
World Neurosurgery: X 21 (2024) 100254

Available online 5 December 2023
2590-1397/© 2023 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cinnamaldehyde has ameliorative effects on rabbit spinal cord ischemia 
and reperfusion injury☆ 
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1. Introduction 

During thoracoabdominal aortic surgery, blood supply to the spinal 
cord may be interrupted, resulting in ischemia, and when blood flow is 
restored, reperfusion occurs. This process will be called as spinal cord 
ischemia/reperfusion injury (SCIRI).1 Paraplegia is an important 

unwanted event seen after this injury and dramatically affects the pa-
tients’ everyday life.2 Primary injury is inevitable, however secondary 
injury is preventable. Mitochondrial dysfuction, glutamate toxicity, 
oxidative stress, inflammation and apoptosis are interrelated etiopa-
thogenesis responsible from secondary injury.3,4 Although there are 
several animal studies that have promising results,5–10 until today there 
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is no single effective clinical study could succeed in preventing SCIRI. 
Cinnamaldehyde (CA), found in cinnamon, is an essential compund 

in traditional Chinese Medicine which has antiinflammatory, antioxi-
dant effects.11,12 Nitric oxide synthesis is inhibited and the formation of 
reactive oxygen metabolites (ROM) decreases due to CA, which prevents 
oxidation.11,13,14 In neurodegenerative animal models, CA was found to 
be neuroprotective due to its abilities to reduce oxidative stress, control 
neuroinflammation, enhance synaptic connections, inhibit autophagy, 
and decrease apoptosis.15–19 It has been demonstrated that giving CA 
before cerebral ischemia lessens ischemic damage by preventing the 
production of inflammatory chemicals.20 Due to its anti-inflammatory 
characteristics, CA administration was also found to be neuro-
protective in the model of irreversible cerebral ischemia.21 In a sub-
arachnoid hemorrhage model, CA application prevented cerebral 
vasospasm, exerted neuroprotective effect and reduced the hippocampal 
injury.22 In a recent study, we also showed that CA treatment has pre-
vented cortical and hippocampal injury in a model for traumatic brain 
injury via its antioxidant properties.23 The effectiveness of CA in SCIRI 
has not yet been proven. 

The effects of CA on oxidative stress, inflammation, and apoptosis in 
addition to neurological consequences are assessed in this study by 
contrasting them with methylprednisolone (MP), a treatment for spinal 
cord injury that has been shown to be effective in experiments. 

2. Materials and methods 

2.1. Experimental groups 

Animal care and treatment were carried out in accordance with the 
European Communities Council Directive, 2010/63/EU, which was 
adopted on September 22, 2010. The Committee of Animal Ethics at Saki 
Yenilli Laboratory Animals Facility (dated 10/03/2019) was acquired. 
40 adult male New Zealand white rabbits, weighing between 2800 and 
3750 g, were allocated into the following 5 groups, each including 8 
rabbits. 

These were the groups: 

Group 1: Control group (n = 8), laparotomy was used as the only 
procedure, and the rabbits did not have their aortas cross-clamped. 
After surgery, samples of non-ischemic spinal cord were taken 
without any further medical intervention. 
Group 2: Ischemia group (n = 8), the spinal cords of the rabbits 
briefly suffered from ischemia (SCI). After the occlusion clamp 
evacuation, no medication was applied. The animals underwent 
laminectomy after that, and samples of the spinal cord were removed 
24 h after the ischemia. 
Group 3: Vehicle group (n = 8), the rabbits had temporary global SCI. 
After removing the occlusion clamp, 2 cc 0.9 % NaCl was immedi-
ately administered intraperitoneally. The animals underwent lam-
inectomy after that, and samples of the spinal cord were removed 24 
h after the ischemia. 
Group 4: MP group (n = 8), The rabbits were given the same care as 
those in group 2, but following the occlusion clamp evacuation, they 
were given a single intraperitoneal dosage of 30 mg/kg of MP (Pre-
dnol, Mustafa Nevzat, Turkey). This MP dosage was selected based 
on prior research.5,6,8,9,24,25 

Group 5: CA group (n = 8), The rabbits were given the same care as 
those in group 2, but following the occlusion clamp evacuation, they 
were given a 100 mg/kg of CA (Shandong Sigmachemical Co., Ltd, 
China). This CA dosage was selected based on prior research.26 

2.2. Anesthesia and surgical procedures 

The rabbits had unrestricted access to food and drink and they were 
kept at the optimal room temperature (18–21 ◦C), with the right amount 
of moisture, and with a 12-h light/12-h dark cycle. They were given an 

intramuscular dose of 5 mg/kg of xylazine (Rompun, Bayer, Turkiye) 
and 70 mg/kg of ketamine (Ketalar, Parke Davis Eczacbaşı, Turkiye) to 
anesthetize. Using a warming pad, body temperatures were kept at 
37 ◦C, and anal temperatures were recorded (Digital Fever thermometer, 
Becton Dickinson, NJ, USA). The SCIRI procedure was followed as 
previously mentioned.6 From the left renal artery’s proximal bifurcation 
to its distal bifurcation, the aorta was cross-clamped. This is a practical 
way to reproduce SCIRI’s characteristics.5,6,8,27,28 All of the rabbits in 
the ischemia groups experienced paraplegia as a result of the appro-
priate injury caused by the 20-min ischemia and 24-h reperfusion 
durations.29 

Laminectomy was utilized to accurately uproot spinal cord samples 
from between the L2-L5 segments, which were then employed for 
biochemical, histological, and ultrastructural analyses. Prior to further 
examination, all serum and tissue test samples were kept at 80 ◦C. The 
tissue was homogenized the day of the analysis using a homogenizer (B. 
Braun Melsungen AG 853202, Melsungen, Germany) and physiologic 
saline (1/5 w/v) before being centrifuged at 1780 g for 20 min. Prior to 
analysis, the protein content of the clear supernatant was examined 
using Lowry’s technique and corrected to equivalent amounts. For the 
biochemical analysis, serum samples from centrifuged blood’s upper 
clear supernatant were used. 

2.3. Serum and tissue caspase-3 concentration 

Using ELISA kits, the concentrations of caspase-3 in the serum and 
tissues were determined (ELISA kit; Cusabio, Hubei, China). The man-
ufacturer’s instructions were followed for doing the ELISA. The entire 
procedure was previously made available.6 The result was given in 
ng/mL. 

2.4. Serum and tissue myeloperoxidase (MPO) analyses 

By using a competitive inhibition ELISA (Cusabio, Hubei, China), we 
were able to evaluate both the serum and tissue MPO activity. The entire 
procedure was previously made available.6 The outcomes were dis-
played in ng/mL. 

2.5. Serum and tissue malondialdehyde (MDA) analyses 

Thiobarbituric acid was used to measure the levels of MDA in the 
blood and tissues (TBA). The entire procedure was previously made 
available.6 The MDA concentrations were given in nM. 

2.6. Serum and tissue catalase (CAT) analyses 

Hydrogen peroxide (H2O2) at 240 nm was measured for its rate of 
absorbance decline to assess the amounts of CAT in serum and tissue.30 

In IU/mL, the data were displayed. 

2.7. Serum xanthine oxidase (XO) analyses 

The amount of generated uric acid from xanthine was quantified in 
order to evaluate the serum XO activity according to Prajda and Weber’s 
method.31 The entire procedure was previously made available.6 At 
37 ◦C and pH 7.5, one unit of activity was equal to 1 mol of uric acid 
produced each minute. 

2.8. Histopathological evaluation 

The obtained spinal cord samples were processed for histological 
analysis 24 h after the lesion. The comprehensive procedure was already 
published.6 
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2.9. Transmission electron microscopic tissue preparation and 
examination techniques 

Techniques for tissue preparation and examination using trans-
mission electron microscopy were presented with a thorough explana-
tion.6 For each sample, 100 large, 100 medium, and 100 small 
myelinated axons were evaluated, graded from 0 to 3, and counted. Each 
group’s 5 samples each received 5 scores. Thereafter, data were dis-
played as mean values, as demonstrated by Kaptanoglu et al.32 The 
grading system was as follows: 0 for normal myelinated axon ultra-
structure, 1 for myelin configuration separation, 2 for myelin configu-
ration disruption, and 3 for myelin configuration honeycomb 
appearance. 

2.10. Neurological evaluation 

The hindlimb neurological function was assessed using the modified 
Tarlov scoring system to determine the rabbits’ neurological state 24 h 
following surgery.5,8,25 Each rabbit received a score ranging from 0 to 5, 
as follows: 0 indicates no voluntary hindlimb movement, 1 indicates 
detectable joint movement, 2 indicates active movement but inability to 
sit without assistance, 3 indicates ability to sit but inability to hop, 4 
indicates a faint hop, and 5 indicates full recovery of hindlimb function. 
The neurological assessment was carried out by a person who was blind 
to the experimental groups. 

2.11. Statistical analysis 

Researchers that were blinded carried out each experiment at 
random. The statistical program GraphPad Prism 8.0 was used to 
examine the data (GraphPad Software Inc., La Jolla, CA, USA). Test 
assumptions were verified prior to analysis. By examining the symmetry 
and unimodality of histograms, the normality of the data was verified. 
For comparing the several independent groups, the one-way analysis of 
variance with post-hoc Tukey’s multiple comparison test was used 
(comparisons between all groups). p-values of 0.05 were considered 
significant. The results were reported as means SEM. 

3. Results 

3.1. Serum and tissue caspase-3 analyses 

When compared to the control group, the mean serum and tissue 
caspase-3 concentrations in the ischemia and vehicle groups indicated a 
significant difference; the caspase-3 concentrations in these groups were 
greater (p < 0.001, for both comparisons). The serum and tissue caspase- 
3 concentrations in the MP and CA groups were considerably lower than 
those in the ischemia and vehicle groups (p < 0.001, for both compar-
isons). There was no discernible difference between the MP and CA 

groups, proving that either type of treatment can stop apoptosis 
following SCIRI (Table 1). 

3.2. Serum and tissue MPO analyses 

When compared to the control group, the mean serum and tissue 
MPO activity were statistically substantially higher in the ischemia and 
vehicle groups (p < 0.05–0.001). The SCIRI raised the serum and tissue 
MPO activities, while treatment with MP (p > 0.05 for serum MPO not 
significant (NS); p < 0.001 for tissue MPO) or CA (p < 0.05 for serum 
MPO; p < 0.001 for tissue MPO) significantly lowered the MPO activities 
in comparison to the ischemia and vehicle groups. The serum and tissue 
MPO activity between the MP and CA groups showed no discernible 
changes (Table 1). In order to demonstrate the improvement in in-
flammatory reaction observed after SCIRI, elevated activities of the 
MPO, a marker of neutrophil migration to wounded tissue, were 
decreased with CA and MP treatment. 

3.3. Serum and tissue MDA analyses 

When compared to the control group, the mean serum and tissue 
MDA levels of the ischemia and vehicle groups were statistically 
significantly higher (p < 0.001 for both comparisons), demonstrating 
SCIRI-related damage. The comparison of the ischemia and vehicle 
groups with the MP (p < 0.001 for serum; p < 0.01 for tissue MDA) or CA 
(p < 0.001 for serum and tissue MDA) groups revealed a significant 
reduction in MDA levels for both medications. Between the MP and CA 
groups, no statistically significant difference was discovered (Table 1). 
Consequently, lipid peroxidation in SCIRI is inhibited by both CA and 
MP. 

3.4. Serum and tissue CAT analyses 

The mean blood and tissue CAT levels of the ischemia and vehicle 
groups were significantly different from those of the control group (p <
0.001, for both comparisons), indicating that these levels dropped 
following SCIRI. Without significant differences between the MP and CA 
groups, serum and tissue CAT levels were considerably elevated in the 
MP and CA groups when compared to the ischemia and vehicle group (p 
< 0.001, for both comparisons) (Table 1). The CAT levels dropped as a 
result of the oxidative stress observed after SCIRI, while CA and MP 
demonstrated an antioxidant effect by raising the CAT levels. 

3.5. Serum XO analyses 

The serum XO activity was statistically significantly higher in the 
ischemia and vehicle groups when compared to the control group (p <
0.001, for both comparisons), whereas it was statistically significantly 
lower in the MP and CA groups when compared to the ischemia and 

Table 1 
Biochemical outcomes in the test groups.  

Variables Control Ischemia Vehicle MP CA p-value 

Serum Caspase-3 (ng/ml) 215.3 ± 31.3a,d 421.5 ± 55.62a 403.7 ± 54.81d,m,n 205.5 ± 42.2f,k,m 188.5 ± 30.33h,k,n <0.001 
Tissue Caspase-3 (ng/ml) 172.5 ± 53.98a,d 642.8 ± 153.0a 626.6 ± 116.8d,m,n 141.3 ± 75.44f,k,m 98.17 ± 31.03h,k,n <0.001 
Serum CAT (IU/ml) 156.1 ± 41.97a,d 40.47 ± 11.90a 54.88 ± 11.23d 112.1 ± 22.62f,k,m 106.7 ± 11.89h,k,n <0.001 
Tissue CAT (IU/ml) 114.5 ± 1.79a,d 27.47 ± 10.80a 25.79 ± 10.92d 111.5 ± 12.82f,k,m 106.3 ± 13.43h,k,n <0.001 
Serum MDA (nmol/g tissue) 2.57 ± 0.51a,d 6.41 ± 1.11a 6.55 ± 1.05d,m,n 2.51 ± 0.57f,l,m 0.53 ± 0.41i,l,n <0.001 
Tissue MDA (nmol/g tissue) 3.73 ± 1.23a,d 10.66 ± 2.88a 10.98 ± 3.40d,n,o 6.39 ± 1.20g,k,o 3.32 ± 1.53j,k,n <0.001 
Serum MPO (ng/ml) 2.39 ± 0.46 b,d 5.49 ± 2.34b 5.65 ± 1.35d,p 3.80 ± 1.37 3.39 ± 0.99j,k,p <0.001 
Tissue MPO (ng/ml) 3.02 ± 0.78c,e 5.09 ± 0.96c 5.51 ± 1.46e,m,n 2.47 ± 1.38f,k,m 1.48 ± 1.32h,k,n <0.001 
Serum XO (mIU/ml) 10.13 ± 9.20a,d 61.25 ± 12.75a 57.50 ± 12.27d 6.00 ± 5.78f,k,m 5.12 ± 4.58h,k,n <0.001 

a: Control vs Ischemia (p < 0.001), b: Control vs Ischemia (p < 0.01), c: Control vs Ischemia (p < 0.05), d: Control vs Vehicle (p < 0.001), e: Control vs Vehicle (p <
0.01), f: Ischemia vs MP (p < 0.001), g: Ischemia vs MP (p < 0.01), h: Ischemia vs CA (p < 0.001), i: Ischemia vs CA (p < 0.01), j: Ischemia vs CA (p < 0.05). k: MP vs CA 
(ns), l: MP vs CA (p < 0.001), m:Vehicle vs MP (p < 0.001), n:Vehicle vs CA (p < 0.001), o:Vehicle vs MP (p < 0.01), p:Vehicle vs CA (p < 0.05). 
CAT = catalase, CA: Cinnamaldehyde, MDA = malondialdehyde, MP = methylprednisolone, MPO = myeloperoksidase, XO = Xanthine oxidase. 
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vehicle groups (p < 0.001, for both); however, no significant difference 
was found between the MP and CA groups. After SCIRI, the anti- 
inflammatory actions of CA and MP decreased the elevated serum XO 
activities (Table 1). 

3.6. Histopathological evaluation 

The control group’s spinal cord had normal morphology (Fig. 1A). In 
the ischemia and vehicle groups, gray matter showed diffuse bleeding 
and congestion, while white and gray matter clearly showed severe 
necrosis and diffuse edema. Invasion by lymphocytes, plasma cells, and 
polymorphonuclear leukocytes were prevalent in the damaged areas. 
The ischemic groups showed cytoplasmic eosinophilia, loss of cyto-
plasmic elements, and neuronal pyknosis (Fig. 1B and C). The spinal 
cord tissue in the MP and CA groups was protected against ischemia and 
reperfusion damage (Fig. 1D and E). Compared to the control group, the 
ischemia group had significantly higher histopathology scores (p <
0.001, Fig. 2). Histopathology scores in the MP and CA groups were 
considerably lower than in the ischemia group (p < 0.001, for both; 
Fig. 2). There was no discernible difference between the MP and CA 
groups (Fig. 2). 

In the anterior spinal cord, there were substantially fewer normal 
motor neurons in the ischemia group than in the control group (p <
0.001, Fig. 3). In comparison to the ischemia group, there were 
considerably more normal motor neurons in the MP and CA groups (p <
0.001, for both, Fig. 3). There was no discernible difference between the 
MP and CA groups. SCIRI appears to be prevented histopathologically by 
CA and MP both (Fig. 1D and E). 

3.7. Ultrastructural evaluation 

Transmission electron microscopy was used to assess the ultra-
structural alterations. The gray and white spinal cord matter did not 
exhibit any ultrastructural alterations in the control group (Fig. 4A). The 
neurons in the gray matter appeared normal, and there were no ab-
normalities in the perineuronal tissues, intracellular organelles, nuclei, 
or membranes. The ultrastructure of all the small and medium-sized 
myelinated axons was healthy. Only a few of the large myelinated 

axons were found to have mild separations; these separations may have 
been caused by a delay in tissue fixing. 

Both the gray and white matter of the spinal cord tissues underwent 
severe ultrastructural pathological alterations in the ischemia and 
vehicle groups (Fig. 4B and C). The gray matter’s ultrastructure revealed 
vacuoles within the cytoplasm of neurons. Additionally, these groups 
had perineuronal edema. The neurons’ nuclei and cell membranes were 
healthy from an ultrastructural perspective. The myelinated axons in the 
white matter underwent pathological alterations. Separations in the 
myelin structure were readily apparent in the majority of the small-, 
medium-, and large-sized myelinated axons. Several of the large and 
medium-sized myelinated axons showed interruptions in the myelin 
arrangements. Small-sized myelinated axons had the least injury while 
large-sized myelinated axons had the worst ultrastructural damage. 
There was no break in the myelin structure in small myelinated axons. 

In the MP group, both the gray and white matter of the spinal cord 
samples showed severe ultrastructural pathological alterations 
(Fig. 4D). Vacuoles within the cytoplasm of neurons were found in the 
gray matter. Perineuronal edema was additionally observed in these 
groups. The neurons’ nucleus and cell membranes have normal 

Fig. 1. 5-μm spinal cord tissue sections from each study group were photographed under a microscope. Hematoxylin-eosin stained images are displayed with a 10 
objective (A) The spinal cord parenchyma in the control group is normal (B–C) Ischemia and vehicle groups, displaying deteriorated neurons on the edematous 
surface (D) Methylprednisolone group, displaying normal neurons (hollow arrows) and less degraded neurons (filled arrows) (D) The Cinnamaldehyde group displays 
more normal neurons (hollow arrows) and less degenerative neurons (filled arrows). Cinnamaldehyde pretreatment provided protection against damage to the spinal 
cord tissue. 

Fig. 2. Distribution of histopathology score among groups. a: Control vs 
Ischemia (p < 0.001), b: Control vs Vehicle (p < 0.001), c: Control vs MP (p <
0.001), d: Control vs CA (p < 0.001), e: Ischemia vs MP (p < 0.001), f: Ischemia 
vs CA (p < 0.01), g: Vehicle vs MP (p < 0.001), h: Vehicle vs CA (p < 0.01). CA: 
Cinnamaldehyde, MP = methylprednisolone. 
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ultrastructure. The myelinated axons in the white matter showed ul-
trastructural pathological alterations. Most of the small, medium, and 
large-sized myelinated axons showed separations in the myelin struc-
ture. Moreover, some of the large and medium-sized myelinated axons 
showed discontinuities in the myelin arrangements. Little myelinated 
axons had the least severe ultrastructural pathological abnormalities, 

while large myelinated axons had the most severe modifications. 
Moreover, no interruption in myelin structure was seen in small-sized 
myelinated axons. 

Tissue samples from the CA group’s gray matter showed ultrastruc-
turally healthy nuclei and membranes of neurons (Fig. 4E). Also, it was 
discovered that neurons’ cytoplasm included vacuoles. Perineuronal 
tissues showed no ultrastructural pathogenic alterations. Ultrastructur-
ally normal small-sized myelinated axons were seen in the white matter. 
Some of these axons showed separations in myelin configuration. Sep-
arations in myelin structure were seen when medium- and large-sized 
myelinated axons were examined. In this group, there were no myelin-
ated axons that displayed a break in myelin configuration. 

Little myelinated axons in the ischemia and vehicle groups showed 
more apparent disruptions than in the control group (p < 0.001). When 
compared to the ischemia group, the MP and CA prevented the disrup-
tion of the small-sized myelinated axons (p < 0.001, for both). The small- 
sized myelinated axons were better protected by the MP group than by 
the CA group (p < 0.001). When compared to the control group, the 
ischemia group’s medium-sized myelinated axons were destroyed (p <
0.001). Both treatments protected the medium-sized axons from SCIRI, 
and there were significant differences between the ischemia group and 
the MP and CA groups (p < 0.001, for both). The ischemia group had 
more damaged large-sized myelinated axons than the control group did 
(p < 0.001). Both treatments preserved the medium-sized axons from 
SCIRI, and there were significant differences between the ischemia 
group and the MP and CA groups (p < 0.001, for both). The middle- and 
large-sized myelinated axons were equally protected by the MP and CA 
treatments (Table 2). 

Fig. 3. Distribution of normal neuron numbers among groups. a: Control vs 
Ischemia (p < 0.001), b: Control vs Vehicle (p < 0.001), c: Control vs MP (p <
0.001), d: Control vs CA (p < 0.001), e: Ischemia vs MP (p < 0.001), f: Ischemia 
vs CA (p < 0.001), g: Vehicle vs MP (p < 0.001), h: Vehicle vs CA (p < 0.001). 
CA: Cinnamaldehyde, MP = methylprednisolone. 

Fig. 4. Transmission electron microscope images that best represent each group (A) Control group displaying myelinated axons that are ultrastructurally normal 
(B–C) Ischemia and vehicle groups having separations in the myelin configurations of small, medium, and large axon sizes (black arrows) (D) Methylprednisolone 
group, with decreased ischemia-related myelin configuration separation in medium- and large-sized myelinated axons (white arrow) (E) Cinnamaldehyde group 
displays small, medium, and large myelinated axons with less separation in their myelin configurations than the ischemia groups (white arrow) (original amplifi-
cation = 5000, scale bar = 2 μm, for all). 
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3.8. Neurological evaluation 

The mean Tarlov score was considerably lower in the ischemia and 
vehicle groups compared to the control group (p < 0.001, for both). In 
comparison to the ischemia group, the mean Tarlov scores in the MP and 
CA groups were significantly higher (p < 0.001, for both). In the MP and 
CA groups, there was no discernible difference in the Tarlov scores 
(Fig. 5). 

4. Discussion 

Spinal cord ischemia and reperfusion damage during thor-
acoabdominal aortic surgery may occur with an incidence of 1 %–32 % 
and may result in paraplegia or even death.33,34 Although primary injury 
in inevitable, secondary injury is treatable all pharmacological in-
terventions aim to stop those interwoven cascades. Secondary injury 
pathways include oxidative stress, lipid peroxidation, inflammation, and 
apoptosis.3,35–37 Although numerous methods have been devised to treat 
spinal cord after SCIRI and protect it against thoracoabdominal aortic 
damage,38–42 there is still lack of evidence for the gold-standard man-
agement of SCIRI. 

Cinnamaldehyde is a potent antioxidant, antiinflammatory compund 
which is found in cinnamon, and has a key role in practise of traditional 

Chinese Medicine.11,12 CA decreases production of ROM and inhibitis 
production of nitric oxide.11,13,14 Neurodegenerative animal models 
showed that, CA prevents neuroinflammation, suppress oxidative stress, 
ameliorates synaptic connectivity, suppress apoptotic cascades, prevents 
autophagy and highly neuroprotective.15–18 Administration of CA before 
cerebral ischemic stroke in an animal model, suppress the release of 
inflammatory substances.20 Also in another cerebral ischemia, traumatic 
brain injury and cerebral vasospasm models, CA exerted neuro-
protective activity via anti-inflammatory properties.21–23 

Apoptotic cascades activates following SCIRI and resulted in 
neuronal loss.5,6 Cessation of circulation results in ischemia and acute 
ATP depletion causes necrotic cell death.43,44 Reperfusion aggravates 
this apoptotic process.45,46 Caspase-3 is one of the main indicator of 
apoptotic activity,47,48 and previously reported as an reliable marker in 
SCIRI studies.5,8,25,48,49 CA decreases oxidative stress and stops the loss 
of mitochondrial membrane potential, which stops apoptosis.50 In the 
present investigation, we demonstrated that both serum and spinal cord 
tissue caspase-3 concentrations rise after SCIRI. Treatments with CA and 
MP reduced the levels of caspase-3 in the spinal cord and serum, pre-
venting apoptotic damage. 

As a response to SCIRI, inflammatory cascades are activated.51–53 

Microglial cells in the spinal cord injury emit pro-inflammatory cyto-
kines, and inflammatory cells build up in the injured spinal cord tissue.54 

Following reperfusion injury, response of neutrophils, monocytes, and 
macrophages increase and deteriorate the damage.55 Anti-inflammatory 
substances tested on SCIRI model and researchers obtained promising 
results.51,55,56 In numerous neuroinflammatory animal models, antiin-
flammatory, and neuroprotective activity of CA has been 
shown.17,22,23,57–59 After spinal cord damage, MPO activity—a sign of 
neutrophil activation—increases.60 In the current investigation, SCIRI 
enhanced the serum and tissue MPO activity, whereas CA and MP 
therapy lowered that elevated activity. This increase after SCIRI was 
ameliorated with CA treatment and this finding proves the 
anti-inflammatory activity of CA treatment in SCIRI. 

Free radical formation and lipid peroxidation are also the part of 
tissue response following SCIRI. It has been demonstrated that increased 
free radical production is associated with neuronal loss following trau-
matic spinal cord injury.61 Lipid peroxidation takes place in lipid bilayer 
and marker of this process, MDA, occurs as a end product of poly-
unsaturated fatty acid degradation.62 MDA levels elevate following 
SCIRI.63 In our investigation, the ischemic groups also had higher serum 
and tissue MDA levels. Treatments with CA and MP reduced MDA levels, 
which reduced lipid peroxidation in the spinal cord after SCIRI. 

Reactive oxygen species production contributes to subsequent 
damage after SCIRI.64 CAT is an antioxidant enzyme and buffers the 
effects of ROS and consumed due to increased oxidative stress 
response.5,8,25,27,48 CA has a potent antioxidant activity and its efficacy 
has been proven in a traumatic brain injury model.23 In our investiga-
tion, serum and tissue CAT levels rose following CA and MP treatments 
while they dropped after SCIRI. The existence of elevated oxidative 
stress is indicated by the XO enzyme, which is a member of the ROS 
family.65,66 The ischemia group in the current study had elevated serum 
XO activity, whereas the CA and MP groups had lower levels. In light of 
these findings from CAT and XO activities, CA has potent antioxidant 
activity after SCIRI. 

In the present SCIRI study, ischemia groups showed prominent 
hemorrhage, increased edema, and necrosis. The injured areas were 
filled with polymorphonuclear leukocytes, lymphocytes, and plasma 
cells, which are well-known inflammatory indicators. The loss of the 
normal motor neurons was evident in the ischemia groups. Histopath-
ologically, the CA and MP treatments ameliorated the damage induced 
by SCIRI and preserved the motor neurons. In groups with ischemia, 
many segregations in myelinated axons of different sizes were clearly 
visible. The small-, middle-, and large-sized axons from SCIRI were 
intact after CA or MP therapy. 

Also, we used the Tarlov scoring system in the current study to 

Table 2 
Results from electron microscopy.  

Myelinated 
Axon 

Control Ischemia Vehicle MP CA p-value 

Small sized 0.0±
0.0a,b,d 

88.40 ±
1.14a,e 

88.40 
± 1.51b, 

f 

0.0 ±
0.0e,f,g 

76.40 
±

2.40d,g 

<0.001 

Middle 
Sized 

0.0±
0.0a,b,c, 

d 

109.8 ±
1.92a,e 

109.0 
± 2.23b, 

f 

70.60 
±

2.23c,e, 

f,g 

82.80 
±

1.64d,g 

<0.001 

Large sized 5.0±
1.58a,b, 

c,d 

124.2 ±
2.04a,e 

123.0 
± 1.0b,f 

89.0±
1.58c,e, 

f,g 

95.20 
±

1.30d,g 

<0.001 

a: Control vs Ischemia (p < 0.001), b: Control vs Vehicle (p < 0.001), c: Control 
vs MP (p < 0.001), d: Control vs CA (p < 0.001), e: Ischemia vs MP (p < 0.001), f: 
Vehicle vs MP (p < 0.001), g: MP vs CA (p < 0.001). CA: Cinnamaldehyde, MP =
methylprednisolone. 

Fig. 5. Distribution of Tarlov score among groups. a: Control vs Ischemia (p <
0.001), b: Control vs Vehicle (p < 0.001), c: Control vs MP (p < 0.001), d: 
Control vs CA (p < 0.001), e: Ischemia vs MP (p < 0.001), f: Ischemia vs CA (p 
< 0.001), g: Vehicle vs MP (p < 0.001), h: Vehicle vs CA (p < 0.001). CA: 
Cinnamaldehyde, MP = methylprednisolone. 
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evaluate the functional and neurological outcomes. Paresis to some 
extent was seen in all rabbits. Hopefully, CA and MP treatment showed 
promising amelioration in the functional outcomes besides their allevi-
ating effects on biochemical and histopathological findings. 

Methylprednisolone has a historical importance in spinal cord injury 
as an anti-inflammatory, antioxidant, and antiapoptotic agent.4,67,68 

Current evidence does not support its use in clinical settings.69 In this 
study we preferred MP as a control groups because the literature support 
its efficacy in SCI animal models.5,8,25,27,48 Therefore, we compared 
efficacy of CA with MP as an active control group. 

There are also some limitations for this study. Animal number per 
group could be higher, various dosage regimens, with different treat-
ment timing could have been preferred. In the current study SCIRI was 
evaluated at 24 h of injury, which makes it harder for the clinicians to 
translate the data for the clinical settings. The 24 h timeframe may not 
capture the full scope of reperfusion injury/secondary injury. Future 
studies should analyze different timeframes. More detailed parameters 
could have been added to the study. Time dependent changes in the 
pathology and treatment results could give more insight about the future 
application for this compound in the clinical cases. In order to support 
the role of CA treatment in SCIRI, extended study methods are therefore 
required. 

5. Conclusion 

For the first time in the literature, the antioxidant, anti- 
inflammatory, anti-apoptotic, and neuroprotective effects of CA on 
SCIRI were demonstrated in this work. The CA can be used just after the 
prognosed damage to neural structures thus making the operative 
damage lesser. To prove that CA can be therapeutic in the SCIRI, more 
clinical and basic research is required. 
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