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Huntington’s disease (HD) is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the
huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in
the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise
mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different
aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin,
and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic
strategies that have been tested to date.

1. Introduction

Huntington’s disease (HD is an inherited autosomal-domi-
nant disorder characterised by loss of motor control, cogni-
tive decline, psychiatric disturbances, and dementia, which
progresses towards death within approximately 20 years of
disease onset [1]. It is caused by an expansion of a CAG
repeat in the huntingtin gene (Htt) that results in synthesis of
an aberrant polyglutamine tract in huntingtin protein (HTT)
and leads to neuronal dysfunction and neurodegeneration
[2]. GABAergic medium-sized spiny neurons in the striatum
are found to be most profoundly affected [3]; neuronal loss
in the cerebral cortex, hippocampus, hypothalamus, substan-
tia nigra, and in other brain structures has also been reported
[4].

The mechanism by which the mutant huntingtin (mHtt)
causes HD is still poorly understood. Normal HTT has been
shown to have multiple distinct functions in cells, including
antiapoptotic activity [5–7], roles in vesicular transport [8–
11], neuronal gene transcription regulation [12, 13], and
control of synaptic transmission [14, 15]. Consequently, the
expression of long glutamine stretches either in the context of
an N-terminal fragment or full-length HTT disrupts a wide

variety of biological functions in cellular as well as animal
models.

To date, many animal models have been developed that
closely mimic HD symptoms or pathology. Rodents (mouse,
rat) and nonhuman primates have been used most exten-
sively to test HD gene therapy strategies. In general, HD
animal models can be divided into chemically induced
and genetic models. The chemically induced HD models
include excitotoxic lesion models (glutamate-, kainic acid-,
quinolinic acid- (QA-) induced) [16–19] and mitochondrial
dysfunction models (3-nitroprionic acid (3-NP), malonate
induced) [20–22]. Since HD is known to be a hereditary dis-
order, genetic models aim to mimic the molecular pathogen-
esis of HD more closely than that of chemical lesion models.
The main types of genetic HD models are represented by
transgenic (bearing the full-length or N-terminal fragment
of Htt in their genome) [23, 24] and knock-in (expressing
pathological length CAG repeat inserted into endogenous
Htt gene) [25–27] animals.

The majority of therapeutics currently used to treat HD
are designed to ameliorate the symptomatology of the condi-
tion, that is, psychiatric agents for the control of behavioural
symptoms, motor sedatives, cognitive enhancers [28–30],
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and neuroprotective agents [31–37]. These drugs have lim-
ited benefits and do not address the disease progression.
Meanwhile, gene therapy provides promising approaches in
treating HD, and sidesteps the need to understand how
expression of the expanded CAG repeat in Htt causes the
disease. These can be broadly classed into strategies involving
(i) increasing expression levels of growth factors, (ii) decreas-
ing levels of mutant HTT, and (iii) restoring cell metabolism
and transcriptional balance.

2. Neuroprotective and Neuroregenerative
Approaches for HD

Since the behavioural phenotypes in HD arise from a pro-
gressive loss of mainly striatal and cortical neurons, neuro-
protection and neurorestoration are one of the major gene
therapy approaches being developed. Early gene therapy
strategies for HD focused on the delivery of neurotrophic
factor genes as a direct means for protecting vulnerable stri-
atal neurons against mutant HTT-mediated toxicity. Other
alternatives have included delivery of molecules aimed at
directing neurogenesis—the production of new adult neu-
rons to replace neurons lost in the disease [38].

Neurotrophic factors prevent cell death in degenerative
processes and enhance growth and function of neurons. Sev-
eral neurotrophic factors have shown promise as therapeutic
agents in cell lines and animal models. Nerve growth factor
(NGF) was the first trophic factor evaluated in an excitotoxic
rodent model of HD. However, the potent protection from
degeneration with nearly two-thirds of the neurons in the
QA-injured striatum rescued was found only when NGF
was delivered into striatum by ex vivo modified cell grafts
[39–42], but not when it was infused directly [43, 44].
The infusions provided neuroprotection to the cholinergic
neuron population within the striatum while GABAergic
neurons that are preferentially vulnerable in HD were not
protected. Alternative growth factor candidates have also
been evaluated and beneficial effects were found with deliver-
y of neurturin (NTN) and glial cell line-derived neurotrophic
factor (GDNF). Adenoassociated virus- (AAV-) delivered
NTN reduced the extent of striatal neuronal cell death (24%
cell loss in the NTN-treated group versus ≈43% in control
groups), and attenuated functional disability associated with
striatal lesions produced by 3-NP infusion. Locomotor co-
ordination as assessed by performance on the accelerating
rotarod of animals expressing the NTN-producing transgene
was similar to those of unlesioned animals [45]. Similarly,
AAV-mediated delivery of GDNF in rat [46] and mouse
[47] models of HD has been shown to provide structural
and functional neuroprotection, promoting approximately
70% neuron survival as compared to untreated animals and
improving behavioural performances at the platform and
the hind limb clasping tests to a near normal level. Ex vivo
delivery of GDNF also reduced neuronal death and main-
tained motor functions, although to a lesser extent. This was
attributable to lower levels of transgene expression compared
to those achieved by direct in vivo viral-mediated gene
transfer, also, GDNF expression appeared limited to the area
immediately surrounding the transplant core, and only 1%

of total cells injected survived 3 months after transplantation
[46]. Interestingly, intrastriatal lentivirus-mediated delivery
of GDNF did not ameliorate neurological and behavioural
impairments in the R6/2 transgenic mice model of HD [47].
This might be due to the incorrect timing of the treatment
administration: GDNF overexpression might have been
initiated too late in the course of the disease, when mutant
huntingtin may already have triggered an irreversible patho-
genetic process. Also, dependence of the neuroprotective
effect on the particular mechanism of cell death in transgenic
versus chemical HD models may be possible.

Encouraging results were obtained following ciliary
neurotrophic factor (CNTF) infusion. Although lentiviral-
mediated overexpression of CNTF in the striatum of YAC72
mice, a genetic mouse model of HD, reduced hyperactivity
in 5 and 8 month old mice, no differences in rotarod per-
formance or feet-clasping was found compared to controls
[48]. In excitotoxic rodent and primate models, CNTF pro-
vided significant neuroprotection when delivered by means
of genetically modified baby hamster kidney (BHK) cell
grafts encapsulated in semipermeable membrane [49], os-
motic minipump [50], lentiviral [51] and adenoviral [52]
transfer represented by a 52–64% reduction in lesion vol-
umes and twice as big cell survival rate versus control groups.
The experiments using the first technique showed either
no difference or only a slight difference in neuron density
between CNTF-treated and unlesioned brains, except for
the lateral caudate where the decrease in density was
11% for NeuN-immunoreactive and 18% for calbindin-
immunoreactive neurons. CNTF-expressing BHK cell grafts
were also employed in a phase I clinical study involving a
small number of HD patients. Whilst no side effects were
observed over a period of 2 years, no clinical benefit was
observed in these patients, most likely due to the low
amounts of CNTF release produced by many of the capsules
and low survival of the encapsulated cells [53].

Much research on HD has focused on brain-derived neu-
rotrophic factor (BDNF), which is considered to be the main
candidate for neuroprotective therapeutic strategies for HD.
BDNF has been shown to modulate the onset and severity
of motor and cognitive functions in HD mouse models [54–
56]. Mutant huntingtin reduces the transcriptional activity of
the BDNF promoters, thus reducing the synthesis of BDNF
protein in the cerebral cortex [12, 13], where approximately
95% of striatal BDNF is produced before being transported
to its striatal targets via the corticostriatal afferents. It has
also been reported that HD patients have lowered levels of
BDNF in the cerebral cortex and striatum [57], and BDNF
levels are also decreased in many mouse and cell models of
the disease [58]. Adenoviral (Ad) vector-mediated delivery
of BDNF reduced the size of QA-induced lesions in rats by
one half, with 64% of medium spiny projection neurons
surviving in Ad/BDNF-treated animals compared to 46% of
those in controls [59]. AAV-mediated delivery of BDNF in
similar excitotoxic rat model also provided neuroprotection
to vulnerable striatal neurons (71–78% versus 48–54% of
preserved cells as shown by NeuN and calbindin immunore-
activity in BDNF-treated versus untreated striata, resp.) [60]
and ameliorated motor dysfunction in tests designed to
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show hemispherical imbalances in brain function resultant
of unilateral QA lesioning [61]. In contrast, neither ex vivo
BDNF gene delivery [41, 62], nor direct BDNF protein in-
fusion [50] has proved efficient in preventing the loss of
striatal projection neurons following lesioning, presumably
as the dosage of BDNF delivered may not have been sufficient
to provide neuroprotection.

Although increasing BDNF expression by means of viral
vectors has led to encouraging results, a number of issues still
remain to be resolved, as excess expression of the BDNF
transgene can have a deleterious effect on neuronal circuits
and learning and memory [63], and some of the vectors are
toxic per se and can cause tumour formation due to acciden-
tal insertional mutagenesis [64]. Furthermore, the questions
of timing relative to intervention in the disease process, and
anatomical location with respect to administration of the
vector, must be addressed before applying the approach in
patients, as transport of a transgene in axonal tracts could
lead to unexpected side effects [65, 66].

3. Therapeutic Strategies Targeting
Mutant Huntingtin

More recently, the development of effective gene silencing
approaches using RNA interference technology has led to
evaluation of strategies aimed at selectively reducing mutant
Htt expression. This is an attractive approach to therapy as
it sidesteps the requirement to understand the mechanism
by which mutant Htt causes the disease pathology. The
therapeutic promise of this direct approach is underpinned
by a pivotal study demonstrating that repression of mHtt
expression in a conditional mouse model could reverse the
pathological features of the disease including formation of
neuronal inclusions and abnormal motor behaviour [67].
Thus decreasing abnormal mHtt load using this approach
during the disease course might facilitate better protein clear-
ance by affected neurons and allow neurons to normalise
changes induced by mHtt. Moreover, the ability to instigate
treatments prior to onset of disease symptoms that is af-
forded by genetic screening for individuals that have inher-
ited the HD mutation allows greater opportunity to make
a significant impact on disease progression, when neuronal
dysfunction might be prevalent but significant neurodegen-
eration and depletion of cortical and striatal neuron popula-
tions are yet to take place.

Modified antisense short nucleotide technology provides
fascinating opportunities for development of nucleic acid-
based therapeutics. Peptide nucleic acid (PNA) peptide
conjugates and locked nucleic acid (LNA) oligomers were
found to be potent and allele-selective inhibitors of mutant
Htt expression in HD human cell lines. PNAs are DNA/RNA
mimics with an uncharged amide backbone, that increases
the affinity of PNA hybridization and facilitates recognition
of RNA target, and LNA is an RNA analogue that contains
a methylene bridge between the 2′-oxygen and 4′-carbon of
the ribose, which reduces the conformational flexibility of
the ribose and confers outstanding affinity to complemen-
tary hybridization. A comparison in the same model cell line
revealed that inhibition by PNAs and LNAs that target CAG

repeats is more effective than inhibition by an siRNA that
targets a deletion polymorphism [68].

Early RNA interference-based approaches involved tar-
geted knockdown of mHtt transcripts using species-specific
short hairpin (shRNA) or short-interfering RNA (siRNA) in
HD transgenic mouse models. Sequence differences between
mouse host and human genes allowed allele-specific silenc-
ing of the pathogenic human Htt transcripts in the setting
of preserved expression of endogenous Htt. Intraventricular
infusions of lipid-encapsulated [69] or intrastriatal injections
of cholesterol-conjugated [70] siRNAs effectively silenced
mutant huntingtin transcripts by≈70% leading to a 56–66%
reduction in HD protein levels. As a consequence, numbers
and the size of intranuclear inclusions were decreased, and
R6/2 transgenic mice and mice with the AAV-mediated Htt
expression, respectively, showed improved performance in
motor tests including beam walking and an accelerating
rotarod.

One of the major hurdles for gene silencing is effective
delivery of siRNA sequences to affected cells. The chronic
nature of this disease suggests that continuous and long-term
expression of siRNA will be required. This can be achieved
by chronic infusion but whether lifelong infusion can be
tolerated is unclear. An alternative approach is to use viral
vectors to achieve long-term expression of shRNA molecules.
AAV-mediated brain delivery of shRNA directed against
human mutant Htt decreased mutant huntingtin mRNA and
protein levels by 51–78% and 28–50%, respectively, reduced
numbers of aberrant nuclear inclusions, and improved
disease-associated behaviours such as the feet-clasping phe-
notype in HD mice and rotarod performance as well as
spontaneous exploratory forepaw use in rats [71–73]. In the
context of a lentiviral vector gene delivery system, shRNA
targeted to the human Htt mRNA reduced Htt mRNA
levels by more than 80% and almost completely prevented
loss of dopamine and cAMP-regulated phosphoprotein-32
(DARPP-32) expression, and restored deficits in striatal glu-
cose metabolism and mitochondrial complex II activity in a
rat HD model. Expression of shRNA after appearance of HD
pathology also produced a drastic reduction in the lesion size,
associated with a partial clearance of HTT inclusions [74].

While the results of these proof-of-concept studies are
encouraging, one challenge in extending this concept to
human HD subjects is the potential requirement to develop
approaches that selectively silence the mutant allele whilst
leaving the normal allele intact. Normal huntingtin has roles
in axonal guidance, cAMP signaling, long-term potentiation/
depression, and calcium and glutamate signaling, raising
concerns about potential toxicity resulting from loss of hunt-
ingtin, function [58]. Moreover HD gene knockout in mice
causes developmental defects and embryonic lethality [75–
77]. However, humans that are homozygote for the HD
mutation [78, 79] and knock-in mice [33, 80, 81] do exist,
despite expressing no normal huntingtin, suggesting knock-
down of normal Htt might be tolerated to some extent in the
adult brain. To determine whether silencing of the normal
allele might exacerbate mHtt pathology, Drouet et al. [74]
and Boudreau et al. [82] evaluated the effect of knockdown
sequences that would attenuate expression of both mutant
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and normal Htt alleles. Lentiviral vector-mediated expres-
sion of a pathogenic human htt171-82Q on a background
of reduced wild-type rat Htt levels did not produce any
differences in GABAergic neuron survival or HTT inclusion
load compared to rats that received the htt171-82Q alone
suggesting partial inactivation of the endogenous rat allele
did not increase the vulnerability of striatal neurons to mHtt.
Moreover, coincident nonallele-specific silencing of mHtt
and wild-type Htt is well tolerated in mice, with minimal
signs of toxicity for up to 9 months [74]. However in the
context of an AAV vector system, shRNAs have been asso-
ciated with toxicity, potentially due to saturation of cellular
RNAi processing mechanisms [82, 83] which may limit usage
of this technology. Interestingly, placing the identical siRNA
sequences into artificial miRNA backbones mitigates the
toxic effects markedly [82, 84]. Moreover, switching the RNA
interference mechanism toward that used by microRNAs
(miRNA) by introducing one or more mismatched bases into
these duplex RNAs might allow preferential silencing of the
mutant allele over the normal allele [85]. Transgenic HD-
171-82Q mice that received intrastriatal injections of an AAV
vector expressing an miRNA sequence (mi2.4) that silences
both mutant and wild-type mouse Htt mRNAs by ≈60%
showed significant improvements in rotarod performance as
compared to control-treated HD171-82Q mice. Moreover,
despite AAV1-mi2.4 failing to normalise the weight loss
observed in these animals, survival rates of these mice were
also increased [82].

An alternative approach might also involve targeting
disease-allele-linked small nucleotide polymorphisms (SNPs)
[86] or deletion polymorphisms [87]. This provides the op-
portunity to develop reagents selectively silencing the dis-
ease-causing allele. Many SNPs are prevalent on the mHtt
transcript [88], and it has been suggested that only 5 duplex
siRNAs would be sufficient to treat 75% of patients with
HD, although the need to develop several reagents may be
a complicating factor [89]. It is also unclear whether duplex
RNAs will be able to achieve sufficient allele selectivity and
potency in a therapeutic setting.

While these results are encouraging and suggest stringent
targeted knockdown of the mutant allele may not be necessa-
ry, these studies have also reported significant transcriptomic
changes in Htt-related molecular pathways when expression
of the wild-type huntingtin is inhibited [74, 82]. Boudreau
et al. [82] compared datasets of transcripts differentially
expressed by >2-fold following knockdown of normal Htt in
mouse striatum with a dataset obtained from early grade HD
patient caudate-putamen relative to their respective controls.
Ninety-two genes were found to be altered in both gene
sets. Interestingly, 41 of these showed changes in expression
level in the same direction and were enriched in pathways
involving developmental regulation of gene transcription.
Fifty-one other genes that were common to both gene sets
changed in the opposite direction and were enriched for
proteins involved in ion transport and synaptic transmission,
many of which are downregulated in human HD. These
authors propose that these transcriptional changes might
result from toxic gain of function aspect and that knocking
down both mutant and wild-type Htt might revert these

changes. However, a recent and extensive analysis of gene
expression changes altered by Htt deficiency compared with
the effect of the gain of function conferred by increasing
CAG repeat length suggests that it is important to understand
the biological processes affected by the lowering of normal
Htt expression [90]. Panels of mouse embryonic stem (ES)
cell lines engineered to express a full-length huntingtin
mouse homolog (Hdh) with a knock-in of CAG repeats of
increasing lengths were used to distinguish between gene
expression changes conferred by the CAG expansion to that
produced by loss of the endogenous Htt allele (Hdh null).
Microarray comparison between a gene set whose expression
was continuously altered with increasing CAG length with
that of a huntingtin-null gene set showed that there was
virtually no overlap in these gene sets suggesting the CAG
expansion confers a simple gain of a novel function as op-
posed to a mixed gain of function/loss of function mecha-
nism. Although the molecular responses are quite distinct,
the gene expression changes result in varying degrees of
interconnectedness at the network level. For example, path-
ways involved in the energy network such as carbohydrate
metabolism/glycolysis are more prominently affected by
CAG repeat length whereas oxidative respiration and tricar-
boxylic acid cycle pathways are more affected by huntingtin
deficiency [90]. These authors suggest that treatments aimed
at lowering the expression of the expanded CAG allele might
instead exacerbate the physiologic effects of the expanded
CAG repeat and thus gaining further insight into the bio-
logical processes affected by the lack of normal huntingtin
is important. Thus selectively reducing expression of the
disease-causing trigger without affecting the normal allele
would be a preferable approach.

An alternative to knocking down Htt mRNA expression
involves boosting the capacity of the cell to lower amounts
of mutant huntingtin protein. The neurodegenerative and
motor, cognitive, and psychiatric symptoms of HD typically
manifest in midlife suggesting that in the presymptomatic
phase, neurons are able to cope to some extent with the
expression of mutant huntingtin protein. In a conditional
transgenic mouse model of HD, blockade of mHtt fragment
expression in symptomatic mice leads to a disappearance of
inclusions and an improvement in behavioural phenotypes,
demonstrating that continuous production of the mutant
protein is required to maintain the disease process and
raising the possibility that HD may be reversible [67]. The
half-life and clearance of normal and mutant HTT has not
been studied in detail, however, enhancing the activity of
molecular chaperones can promote refolding of misfolded
proteins. For example, overexpression of one or both of the
chaperones HSP104 and HSP27 has been shown to suppress
mutant HTT-mediated neurotoxicity in a rat model of HD,
promoting 59% neuronal survival in vitro and reducing
striatal lesion by 35–65% in vivo [91]. Another therapeutic
strategy uses intracellular antibodies (intrabodies) to target
huntingtin. The intrabodies are recombinant antibodies
maintaining the diversity, high specificity, and high affinity
to the target site, characteristics of traditional antibodies,
but they are smaller in size and have been genetically engi-
neered to cross the blood-brain barrier and to function in
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the intracellular environment [92]. An intrabody approach
has been assessed in various mouse models of HD [93]. It
improved motor performance in the rotarod, beam crossing,
climbing, and feet-clasping tests, and strongly ameliorated
neuropathology including decreased numbers of striatal
aggregates and a 2–2.5-fold reduction in lesion size in the
intrabody-treated animals compared to untreated controls.
In addition, G-rich oligonucleotide-based techniques that
inhibit mutant HTT aggregation might also be of therapeutic
value. A 20-mer, all G-oligonucleotide (HDG) capable of
adopting a certain conformation, has been shown to block
aggregation of a fusion protein that contained an N-fragment
of huntingtin bearing an aberrant polyglutamine tract [94].

4. Strategies Promoting Cell Metabolism and
Restoring Transcriptional Balance

An important aspect of HD pathogenesis is the impact of
the mutant protein on mitochondrial function and cellular
bioenergetics. Reduced glucose utilisation and activities of
complexes of the electron transporter chain in the striatum
of advanced-grade HD subjects suggests a general metabolic
deficit in HD patients [95–98]. Additionally, the sensitivity
of medium spiny neurons to mitochondrial poisons such
as 3-NP suggests the disease is influenced by altered mito-
chondrial function [99]. Mutant HTT has direct and/or
indirect effects on mitochondria, compromising cellular
energy production and respiration that leads to a reduction
of the intracellular level of ATP, thus promoting apoptosis,
oxidative stress and susceptibility to excitotoxicity [100, 101].

Therapeutic agents that aim to ameliorate the cellular
energy deficits by enhancing energy production and im-
provement of mitochondrial function in HD are neuropro-
tective. Lentiviral-mediated overexpression of two subunits
of the succinate dehydrogenase (SDH) enzyme, the main
component of mitochondrial complex II, restores the mem-
brane potential and blocks neuronal death induced by mu-
tant huntingtin in murine cell model of HD [102]. Another
key target of mutant huntingtin is peroxisome proliferator-
activated receptor gamma coactivator-1 α (PGC-1α), a tran-
scriptional coactivator that regulates expression of genes
involved in mitochondrial biogenesis and oxidative phos-
phorylation [103]. PGC-1α expression levels are specifically
reduced in the caudate-putamen, the first region affected in
HD, in presymptomatic postmortem HD cases. Moreover,
a differential cellular expression pattern of PGC-1α is
found in the caudate-putamen, with decreased expression
in the vulnerable medium spiny neurons but upregulation
in nNOS-immunoreactive interneurons which are typically
spared in the disease [104, 105]. Decreased PGC-1α ex-
pression is due to mHtt-mediated repression of PGC-1α
transcription via interference of CREB/TAF4-dependent
regulation of PGC-1α gene expression. Inhibition of PGC1a
expression leads to altered expression of genes involved in
energy metabolism and diminished capacity of vulnerable
neurons in response to energy demands in HD [105]. Cui
et al. [105] determined whether genetic overexpression of
PGC-1α could protect against mHtt-induced mitochondrial
dysfunction and striatal toxicity. Direct administration of

lentiviral vector expressing PGC-1α into the striatum of
R6/2 transgenic HD mice completely prevented neuronal
atrophy, complementing in vitro data showing PGC-1α over-
expression reversed mitochondrial dysfunction in mutant
STHdhQ111 cells, and abrogated the toxicity of mHtt in
transfected primary striatal neurons, potentially through
inducing the expression of genes encoding reactive oxygen
species defence enzymes including Cu/Zn superoxide dis-
mutase (SOD1), manganese SOD (SOD2), catalase, and glu-
tathione peroxidase [105, 106]. This is in line with findings
showing overexpression of SOD1, and molecular chaperones
Hsp40 or Hsp70 in mutant HTT expressing mouse cells,
prevents oxidative stress-induced proteasomal malfunction,
mutant huntingtin aggregation, and cell death [107]. Wheth-
er PGC-1α overexpression results in improved survival and
motor performance in the R6/2 mice remains to be con-
firmed. These results suggest that stimulation of pathways
involved in energy metabolism controlled by PGC-1α by
pharmacological or genetic means could provide potential
clinical benefit at early stages of HD.

Huntingtin can interact with a number of transcrip-
tion factors, for example, cAMP-response element binding
(CREB) binding protein [108, 109], TATA-binding protein
(TBP) [110], Sp1 [111], and p53 [109, 112], and consequent-
ly, transcriptional dysregulation occurs in the presence of
mutant huntingtin [113]. One of the key genes, whose func-
tion is impaired in HD, is repressor element 1 silencing
transcription factor (REST), a global repressor of neuronal
gene expression, including BDNF. Disruption of REST target
gene expression might be an early molecular event in HD
[114] and thus attenuation of REST binding during early
disease stages could be of therapeutic benefit. The employ-
ment of double-stranded oligodeoxynucleotide decoys cor-
responding to the DNA-binding element of the REST has
been shown to abrogate its transcriptional activity and REST-
mediated epigenetic repression rescuing levels of its target
genes’ mRNA and protein in the cell model of HD [115].

5. Current Challenges in Development of
Gene Therapy for HD

Despite significant achievements in nucleic acid-based gene
therapy for HD, a range of technical problems is needed to be
solved and questions to be answered. Each strategy described
has specific disadvantages. Though many studies have proven
that gene therapy approaches employing antisense oligonu-
cleotides represent an exciting therapeutic possibility, there
are certain issues that remain to be addressed. These include
the choice of cellular targets, the stability of gene silencing, as
well as side effects, such as altering off-target gene expression,
induction of cellular immune response, and interfering with
endogenous mRNA silencing systems. There are also prob-
lems associated with viral delivery of therapeutic genes.
Transgene expression can be difficult to standardize and
regulate, and some of the vectors can be toxic per se and/or
cause insertional mutagenesis. The incorporation of a regu-
latory systems such as the tet system might increase the safety
profile of such a treatment approach. Moreover, although
studies using viral vectors have shown sustained gene
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expression for many years, maintaining long-term expression
is still a current challenge.

Apart from these particular impediments, there are basic
issues typical of all strategies, such as invasiveness of delivery
methods associated with the direct administration of ther-
apeutics into the brain due to the presence of blood-brain
barrier, restriction of therapeutics distribution only to the
area adjacent to the injection or transplantation site, and the
need to ensure continuous effect of therapy and appropriate
timing with relation to when to intervene in the course of
disease.

Finally, the main obstacles remaining include our inabil-
ity to distinguish between primary and secondary disease
mechanisms. This raises the question as to which of the many
cellular pathways of pathogenesis would be the most effective
target in influencing disease onset and progression. Further
identification of abnormalities, pathways, and targets that are
the most critical for neurodegeneration and discriminating
them from the ones that are secondary responses or just
related phenomena are required.
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