-lateral and anterior-posterior systems, respec-

tively), 5.07 ms, at 60 Hz and 167 cm SID [27]. A radiographic, wedge filter was used for the

flexion trials for the medial-lateral system and for both systems for the lateral bending trials.

Passive motion of the pelvis was elicited by a long-handled apparatus and harness to simulate

two trials of lumbar flexion (from an extended position) and lateral bending–the average trial

time was 1.43 seconds. Calibration and undistortion were completed as described above.

Static bead centroid identification analysis. A reliability analysis was conducted to deter-

mine the consistency with which bead centroids could be identified on the CT scan. Five sepa-

rate raters reviewed the cadaveric specimen’s CT multiplanar reconstructions in Mimics and

identified the centroids of 12 beads (four beads per level: C4—C6) on three separate occasions.

Dynamic bead tracking validation. A custom, vertebral-sized, acrylic, validation block

with six tantalum beads (1.6 mm) of known locations was precision-milled (<0.025 mm) to

determine the error associated with dynamic bead tracking (Fig 3). From the known six beads

coordinates, two orthogonal coordinate systems with known offsets were created (three beads

for each coordinate system). The spacing of the beads within the validation block was chosen

based on approximate vertebral RSA bead locations. This setup provides a more representative

estimate of error than using only average inter-bead distances. The validation block was then

moved through the biplane field of view to determine dynamic bead tracking error with the

following technique: 50 kV, 63 mA, 3.57 ms, at 60 Hz and the same biplane setup as the cervi-

cal spine collection above. Bead centroids, and subsequently the offset between coordinate sys-

tems, were tracked throughout the dynamic trial and compared to the known coordinate

system offset [28].

Data analysis

A single initial bone location was manually placed using the graphical user interface in Auto-

scoper for each trial (Brown University, RI, USA). This position was input into a custom, auto-

mated 2D/3D shape-matching code to generate digitally reconstructed radiographs (DRR)

using a standard ray casting approach (MATLAB, R2016B; The MathWorks, Inc.; Natick, MD,

USA). A custom, automated 2D-3D image registration algorithm (Nelder-Mead Simplex opti-

mization, maximizing a normalized cross-correlation similarity measure) was used to shape-

match the DRR onto the biplane radiographic images [29]. The output of the 2D/3D shape-

matching algorithm was segmental (C4, C5, C6 and L3, L4) and relative intersegmental (C4/C5,

C5/C6, and L3/L4) position and orientation. Resulting bone positions and orientations were

visualized in Autoscoper to qualitatively confirm appropriate shape-matching alignment of the

DRR to the radiographic projections. Following visual inspection, the L3 level for each trial of

lateral bending required additional manually-set frames beyond the single initial-frame to
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maximize alignment. A portion of one of these trials required manual shape-matching of six

frames (out of 61 total analyzed frames) in Autoscoper, as it did not successfully auto-track

with the algorithm.

Flexion trials were exported as a Y-X’-Z” sequence and lateral bending trials as a X-Z’-Y”

sequence and filtered with a low-pass, fourth-order Butterworth filter with a cutoff frequency

of 3 Hz in MATLAB (dynamic validation block tracking data was not filtered). A bead-based

coordinate system was constructed for each vertebra and compared to the anatomic coordinate

system to determine the transformation between the RSA and shape-matching output at each

level. The output of the 2D/3D shape-matching algorithm was then compared directly to the

RSA output for each frame of each trial. The overall output was reported across all trials and

levels and each trial was weighted based on the number of frames of that trial. The ASTM

International standards were used for reporting bias and precision when representing the dif-

ferences between all frames of the 2D/3D shape-matching algorithm output and RSA output

[30]. According to ASTM International, bias is “the difference between the expectation of the

test results and an accepted reference value” and precision is “the closeness of agreement

between independent test results obtained under stipulated conditions. . . expressed in terms of

imprecision and computed as a standard deviation of the test results” [30]. For each direction

Fig 3. Validation block. Vertebral-sized, acrylic, validation block with tantalum beads and two associated coordinate

systems. Dimensions/coordinates shown are in mm.

https://doi.org/10.1371/journal.pone.0228594.g003
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of motion (flexion and lateral bending), the mean difference and the square root of the average

variance and mean square error across all trials and levels was calculated to represent bias, pre-

cision, and Root Mean Square Error (RMSE), respectively. RMSE was calculated to represent

the overall quality of agreement between the two methods.

Monte Carlo Simulation: Two Monte Carlo simulations were conducted to quantify how

error in bead centroid digitization impacts the accuracy of RSA as a gold standard. Each

Monte Carlo simulation was repeated 10,000 times to determine a stable estimate of errors.

Two major components of error associated with RSA were considered: 1) error due to static

bead centroid identification from CT and 2) error due to radiographic dynamic bead tracking.

Both simulations randomly varied the bead centroid coordinates along all three axes (X, Y, Z)

for all beads and at each cervical spine level (C4—C6). The degree of variation was determined

through random sampling from one of two distributions: 1) errors due to static bead centroid

identification were randomly sampled from a normal distribution defined from the bead cen-

troid reliability data; zero was used as the mean of this distribution as the actual “absolute

truth” location of the bead centroids was unknown; and 2) errors due to dynamic bead track-

ing were randomly sampled from a normal distribution defined using the bias and precision

values from the validation block dynamic bead tracking data. New local coordinate systems

were then created from these simulated bead coordinates and compared to the reference coor-

dinate system, then transformed to the anatomic coordinate system to determine the transla-

tional and rotational error associated with RSA. For each simulation, the mean difference and

the square root of the average variance and mean square error across levels (C4/C5, C5/C6)

was calculated to represent bias, precision, and Root Mean Square Error (RMSE), respectively.

Results

Shape-matching vs. RSA

Mean bias, precision, and root mean square error (RMSE) of the kinematic differences between

shape-matching and RSA across all spinal levels and trials for each motion at the segmental and

intersegmental level are displayed in Tables 1 and 2.

Cervical spine (Table 1). For flexion trials; mean RMSE was 0.32 mm and 0.85˚ for seg-

mental motion, and 0.35 mm and 1.18˚ for intersegmental motion. This corresponded to a

mean bias (± precision) of -0.18 mm (± 0.08 mm) and 0.11˚ (± 0.43˚) for segmental motion,

and -0.07 mm (± 0.16 mm) and -0.01˚ (± 0.56˚) for intersegmental motion. For lateral bending

trials, mean RMSE was 0.23 mm and 0.66˚ for segmental motion, and 0.33 mm and 0.87˚ for

intersegmental motion. This corresponded to a mean bias (± precision) of -0.12 mm (± 0.11

mm) and -0.02˚ (± 0.37˚) for segmental motion, and 0.07 mm (± 0.22 mm) and 0.14˚ (± 0.51˚)

for intersegmental motion. The mean total range of motion per trial across analyzed cervical

spine levels and motions was 25.3˚ (± 8.8˚), with a mean rotational velocity of 8.3 degrees/sec-

ond (± 2.7 degrees/sec).

Lumbar spine (Table 2). For flexion trials, mean RMSE was 0.57 mm and 0.43˚ for seg-

mental motion, and 0.64 mm and 0.62˚ for intersegmental motion. This corresponded to a

mean bias (± precision) of -0.21 mm (± 0.29 mm) and 0.17˚ (± 0.26˚) for segmental motion,

and -0.20 mm (± 0.38 mm) and 0.45˚ (± 0.38˚) for intersegmental motion. For lateral bending

trials, mean RMSE was 0.56 mm and 0.57˚ for segmental motion, and 0.82 mm and 0.77˚ for

intersegmental motion. This corresponded to a mean bias (± precision) of -0.18 mm (± 0.32

mm) and 0.09˚ (± 0.39˚) for segmental motion, and -0.38 mm (± 0.50 mm) and 0.24˚ (± 0.48˚)

for intersegmental motion. The mean total range of motion per trial across analyzed lumbar

spine levels and motions was 24.5˚ (± 5.9˚), with a mean rotational velocity of 19.6 degrees/sec-

ond (± 9.4 degrees/sec).
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Static bead centroid identification and dynamic bead tracking error. The results of the

static bead centroid reliability assessment were averaged across the three trials for each rater.

Interrater reliability was calculated as the standard error of the measurement (SEM) and was

0.12 mm. The results of the dynamic bead tracking analysis with the validation block are

Table 2. Lumbar spine summary of means.

Flexion Segmental Intersegmental

Rotation (degrees) LB (X) FE (Y) AR (Z) LB (X) FE (Y) AR (Z)

Bias 0.22 0.34 -0.05 0.35 0.73 0.26

Precision 0.23 0.25 0.31 0.40 0.31 0.42

RMSE 0.37 0.57 0.35 0.56 0.80 0.49

Translation (mm) AP (X) ML (Y) SI (Z) AP (X) ML (Y) SI (Z)

Bias -0.57 0.30 -0.37 0.13 0.16 -0.90

Precision 0.22 0.35 0.30 0.27 0.53 0.34

RMSE 0.62 0.47 0.62 0.35 0.59 0.97

Lateral Bending

Rotation (degrees) LB (X) FE (Y) AR (Z) LB (X) FE (Y) AR (Z)

Bias 0.22 0.27 -0.21 0.05 1.02 -0.34

Precision 0.50 0.22 0.44 0.54 0.29 0.62

RMSE 0.55 0.62 0.53 0.54 1.06 0.71

Translation (mm) AP (X) ML (Y) SI (Z) AP (X) ML (Y) SI (Z)

Bias -0.50 0.10 -0.15 0.20 -0.20 -1.13

Precision 0.22 0.46 0.28 0.40 0.80 0.30

RMSE 0.55 0.50 0.63 0.45 0.83 1.17

Bias, precision, and RMSE for all levels (L3-L4) and all motion trials for kinematic differences between shape-matching and RSA weighted by trial length. Lateral

Bending (LB), Flexion/Extension (FE), Axial Rotation (AR), Anterior-Posterior (AP), Medial-Lateral (ML), Superior-Inferior (SI).

https://doi.org/10.1371/journal.pone.0228594.t002

Table 1. Cervical spine summary of means.

Flexion Segmental Intersegmental

Rotation (degrees) LB (X) FE (Y) AR (Z) LB (X) FE (Y) AR (Z)

Bias -0.49 0.35 0.48 -0.34 0.54 -0.23

Precision 0.36 0.57 0.35 0.50 0.80 0.39

RMSE 0.81 1.09 0.64 1.26 1.80 0.49

Translation (mm) AP (X) ML (Y) SI (Z) AP (X) ML (Y) SI (Z)

Bias -0.46 0.10 -0.18 0.17 -0.24 -0.15

Precision 0.06 0.07 0.12 0.19 0.15 0.15

RMSE 0.48 0.23 0.24 0.42 0.28 0.34

Lateral Bending

Rotation (degrees) LB (X) FE (Y) AR (Z) LB (X) FE (Y) AR (Z)

Bias -0.15 -0.20 0.30 -0.11 0.64 -0.10

Precision 0.24 0.63 0.23 0.32 0.88 0.34

RMSE 0.33 1.16 0.50 0.42 1.44 0.76

Translation (mm) AP (X) ML (Y) SI (Z) AP (X) ML (Y) SI (Z)

Bias -0.07 -0.25 -0.04 0.25 -0.11 0.08

Precision 0.07 0.08 0.18 0.26 0.15 0.25

RMSE 0.19 0.28 0.21 0.49 0.21 0.29

Bias, precision, and RMSE for all levels (C4-C6) and all motion trials for kinematic differences between shape-matching and RSA weighted by trial length. Lateral

Bending (LB), Flexion/Extension (FE), Axial Rotation (AR), Anterior-Posterior (AP), Medial-Lateral (ML), Superior-Inferior (SI).

https://doi.org/10.1371/journal.pone.0228594.t001
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displayed in Table 3. The results of the Monte Carlo simulation for the error associated with

the static bead centroid identification and dynamic bead tracking are found in Table 4. The

overall range of RMSE associated with static bead centroid identification variability was 0.14–

0.69 mm and 0.96–2.33˚. The overall range of RMSE associated with dynamic tracking of the

validation block was 0.25–1.19 mm and 1.69–4.06˚.

Discussion

The aim of this study was to validate our laboratory’s custom biplane radiography system and

automated 2D/3D shape-matching algorithm relative to the gold standard RSA, in a cadaveric

specimen; and estimate the magnitude of two sources of error associated with RSA. Our sys-

tem’s overall RMSE at the cervical spine ranged between 0.21–0.49 mm and 0.42–1.80˚ and

at the lumbar spine ranged between 0.35–1.17 mm and 0.49–1.06˚ for flexion and lateral bend-

ing motions. Results for both of these validations are reasonable given the results of previous

works [14, 16, 20, 21], although differences in methods, analysis, and subjects make direct

comparison challenging and limited.

Anderst et al. examined cervical spine 2D/3D shape-matching against RSA in human sub-

jects undergoing cervical spine fusion and found an average segmental tracking precision of

0.19 mm for non-fused bones and an average intersegmental tracking precision of 0.4 mm

and 1.1˚ for all bones including fused bones for flexion/extension and axial rotation [16].

Table 3. Validation block summary of means.

Rotation (degrees)

Bias 0.03

Precision 0.49

RMSE 0.49

Translation (mm)

Bias 0.03

Precision 0.21

RMSE 0.21

Summary of mean bias, precision, and root mean square error (RMSE) of the validation block dynamic bead tracking

trial across all rotations and translations for tracking two orthogonal coordinate systems.

https://doi.org/10.1371/journal.pone.0228594.t003

Table 4. Monte Carlo simulation results.

Bead Centroid ID Dynamic Bead Tracking

Rotation (degrees) LB (X) FE (Y) AR (Z) LB (X) FE (Y) AR (Z)

Bias 0.00 0.01 0.01 0.00 0.00 0.03

Precision 1.05 2.33 0.96 1.83 4.06 1.69

RMSE 1.05 2.33 0.96 1.83 4.06 1.69

Translation (mm) AP (X) ML (Y) SI (Z) AP (X) ML (Y) SI (Z)

Bias 0.01 0.00 0.01 -0.02 0.00 0.04

Precision 0.69 0.35 0.14 1.19 0.62 0.25

RMSE 0.69 0.35 0.14 1.19 0.62 0.25

Results of a 10,000 sample Monte Carlo simulation for associated errors related to static bead centroid identification and validation block dynamic bead tracking.

Summary of means: bias, precision, and RMSE across levels (C4/C5, C5/C6). Lateral Bending (LB), Flexion/Extension (FE), Axial Rotation (AR), Anterior-Posterior

(AP), Medial-Lateral (ML), Superior-Inferior (SI).

https://doi.org/10.1371/journal.pone.0228594.t004
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McDonald et al. examined cervical spine bone model 2D/3D shape-matching against RSA in

an ovine specimen for flexion/extension and axial rotation and found overall intersegmental

translational bias to be within 0.56 mm, precision to be less than 0.15 mm, and RSME to be

less than 0.56 mm [14]. In the same study, intersegmental rotational bias was found to be

within 0.89˚, precision to be less than 0.26˚, and RSME to be less than 0.90˚ [14]. The present

study found comparable values to Anderst et al.; however, both precision and RMSE values

were higher than McDonald et al. Potential differences in bead placement, testing setup, and

differences between human and ovine anatomy make the results difficult to compare directly,

but may explain some of the difference between studies.

Previous lumbar spine 2D/3D shape-matching versus RSA validation works have been

done by Wu et al. in a cadaveric model and Dombrowski et al. in vivo [20, 21]. Wu et al. exam-

ined an MRI bone model 2D/3D shape-matching at five positions throughout flexion and

extension and found the average biplane shape-matching bias of a single segment/bone to be

within 0.30 mm and 0.74˚ and precision to be within 0.39 mm and 0.83˚ across all planes of

motion when compared to RSA [20]. Dombrowski et al. found precision values to between

0.2–0.3 mm for translation and 0.4–0.5˚ for rotation [21].

Cervical and lumbar spine accuracy measures for both motions were particularly sensitive

to error about the flexion/extension axis. Anderst et al. had similar findings with an anterior

approach for bead implantation at the cervical spine and a flexion/extension motion [16]; how-

ever, other validations have not examined lateral bending for which to compare the results

herein. The high flexion/extension axis error was also found in the Monte Carlo simulation,

suggesting some of the error attributed to shape-matching may be related to the anterior surgi-

cal approach, which resulted in placement of the RSA beads primarily along the flexion/exten-

sion axis. Overall, the results reported herein support our ability to continue into human

subject collection at the cervical and lumbar spine.

To better understand the error associated with edge effects from the image intensifier, we

also examined the overall rotational and translational error magnitudes relative to the distance

of the bone from the center of the image intensifiers for the cervical (Fig 4) and lumbar spine

Fig 4. C4 distance from center of image intensifiers compared to tracking error. Overall rotational (degrees) and translational

(mm) error magnitude is plotted against the distance of spinal level C4 relative to the center of the image intensifier (II) for each trial

of flexion extension (FE) and lateral bending (LB) and each camera (1 and 2).

https://doi.org/10.1371/journal.pone.0228594.g004
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(Fig 5). We selected levels C4 and L4 as the representative levels for each motion type. From

the review of the data in Figs 4 and 5, it is apparent that there are occasions when there does

appear to be a trend of increasing error with greater distance from the center of the image

intensifiers (Fig 4: Flexion/Extension trials 1–3 for rotational error in both Cam1 and Cam2);

however, this does not appear to be a consistent trend amongst other trials. With that said,

given the nature of radiographic imaging, it is still the best practice to seek to ensure that the

region of interest remains as close as possible to the center of the image intensifiers during

data collection.

The current study also found that the current gold standard for validation, RSA, may be sen-

sitive to static bead centroid identification and dynamic bead tracking errors, which may result

in RMSE values more than double what was found in the validation portion of this study. A pre-

vious study has reported an RSA precision of 0.09 mm at the cervical spine for implanted bead

tracking [16]; however, as Anderst et al. notes, this is not an ideal gold standard as the precision

of any reference should be “an order of magnitude better” than what it is being compared to

[16]. Additionally, because RSA is dependent upon the same radiographic technology as shape-

matching, both methods are prone to the same sources of imaging errors (e.g. calibration, undis-

tortion). Precision values for the rigid validation block (0.21 mm) were higher than those found

in previous studies tracking implanted beads (including 0.09 mm at the cervical spine [16], 0.06

mm in canine knees [22], 0.12 mm for tibiofemoral tracking [23], 0.18 mm for the lumbar spine

[19]); however, these works only examined inter-bead distances, not the tracking of the origin

of two coordinate systems, which is what is done for kinematic analysis. In the present study,

the average of all inter-bead distances yielded a precision of 0.10 mm, which is comparable to

previous studies. Bias for the rigid validation block dynamic tracking coordinate systems was

0.03 mm and the average of all inter-bead distances was 0.04 mm; comparable to previous stud-

ies which found no bias at the cervical spine [16], -0.02 mm in canine knees [22], and 0.08 mm

for tibiofemoral tracking [23]. Therefore, the higher errors associated with the Monte Carlo

Fig 5. L4 distance from center of image intensifiers compared to tracking error. Overall rotational (degrees) and translational (mm) error

magnitude is plotted against the distance of spinal level L4 relative to the center of the image intensifier (II) for each trial of flexion extension (FE) and

lateral bending (LB) and each camera (1 and 2).

https://doi.org/10.1371/journal.pone.0228594.g005
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simulation suggest the traditional method of establishing RSA validity (i.e. inter-bead distances)

does not fully capture the errors associated with RSA.

This is the first study to the authors’ knowledge to specifically quantify the error associated

with coordinate system bead tracking of RSA and bead centroid identification in relation to

biplane radiography validation in the spine. When considering bead associated error the dis-

tances between the beads and the arrangement of the beads must also be considered, as closer

bead approximations and linear arrangements will magnify angular centroid misidentification

error. Therefore, RSA errors are likely greater in the spine due to the anatomical size. Although

this study only examined sensitivity with 1.6 mm tantalum beads, it is likely that alternative

sized beads will have different sensitivity for both dynamic and static errors.

The present study has limitations. One cadaveric specimen with a BMI of 21.7 was used for

analysis with passive motion applied to the cervical and lumbar spine. The tracking algorithm

is likely robust enough to track cervical spine kinematics in a larger individual, but tracking

lumbar spine will be more challenging. Although soft tissues were left intact to best simulate

in vivo conditions, it is understood that in vivo tissue quality and the effects of active/muscular

motion generation are not necessarily represented. The beads were inserted into the anterior

vertebral bodies at the cervical spine and the posterior elements of the lumbar spine due to the

type of surgical approach. This resulted in close bead approximation, coronal plane arrange-

ment, and possible magnification of error in generating the local coordinate systems. For the

lumbar spine collection, the motion was carried out in an inverted position, which is not con-

sistent with typical physiologic motion. Additionally, this validation work only examined

imposed motion in two cardinal planes (no axial rotation) at spinal levels C4-C6 and L3-L4;

therefore the validity of these methods in regards to other spinal levels, especially higher cervi-

cal levels due to occlusion from the mandible, cannot be determined from this present work.

The custom 2D/3D shape-matching algorithm was not able to resolve the lumbar spine lateral

bending trials from a single initial guess and required subsequent guesses, and in one particular

case of an L3 lateral bending trial, required manual shape-matching for 10% of the frames of

motion. This study examined two potential sources of RSA error reported in isolation; how-

ever, it should be noted that these two sources of error exist concurrently. Also, we did not

examine another potential source of error associated with this process, which is the reliability

of anatomic landmark identification. Tashman et al. examined anatomical landmark placement

reliability and found the average standard deviation to be between 0.28–0.35 mm for femoral

landmarks applied to bone models, which suggests a further level of variability when consider-

ing the overall error of this process [22]. Future validation studies may be worthwhile. Potential

alternatives to RSA validation could include cortical bone pins or utilization of a material test-

ing machine; however, these techniques are either limited to invasive studies or ex vivo collec-

tions [17]. Furthermore, these results suggest that 2D/3D shape-matching itself may potentially

be of comparable accuracy to the traditional gold standard of RSA, as this method relies heavily

on proper identification of the bead centroids rather than registration of an entire bone.

Biplane radiography allows for assessment of osteokinematic detail that is not possible with

other technologies. Traditional imaging has 2D, static, or constrained space limitations, whereas

biplane radiography has the versatility to be conducted in functional positions and dynamically

with a high-rate of capture and 3D output. Despite these advantages, there are a number of limi-

tations associated with radiographic technology that should be acknowledged. These include

high initial cost and a significant level of experience and support required to operate the system.

As this study demonstrates, there are potential challenges associated with validation to the cur-

rent gold standard of RSA. Additional considerations including radiation exposure, multiple-

step analysis, potential for summation of error, and limited field of view within the biplane sys-

tem will need to be addressed in subsequent studies.
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In summary, this study demonstrates the validity and accuracy of our laboratory’s biplane

radiographic data acquisition and custom 2D/3D shape-matching algorithm; establishing the

groundwork for our lab to proceed into in vivo applications at the spine. Furthermore, the

potential limitations associated with the present gold standard (RSA) are analyzed in detail

related to bead centroid identification and dynamic bead tracking error. These results suggest

that the true accuracy of the 2D/3D shape-matching approach may be influenced by the under-

lying error associated with RSA and that these errors should be considered when interpreting

biplane validation results.
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