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Metabolic alterations impair
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functions of CD8+ T cells
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CD8+ T lymphocytes are one of the main effector cells of the immune system,

they protect the organism against intracellular threats such as viruses and

bacteria, as well as neoplasms. It is currently well established that CD8+ T cells

have distinct immune responses, given by their phenotypes Tc1, Tc2, Tc17, and

TcReg. The cellular plasticity of such phenotypes depends on the presence of

different combinations of cytokines in the extracellular medium. It is known

that metabolic imbalances play an important role in immune response, but the

precise role of metabolic disturbances on the differentiation and function of

CD8+ T cells, however, has not been explored. In this work, we used a

computational model to explore the potential effect of metabolic alterations

such as hyperglycemia, high alcohol consumption, dyslipidemia, and diabetes

on CD8+ T cell differentiation. Our model predicts that metabolic alterations

preclude the effector function of all CD8+ T cell phenotypes except for TcReg

cells. It also suggests that such inhibition originates from the increase of

reactive oxygen species in response to metabolic stressors. Finally, we

simulated the outcome of treating metabolic-inhibited CD8+ T cells with

drugs targeting key molecules such as mTORC1, mTORC2, Akt, and others.

We found that overstimulation of mTORC2 may restore cell differentiation and

functions of all effector phenotypes, even in diabetic patients. These findings

highlight the importance of our predictive model to find potential targets to

strengthen immunosuppressed patients in chronic diseases, like diabetes.
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Introduction

CD8+ T cells are the main arm of adaptive immunity against

intracellular pathogens and cancer (1–3). An adequate CD8+ T

cell response generates immunity against intracellular pathogens

like viruses and bacteria and eradicates transformed cells, while

low or deficient responses can lead to recurrent infections and

cancer. It has been established that an impaired CD8+ T cell

response is at the root of autoimmune diseases. Moreover, CD8+

T cells are being used or targeted for the treatment of cancer (3).

Therefore, describing and modeling CD8+ T cell responses are

of crucial importance for making predictions, discovering new

treatments, and defining Immune therapies.

CD8+ T cells are activated when they recognize their peptide

antigen, bound to MHC class I on the surface of antigen

presenting cells (APC). After recognizing their antigen and

receiving costimulatory signals, like those mediated by the

CD28 receptor, as well as cytokine signals, naïve CD8+ T cells

expand (proliferate) and differentiate into several effector and

memory phenotypes to eradicate the pathogen (2). The main

effector phenotype is the cytotoxic CD8+ T cell (CTL), which

kills infected and neoplastic cells (3). Later, when the threat is no

longer present, CD8+ T cell response contracts by means of

apoptosis and only memory cells remain, conferring a lasting

protection (immunological memory) against the same antigen.

CD8+ T cell differentiation leads to several functional

phenotypes, with specific molecular markers and cytokine

production. Up to five CD8+ T cell effector phenotypes have been

widely described: Tc0, Tc1, Tc2, Tc17, TcReg (4, 5). Each of these

effector cells is generated by a combination of antigen, costimulatory

and cytokine signals, and carries common and specific immune

functions. The integration of those complex signals is crucial for

determining the differentiation path of CD8+ T cells.

For studying CD8+ T cell signal integration and

differentiation, computational and mathematical approaches

can be very useful. Indeed, logical modeling strategies have

proved their value by allowing novel insights into the

molecular dynamics of T cell activation and differentiation (6–

8). Actually, several mathematical and computational modeling

strategies have been used in the past for studying CD8+ T cell

activation and differentiation (9–11), but the subject remains

poorly explored. For instance, the role of metabolism on CD8+ T

cell fate decision. The networks responsible for the generation of

multiple CD8+ T cell effector phenotypes are intricate, and new

experimental information is constantly generated, thus requiring

actualizations and novel integrative studies.

The aim of this work is to understand the role of metabolic

alterations in the differentiation and effector functions of CD8+

T cells. To this end, we used a qualitative logical modeling

approach to generate a computational model that describes the

core genetic and signaling network underlying CD8+ T cell

immune responses. We used public experimental data to validate
Frontiers in Immunology 02
the model outputs, in particular CD8+ T cell functions in the

context of the metabolic dysregulation present in a diabetic

person. We also used our model to identify putative knock-out

and knock-in targets that could potentially lead to an improved

CD8+ T cell response. Finally, we validated our predictions

using public experimental data. The computational model and

the methodology developed here can be used to study the role of

CD8+ T cells in other pathogenic scenarios. To our knowledge,

this is the first computational model integrating signaling,

metabolic and genetic pathways to describe the differentiation

of CD8+ T cells into the main effector phenotypes.
Materials and methods

Construction of the gene regulatory
network of CD8+ T cells

To build the network, we first reviewed the literature to

extract the signaling, metabolic and genetic pathways underlying

the immunological functions of CD8+ T lymphocytes (12–21),

as well as that regarding gene expression of CD8+ T cell

functional phenotypes (22–37). Next, we used the Human

Protein Atlas (proteinatlas.org) (38) to identify which genes

are expressed on CD8+ T cells, then we searched for signaling

and metabolic interactions of such genes in Kyoto Encyclopedia

of Genes and Genomes, KEGG (39–41), to further refine the

network. We avoided the use of predicted interactions since

there is not enough experimental evidence to sustain such

interactions. Finally, we graphically summarized our findings

in the network shown in Supplementary File 1.
Derivation of computational model

After obtaining a global overview of the main genetic

regulatory, metabolic and signaling processes underlying CD8+ T

cell functions, we reduced the gene regulatory network (GRN),

focusing on the main non-linear motifs of the network (Figure 1).

The network reduction procedure is detailed in Supplementary

Material. Briefly, intermediate not self-regulated nodes were

removed from the network, and direct interactions were drawn

from the regulators to the targets of the removed node, while

keeping positive and negative feedback loops. We then used the

Boolean formalism to translate the biological interactions into logic

rules associated with the main components of the simplified GRN

(Table 1 and Supplementary Material). In general, each logic rule

assumes that every gene or any biologically relevant molecule of the

network can be expressed in binary terms, i.e., “active” or “inactive”,

“expressed” or “not expressed”. Numerical equivalences for these

states are 1 for “activation” and 0 for “inactivation”. Then, the

current state of each node of the GRN (xn) can be calculated
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TABLE 1 Logic rules of the CD8+ T cells gene regulatory network.

Node Logic rule*

T-BET ((IFNg ˅ (IL12s ˄¬ (IL6s ˅ IL4 ˅ IL10))) ˅ TBET) ˄¬ (IL4 ˅ GATA3 ˅ IL6s ˅ F0X01)

IFN-g ((IFNgs ˅ IFNI ˅ ((IFNg ˅ TBET ˅ EOMES) ˄ mTORC1˄¬ (GATA3 ˅ TGFb))) ˄¬ IL6s ˅ IL4 ˅ IL10)

GATA3 ((IL2s ˄ IL4) ˅ EOMES ˅ GATA3) ˄¬ (TBET ˅ TGFb ˅ IL6s ˅ IFNg

IL-4 (IL4s ˅ (GATA3 ˄ (IL2s ˅ IL4) ˄¬ (TBET)) ˄¬ (IFNg ˅ IL6s)

RORgT (IL6s ˄ TGFb ˄¬( TBET ˅ FOXP3 ˅ GATA3 ˅ FOX01)

IL-10 (IL10s ˅ EOMES ˅ (IL10 ˄ (IFNg ˅ IL6s ˅ TGFb ˅ GATA3))) ˄ mTORC1

FOXP3 ((IL2s ˅ IL12s) ˄ TGFb ˅ FOXP3 ˅ IL4 ˅ (FOX01 ˄¬ (IL6s ˅ RORgT)

FOXO1 (ROS ˅ FOX01) ˄¬( mTORC1 ˅ mTORC2)

EOMES (ROS ˅ EOMES ˅ IFN1 ˄ FOX01 ˄¬( mTORC2)

mTORC1 (aa ˅ ROS ˅ IL12 ˅ IL12s ˅ Akt) ˄¬ (mTORC2 ˄ PD1 ˄ IL15s)

mTORC2 (GFs ˅ ROS) ˄ ¬mTORC1

ROS (Glucose ˅ FFAs ˅ Ceramide ˅ Et0H) ˄¬SOD

Akt (IFNg ˅ IL4 ˅ IL10 ˅ mTORC2)

GLUT1 Akt ˄ EOMES ˄ ¬FOX01

Granzyme B TBET ˄ ¬(GATA3 ˅ RORgT ˅ FOXP3 ˅ FOX01)

SOD ROS ˄ (FOX01) ˄ ¬(Ceramide)

BCL-2 (FOX01) ˄ ¬ROS

Casp-3 FasL ˄(ROS ˅ Casp3) ˄ ¬BCL2
Frontiers in Immunology
*In this network IL12s, IL6s, TGF-b, IL4s, IL10s, IFN-gs, IFNI, Glucose, FFAs, Ceramide, FasL and EtOH are inputs. This means that such molecules are considered as external stimuli of
CD8+ T cells. In this table we used ˄to represent the logic operator “AND”, ˅ to represent “OR” and finally “¬ “ to represent “NOT”.
FIGURE 1

Reduced gene regulatory network of CD8+ T cells. ReducedCD8+ T lymphocyte gene regulatory network. All cytoplasmic components are
drawn in silver gray, while nuclear components are represented with colors. All inputs of the networks, i.e., all external stimuli that either activate
or repress the functioning of the network, are displayed in orange.
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considering the state of its regulators, which are nodes upstream

that downregulate or upregulate the target node. Formally, it can be

expressed as follows:

xi t + Dtð Þ = fi x1 tð Þ, x2 tð Þ,…, xk tð Þð Þ
Where k represents the total number of regulators for a node

and fi represents a Boolean function that dictates which

interactions a node has with other network components (42)

(Table 1). The nodes of the network might present state changes

at each time step, that is, they can be updated synchronously. On

the other hand, a more realistic way to represent state changes of

all nodes is to assign a certain time to each molecular

interactions to make its own change of state, updating each

node asynchronously. In this regard, we used both strategies to

update the nodes in our computational model (synchronous

and asynchronous).
Implementation of Boolean models

We implemented each update strategy in Microsoft Visual

Studio 2022 using the C# programming language. For the

synchronous updating strategy, we updated all nodes at every

time step. On the other hand, for implementing the

asynchronous updating strategy we assigned a specific

updating time for each node, which was determined

considering the type of nodes, i.e., whether the nodes

correspond to metabolites, signaling components, RNAs, or

newly expressed proteins. Also, we considered whether the

nodes were implicated on transcriptional cascades or not to

reevaluate the duration of the updating time. In Supplementary

Table 1, we present all updating times for the asynchronous case.

The algorithm to implement synchronous and asynchronous

strategies first calculates all possible initial conditions of the

network, given by the space of configurationsW=2n, where “n” is

the total number of nodes. Then, the algorithm picks one of the

initial configurations from W, and initiates the simulation using

the logic rules presented in Table 1. The individual simulation

ends when a fixed attractor is found (stable state). Attractors of

the type “fixed point” or “stable state”, in biological terms

represent stable genotypes that can be grouped in phenotypes,

depending on the state of certain markers used to define

the phenotype.

We used labeling logic rules to identify each fixed attractor

(i.e. genotype) with their corresponding phenotype, as it has

been done for other biological networks such as in CD4+ T cells

(43). All labelling rules were constructed and enriched with data

from experimental literature and are presented in Table 2. We

included such identifier rules in our algorithm to classify the

attractors found, and we systematically used all configurations

contained in W. In this way, we obtained all attractors of the

network, as well as the number of configurations that reach each

attractor (i.e. the size of its basin of attraction).
Frontiers in Immunology 04
Dynamical simulations of the models

Previous publications showed that the size of the basin of

attraction is a useful qualitative tool to determine the prevalence

of a certain phenotype (44). Thus, we used the size of the basin of

attraction to estimate the relative frequency of a phenotype

inside a cell population. To calculate the frequency of each

CD8+ T cell phenotype, we used the following equation:

fk =
yk
W

� 100%

Where fk is the frequency of the “k” phenotype of CD8+ T

cells, yk is the total amount of initial configurations that reach

attractors (stable states) of the “k” phenotype and W is the size

of the entire states space of the GRN. Furthermore, we

perturbed the GRN by performing knock-out and knock-in

simulations to estimate the effect of changes on specific nodes

in the dynamics of the model and their contribution to

specific phenotypes. In this sense, all knockouts were

simulated by setting xi(t + Dt)=0 for the target gene, and

similarly, all knock-ins were simulated by xi(t + Dt)=1 for the

target gene.
Data extraction

In order to validate our model, we searched for experimental

datasets obtained from flow cytometry of CD8+ T cells under

particular stimulation. For instance, CD8+ T cells grown under

IL-12 and IL-4 treatment. We then took the reported percentage

of cells that correspond to phenotypes Tc0, Tc1, Tc2, Tc17 and

TcReg, which is calculated by dividing the total count of cells

that were positive to a specific gene marker (IFN-g+ for Tc1, IL-4

+ for Tc2, RORgT+ for Tc17 and FoxP3+ for TcReg cells) by the

total count of living cells in the sample. We only used

experimental sources that directly report such percentages,

without using third-party software for data extraction. All

sources are detailed forward.
TABLE 2 Phenotype identifier.

Node Logic rule

Naïve ¬(EOMES ˅ TBET ˅ GATA3 ˅ RORgT ˅ FOXP3)

Effector ¬FOX01 ˄ EOMES ˄ (TBET ˅ GATA3 ˅ RORgT ˅ FOXP3)

Memory FOX01 ˄ EOMES ˄ (TBET ˅ GATA3 ˅ RORgT ˅ FOXP3 )

Tc0 ¬(EOMES ˅ TBET ˅ GATA3 ˅ RORgT ˅ FOXP3)

Tc1 EOMES ˄ (TBET ˄ IFNg) ˄ ¬ FOX01 ˄ ¬ (GATA3 ˅ RORgT ˅ FOXP3)

Tc2 EOMES ˄ (GATA3 ˄ IL4) ˄ ¬ FOX01 ˄ ¬(TBET ˅ RORgT ˅ FOXP3)

Tc17 EOMES ˄ (RORgT) ˄ ¬ FOX01 ˄ ¬(TBET ˅ GATA3 ˅ FOXP3)

TcReg EOMES ˄ (FOX03 ˄ IL10) ˄ ¬ FOX01 ˄ ¬(TBET ˅ GATA3 ˅ RORgT)
In this table we used ˄to represent the logic operator “AND”, ˅ to represent “OR” and
finally “¬ “ to represent “NOT”.
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Model availability

The source code for this work is freely available at:

https://github.com/ABensussen/CD8-T-cells/tree/main.

The Ginsim implementation of the model used to compute

all model attractors is presented as Supplementary File 1.
Results

A computational model that reproduces
in vitro observations of phenotypic
differentiation of CD8+ T cells

Scientific literature and databases curation allowed us to

construct a directed GRN including 300 nodes that represents

well known intracellular pathways underlying the functioning of

CD8+ T cells (Supplementary File 2): TCR signaling, costimulatory

cytokine signaling, a metabolic regulatory module, metabolic

pathways, and the genetic regulatory network controlling cell fate

decisions. Next, we simplified the resulting network to obtain a

reduced GRN including 18 nodes that summarizes the main aspects

of CD8+ T cell differentiation (Supplementary Material), including

its connection with metabolism, such as the glycolytic pathway

(Figure 1). Particularly, we focused this work in long term

alterations of metabolism that influence CD8+ T cell

differentiation. Using this approach, we were able to simplify

several non-linear motives present under metabolic and signaling

regulation which occur during a short time window, including the

localization of some cellular components. Then, we assigned a

logical rule to each node to obtain a dynamical model. The

experimental evidence of the model (Table 1) is presented in the

Supplementary Material. Later, we investigated whether our model

represents the biology of CD8+ T cells by comparing the data

obtained by computational simulations with in vitro observations

(Figure 2 and Supplementary Figures 1-5). For this comparison, we

simulated the behavior of an activated CD8+ T cell population

under different cytokine stimulations, and we then searched for

published flow cytometry data obtained under the same conditions.

We then compared the simulated cell phenotypes with the

phenotypic distribution observed in vitro.

Regarding CD8+ T cell differentiation, it has been reported

that, in the absence of cytokine stimulation, an activated

population of CD8+ T lymphocytes mainly preserves the

phenotype Tc0, which then generates basal levels of the Tc1

phenotype, and finally gives rise to the Tc17 phenotype (45).

Both synchronous and asynchronous updating schemes

qualitatively reproduced these experimental observations as

shown in Figure 2A. In presence of IL-12 and IFN-g, the Tc1

phenotype increases compared to the Tc17 phenotype (45),

(Figure 2B). The Tc17 phenotype increases when the population

is stimulated with IL-6 and TGF-b (45), as shown in Figure 2C. On
Frontiers in Immunology 05
the other hand, it has been reported that IL-4 with IL-12 mainly

produce CD8+ T regulatory cells (TcReg) (46),, as recapitulated by

our model in Figure 2D. Adding IL-4 alone polarizes CD8+ T cells

to Tc2 phenotype, characterized by secretion of IL-4 (47)

(Figure 2E). Importantly, these predictions are supported by the

fact that the 100% of the state space converge to such phenotypes

(fk = 100%)) (Supplementary Figures 1–5), corresponding to stable

states of the system, which ensures that ourmodel fully explored all

possible states of the GRN of CD8+ T cells.

To further test our model, we have simulated reported

mutations. In this sense, it has been reported that in absence

of STAT6 during stimulation with IL-4, CD8+ T cells are

polarized towards the Tc1 phenotype instead of Tc2 (47), a

fact that is qualitatively reproduced by our model when we

suppress all nodes activated in response to STAT6 (Figure 2F).

Moreover, it has been reported that, as a result of IL-15 signaling

absence (48), during a pro-inflammatory context mediated by

IFN-g and IL-12, the generation of memory cells is minimized

(Figure 2G). The same was also reported during stimulation with

IFN-g and IL-12 in the absence of PD-1 signaling (30)

(Figure 2H). Furthermore, it has been reported that metabolic

alterations directly affect CD8+ T cell differentiation. More

precisely, it was found that during pro-inflammatory

stimulation with IFN-g and IL-12, the presence of free fatty

acids (FFAs) downregulates the differentiation of Tc1 phenotype

(49), which is also recapitulated by our model, as showed in

Figure 2I. Finally, it has been observed that chronic consumption

of alcohol reduces CD8+ T cell memory (50), a fact that was

corroborated when we simulated a pro-inflammatory context

given by IFN-g and IL-12 in presence of ethanol, as observed in

Figure 2J. Interestingly, the 100% of configurations contained in

the state space converge to all phenotypes observed in the

mutants presented in this section (i.e. fk = 100%), which

means that the model was able to explore all possible genetic

combinations presented in the GRN of CD8+ T cells.

Collectively, these observations show that our model

accurately describes the main aspects of CD8+ T cell biology.
Alcohol, high fat diet and metabolic
imbalances impair the CD8+
T cell response

Previous reports have shown that alcohol and FFAs affect the

differentiation of CD8+ T cells (49, 50). Expanding such results, we

investigated how nutritional imbalances affect the phenotypic

differentiation of CD8+ T cells. We simulated nutritional

abnormalities such as hyperglycemia, dyslipidemia, systemic high

levels of ceramides and alcohol, alone or in combinations with CD8

+ T cell differentiation (Figure 3). The combination of

hyperglycemia with dyslipidemia and high levels of systemic

ceramides correspond to a diabetic context (52). Both models
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FIGURE 2

Validation of the models. Comparison between simulated data and flow cytometry data obtained from in vitro assays. Blue scale of colors is assigned to
the synchronous updating scheme, violet scale corresponds to the asynchronous scheme and gray scale is reserved for in vitro data. (A) Cell distribution
in the absence of polarizing cytokines. (B) Cell distribution in the presence of IL-12 and IFN-g. (C) Tc17 phenotype in before and after treatment with IL-
6 and TGF-b. (D) Cell distribution in the presence of IL-4 and IL-12. (E) Cell distribution in the presence of IL-4. (F) Phenotype distribution in the
presence of IL-4 in knockout for STAT6. (G) Inhibition of IL-15 signaling during IL-12 and IFN-g stimulation. (H) Inhibition of PD-1 signaling in during IL-
12 and IFN-g stimulation. (I) Effect of FFAs during IL-12 and IFN-g stimulation. (J) Effect of alcohol over IL-12 and IFN-g stimulation. All simulations were
performed in presence of IL-15, except panel (G).
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showed that either hyperglycemia, dyslipidemia, high levels of

ceramides or alcohol were able to abrogate the differentiation of

CD8+ T cells to Tc0, Tc1, Tc2 and Tc17 phenotypes (Figures 3A-

D). These results are in agreement with the fact that unhealthy

nutritional habits predispose to recurrent illnesses (53).
Regulatory CD8+ T cells are resistant to
metabolic deregulation

On the other hand, our model predicts that TcReg cells are

resistant to nutritional impairment, such as hyperglycemia,

dyslipidemia, or high levels of ceramides and ethanol
Frontiers in Immunology 07
(Figure 3E). Contextualizing this finding, it was recently

reported that TcReg cells are essential to protect against

autoimmune diseases such as type I diabetes and patients with

such illness have fewer TcReg counts compared to healthy

individuals (12). In this respect, it was reported that the increase

of intestinal microbiota produced by a diet rich in carbohydrates

such as trehalose, which is a disaccharide composed by two

monomers of D-glucose, stimulates TcReg proliferation (12).

This implies de facto, that the increase in the consumption of

sugars does not affect the TcReg cells, as we show with

synchronous and asynchronous updating strategies (Figure 3E).

Furthermore, the robust persistence of the TcReg phenotype may

explain why autoimmune diseases such as type I diabetes have
B

C

D

E

F

A

FIGURE 3

Metabolic alterations impair CD8+ T cell differentiation. Effects of different metabolic alterations such as high fat diets, high consumption of
sugar and alcohol, as well as other health problems like diabetes. Metabolic alterations for the Tc0 population (A), as well as for the Tc1 (B), Tc2
(C), Tc17 (D) and TcReg population (E). (F) Experimental evidences that confirm these phenotypic alterations for Tc1, Tc17 and TcReg cells, as
were described for healthy and diabetic patients (51).
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such a low frequency in the world (54). Regarding the veracity of

these predictions about changes on phenotypes of CD8+ T cells, it

has been reported that obese diabetic patients have reduced counts

of Tc1 and Tc17 phenotypes compared to lean non-diabetic

patients (51), shown by our models in Figure 3F. Moreover, in

the same report, it was observed that TcReg cells do not present

variations among diabetic and non-diabetic patients (51), a fact

that demonstrates our predictions about TcReg phenotype

robustness (Figure 3F). Furthermore, our model also predicts

that during anti-tumor inflammation (i.e. stimulation of IL-12

and IFN-g), high levels of fat reduce the population of Granzyme

B-producing Tc1 cells, as recently reported (55) (Figure 3F).

Collectively, these data suggest that dyslipidemia affects the

functioning of all effector CD8+ T cells, except TcReg.
Frontiers in Immunology 08
Metabolic imbalances increase ROS and
downregulate mTORC2

We then wanted to determine the molecular mechanism that

generates the impaired differentiation of CD8+ T lymphocytes.

To answer this question, we simulated a series of knockouts

directed against the regulatory module of metabolism, which

comprises the nodes of superoxide dismutase (SOD), Akt,

reactive oxygen species (ROS), Mammalian Target of

Rapamycin Complex 1 (mTORC1) and 2 (mTORC2). We

simulated such knockouts for patients that have severe

metabolic alterations, whose physiological markers are

hyperglycemia, dyslipidemia, and high levels of ceramide, like

in type II diabetes (Figure 4). We observed that suppressing ROS
B
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FIGURE 4

Impairment of CD8+ T cell differentiation is caused by ROS. Results of knockout simulation analysis. (A) Effects of knockouts over Tc0
phenotype. (B) Effects of knockouts over Tc1 phenotype. (C) Effects of knockouts over Tc2 phenotype. (D) Effects of knockouts over Tc17
phenotype. (E) Effects of knockouts over TcReg phenotype. (F) Summary of total changes due to knockouts according to the synchronous
model. (G) Summary of total changes due to knockouts according to the asynchronous model.
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was associated with an improvement in the generation of CD8+

T cell effector phenotypes (Figures 4A-E). These observations

are congruent with a previous result in which the increase in

ROS levels was associated to deficiencies on CD8+ T cell

activation (11). Furthermore, our simulations expand the last

result, because they pointed out that ROS also interfere with

differentiation to Tc1, Tc2 and Tc17 effector phenotypes.

On the other hand, total abrogation of such effector

phenotypes was observed when we inhibited mTORC2

(Figures 4A-E). These data suggest that mTORC2 is necessary

to activate the immune response of CD8+ T cells (Figures 4F,G),

a fact that has already been reported in vitro (56). Evidence for a

link between ROS and mTORC2 was reported using C. elegans,

in which it was observed that mTORC2 activity reduces ROS

generation, enhancing cell surviving (57). Similarly, inhibition of

mTORC2 in human cancerous cells increases damage produced

by ROS (58). Our model indicates that this connection might be

valid also in CD8+ T lymphocytes. Therefore, our results suggest

that metabolic alterations increase ROS, and this impairs effector

response of CD8+ T cells as well as differentiation.
Differentiation of CD8+ T cells could be
enhanced by upregulating
mTORC2 activity

Finally, we investigated how to reverse the damage caused by

metabolic dysregulation and, similarly, we looked for more

evidence to delineate the role of ROS and mTORC2 on the

differentiation of CD8+ T cells. In order to achieve these goals,

we perform a knock-in analysis, in which we over-expressed

SOD, Akt, ROS, mTORC1 or mTORC2. We performed this

analysis in the context of diabetic patients, characterized by

hyperglycemia, dyslipidemia, and high systemic levels of

ceramides (Figure 5). We found that over-expression of

mTORC2 restores all effector phenotypes of CD8+ T cells

(Figures 5A-E). Moreover, we also confirmed our initial

statement about ROS, because over-expression of SOD was

able to partially restore the presence of effector phenotypes

(Figures 5A-E). Unexpectedly, we found that over-production

of ROS is not completely able to restore effector phenotypes,

except for Tc17 (Figures 5B-D).

Noteworthy, it has been previously reported that an increase

in ROS is needed to activate effector CD8+ T cells through TCR

signaling, but on the other hand, high and sustained levels of

ROS reduce Tc1 cells and produces TcReg cells instead (59). This

mechanism may explain why overproduction of ROS may

partially restore all effector phenotypes during metabolic

abnormalities. These results reinforce our hypothesis that

mTORC2 activity is essential to maintain healthy CD8+ T

effector proportions, because it fine-tunes the control over

ROS levels to promote a specific immune response against

micro-environment given by the cytokine milieu (Figures 5F,
Frontiers in Immunology 09
G). Therefore, metabolic abnormalities produced either by high

fat diet, or high sugar diet, as well as chronic consumption of

alcohol, diabetes or combination of the former possibilities may

impair the effector differentiation of CD8+ T cells.
Discussion

CD8+ T cell activation is achieved by TCR ligation,

costimulatory receptors, and cytokine signals. These pathways

can trigger metabolic reprogramming, especially costimulatory

receptors, to make up for the energetic and precursors

requirements during activation and differentiation into effector

or memory phenotypes. The integration of these pathways is

essential for the cell to achieve a proper response and function.

Here, we presented a GRN connecting all the main pathways:

TCR signaling, costimulatory and cytokines signaling, a

metabolic regulatory module, metabolic pathways, and the

genetic regulatory network controlling cell fate decisions. This

integrative network (Supplementary File 1) comprises 300 nodes

and was created from literature curation and database mining.

From this graphical framework, we generated a concise network

involving 18 nodes (Figure 1) and we assigned the Boolean rules

to each of these nodes (Table 1). Our concise model was fine-

tuned to recapitulate relevant experimental published data. We

then simulated CD8+ T cell behavior under TCR activation, in

the presence of polarizing cytokines for Tc0, Tc1, Tc2, Tc17 and

TcReg, demonstrating that our model recapitulates the

differentiation of CD8+ T cells into the corresponding effector

(Tc0, Tc1, Tc2, Tc17 and TcReg) and memory (TM)

phenotypes. Our model further account for the effects of

STAT6 and IL-15 knock-outs.

Considering the importance of nutrition and metabolism for

the immune system, we explored the effects of specific diet

imbalances and metabolic alterations in CD8+ T responses.

For this, we simulated nutritional abnormalities such as

hyperglycemia, dyslipidemia, systemic high levels of ceramides

and alcohol, and a diabetic context (52), with or without

polarizing cytokines for CD8+ T cell differentiation (Figures 3

and Figure 4). The model showed that specific components of

the diet can affect the differentiation of CD8+ T cells, for

instance: hyperglycemia, dyslipidemia, systemic high levels of

ceramides and alcohol impair Tc0, Tc1, Tc2 and TC17

differentiation (Figures 3A-D). These results corroborate the

fact that unhealthy nutritional habits predispose to recurrent

illnesses (53). In contrast, we found that TcReg cells were

resistant to nutritional impairment, such as hyperglycemia,

dyslipidemia, or high levels of ceramides and ethanol

(Figure 3E), a prediction that should be experimentally

validated and furthered explored.

We then explored the role of specific nodes of the metabolic

regulatory module, which comprises superoxide dismutase (SOD),

Akt, reactive oxygen species (ROS), mTORC1 and mTORC2. All
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of these components turned out to be important for CD8 T cell

differentiation, while mTORC2 proved to be essential for Tc0, Tc1

and Tc2 phenotypes, as shown by our simulation of knockouts in

Figure 4. This result corroborate previous reports (56), in particular

that Akt/mTOR pathway triggered by costimulatory receptors

supports metabolic reprogramming and fulfillment of energetic

requirements for T cell activation and differentiation. We also,

previously reported that ROS generation andmetabolic imbalances

interfere with CD8 T cell functions (11).

Once we established the relevance of mTORC2 for all

functional phenotypes, we performed a knock-in analysis to

simulate the effect of each regulatory node on CD8+ T cell

function in the context of a diabetic person. We found that over-

expression of mTORC2 restores all effector phenotypes of CD8+
Frontiers in Immunology 10
T cells (Figure 5), while SOD overexpression (ROS down-

regulation) was able to partially restore the effector phenotypes

(Figures 5A-E). Unexpectedly, we found that over-production of

ROS may partially restore all effector phenotypes (Figures 5C,B,

D). This agrees with previous reports showing that ROS

production is necessary for CD8+ T cell activation by TCR/

CD28 signaling, while high and sustained levels of ROS reduce

Tc1 differentiation favoring TcReg phenotype generation (59).

We propose that metabolic alterations inhibit mTORC2

functioning, which increases the ROS production inside CD8+

T cells, leading to a reduced CD8+ T cell differentiation into

effector phenotypes (Figure 6).

Although we found a strong correlation between the output

of the model and the biological data, we should keep in mind
B
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FIGURE 5

mTORC2 and inhibition of ROS might normalize metabolic alterations on CD8+ T cells. Results of knock-in simulation analysis. (A) Effects of
knock-ins over Tc0 phenotype. (B) Effects of knock-ins over Tc1 phenotype. (C) Effects of knock-ins over Tc2 phenotype. (D) Effects of knock-
ins over Tc17 phenotype. (E) Effects of knock-ins over TcReg phenotype. (F) Summary of total changes due to knock-ins according to the
synchronous model. (G) Summary of total changes due to knock-ins according to the asynchronous model. FGC: diabetic context given by
dyslipidemia, hyperglycemia, and high levels of ceramide.
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that a possible caveat of the present work is that by reducing

metabolic modules, some important interactions might have not

been considered. This work, however, is focused on long-term

metabolic interactions, and mainly on a metabolic regulatory

module, responsible for the metabolic reprograming of effector

phenotypes (Akt, mTORC1, mTORC2, ROS and SOD), which

also controls the differentiation process of CD8+ T cells. The

effect of specific metabolic pathways on the differentiation and

functions of CD8+ T cells is a relevant topic nowadays and

should be further explored.

To our knowledge, this is the first integrative mechanistic

model exploring CD8+ T cell differentiation, showing the effects

of an imbalanced diet and metabolic alterations in this process.

Based on the analysis performed with our model, we propose an

intervention for diabetic patients targeting an increase in

mTORC2 activation, which can potentially restore CD8+ T

cell phenotypes and function.
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56. Herrero-Sánchez MC, Rodrıǵuez-Serrano C, Almeida J, San-Segundo L,
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