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SUMMARY

Quantifying structural dissimilarities between networks is a fundamental and
challenging problem in network science. Previous network comparison methods
are based on the structural features, such as the length of shortest path and de-
gree, which only contain part of the topological information. Therefore, we pro-
pose an efficient network comparison method based on network embedding,
which considers the global structural information. In detail, we first construct a
distance matrix for each network based on the distances between node embed-
ding vectors derived from DeepWalk. Then, we define the dissimilarity between
two networks based on Jensen-Shannon divergence of the distance distributions.
Experiments on both synthetic and empirical networks show that our method
outperforms the baselinemethods and can distinguish networks well. In addition,
we show that our method can capture network properties, e.g., average shortest
path length and link density. Moreover, the experiment of modularity further
implies the functionality of our method.

INTRODUCTION

Network is a natural representation of complex data associations and it has been used in many domains

ranging from biology (Liu et al., 2020) and physics (Boccaletti et al., 2006) up to social sciences (Strogatz,

2001). Because of the specific characteristics of the complex system it represents, network emerges com-

plex non-trivial topological features, such as scale-free (Barabási and Albert, 1999) and small-world prop-

erties (Watts and Strogatz, 1998). The flexibility of network modeling and the rapid growth of network data

in recent years make it urgent to design effective network comparison methods. Because comparing struc-

tural similarities between networks is an important task, which has various scientific applications, e.g., the

comparison of brain networks for different subjects (Bullmore and Sporns, 2009) and diffusion cascade of

news (Zhan et al., 2018), the classification of proteins (Liu et al., 2020), the identification of changing points

of temporal networks (Holme and Saramäki, 2012), and the evaluation of generative network models (Hartle

et al., 2020; Ali et al., 2014; De Domenico et al., 2015).

Researchers have proposed methods based on graph isomorphism to compare networks (Zemlyachenko

et al., 1985; Babai, 2016; Grohe and Schweitzer, 2020). Themain limitations of isomorphism-basedmethods

are as follows: first of all, isomorphism-based methods can only compare networks with the same size and

are not scalable to large networks with millions of nodes. Secondly, this kind of methods can only tell

whether two networks are isomorphic or not but to what extent two networks are different is hardly

measured. Thanks to the mature research of network topology mining (Costa et al., 2007; Martı́nez and

Chavez, 2019; Tsitsulin et al., 2018; Gärtner et al., 2003), a number of researchers have studied how to

use network characteristics, e.g., adjacency matrix, node degree, and shortest path distance, to compare

networks with huge and different sizes. For instance, Saxena et al. (2019) introduced a network similarity

method based on hierarchical diagram decomposition via using Canberra distance, which considers

both local and global network topology. Lu et al. (2014) proposed a manifold diffusion method based

on random walk, which can not only distinguish networks with different degree distributions but also can

discriminate networks with the same degree distribution. Beyond the direct comparison of network topol-

ogy, we have witnessed the effectiveness of using quantum information science, i.e., information entropy,

in network comparison. For example, De Domenico and Biamonte (2016) proposed a set of information

theory tools for network comparison based on spectral entropy. Schieber et al. (2017) quantified the dissim-

ilarities between networks by considering the probability distribution of the shortest path distance be-

tween nodes. Chen et al. (2018) proposed a comparison method based on the node communicability
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sequence entropy. Bagrow and Bollt (2019) proposed a method based on portrait divergence to compare

networks. The portrait divergence-based method incorporates the topological characteristics of networks

at all scales and is applicable to all types of networks. The basic idea behind this kind of methods is that one

specific network property, such as the shortest path distance (Schieber et al., 2017) and node communica-

bility matrix (Chen et al., 2018), is chosen to measure the information content of a network via a proper en-

tropy. Therefore, the dissimilarity between two networks is given by the difference between the information

content of them. However, we claim that the selection of one specific property as a representative of

network information content may not be able to capture the information of a whole network. For example,

we can quantify the network dissimilarities through comparing the distance distribution based on the infor-

mation entropy. However, the shortest path-based distance between nodes is only one kind of properties

in a network; it cannot represent the complete structure of a network. Therefore, how to extract network

features sufficiently to quantify network differences is an urgent problem to be solved.

Network embedding, which aims to embed each node into a low-dimensional vector by preserving the

network structure as much as possible, has been widely used to solve many problems in network science,

e.g., link prediction (Bu et al., 2019; Grover and Leskovec, 2016), community detection (Jin et al., 2019; Li

et al., 2016; Fortunato, 2010), and network reconstruction (Pio et al., 2020; Xu et al., 2020; Goyal and Ferrara,

2018). In this paper, we further widen the application of network embedding, i.e., we explore how to use

network embedding to characterize the dissimilarity of two networks in a state-of-the-art way. We start

from using a simple and fast network embedding algorithm, i.e., DeepWalk, which can capture the global

information of a network, to measure the distance between two nodes for a given network. Then, the infor-

mation content of a network, i.e., network similarity heterogeneity, is defined based on the node distance

distribution and Jensen-Shannon divergence. Accordingly, the dissimilarity between two networks is

further defined upon network similarity heterogeneity between a pair of networks. We validate the effec-

tiveness of the network embedding-based comparison method on both synthetic and empirical networks.

Compared to the baseline methods, network embedding-based comparison shows high distinguishability.

RESULTS

Embedding-based network dissimilarity

Given a network G = ðV ;EÞ, in which V represents the node set, and E = fðvi; vjÞ; vi; vj ˛Vg is the edge set,

the number of nodes is given by N = jV j, where j � j indicates the cardinal number of a set. The adjacency

matrix ofG is given by AN3N, in which Aij = 1 if there is a link between node vi and vj , otherwise Aij = 0. We

use DeepWalk to learn the embedding vector of every node (Perozzi et al., 2014). Concretely speaking,

DeepWalk conducts a uniform random walk to obtain node sequences as the input for a learning model,

i.e., SkipGram. The embedding vectors of the nodes contain the structure information of the original

network. For a node vi, we use Vi
!

= ðvi1; vi2;/; vidÞ to represent the embedding vector obtained fromDeep-

Walk. Therefore, we can define the Euclidean distance between two arbitrary nodes vi and vj as bij =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
z = 1ðviz � vjzÞ2

q
. Smaller bij indicates that vi and vj are more similar. The Euclidean distance matrix is de-

noted as BN3N, in which BðiÞ is the Euclidean distance between node vi and all theN nodes. Hence, we have

Bði; iÞ = 0. We define Bmax = maxi;jBij and Bmin = mini;jBij = 0. We use Hi = ½Hi1;Hi2;/;HiL� to represent

the Euclidean distance distribution of node vi , in which Hiz is the probability that the Euclidean distance

between a node and node vi follows in the bin
�
Bmin + ðz � 1Þ Bmax �Bmin

L ;Bmin + z Bmax �Bmin

L

�
. L is a tunable

parameter. It is worth noting that the distance used here is not limited to Euclidean distance. We test

the robustness of our embedding method by using distance matrix generated by Manhattan distance

and inner product between node embedding vectors. The performance of using these two distances for

network comparison is further given in Figures S3–S4, which shows that different distance measures will

not change the similarity trend of our network embedding-based comparison method.

We introduce Jensen-Shannon divergence to define the network dissimilarity based on the Euclidean dis-

tance distribution. The Euclidean distance distribution heterogeneity of a network, i.e., JSðGÞ, measures

the heterogeneity of a network G in terms of the connectivity distances, and a network that possesses a

high diversity of node distance patterns corresponds to a large JSðGÞ value, which is defined as:

JSðGÞ =
JðH1;.;HNÞ
logðN+ 1Þ (Equation 1)
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where JðH1;.;HNÞ = 1
N

P
i;j

HiðjÞlog HiðjÞ
mj

represents the Jensen-Shannon divergence of the node Euclidean

distance distribution. The average Euclidean distance distribution for a network G is given by mG = fm1;

m2; /; mLg, in which mj =

PN

i = 1
HiðjÞ

N (j = 1 /, L), i.e., mj is the average value of the jth dimension of H

and represents the average probability of nodes that have Euclidean distance falls in the bin�
Bmin + ðj � 1Þ Bmax �Bmin

L ;Bmin + j Bmax �Bmin

L

�
.

Given two networks G1 = ðV1;E1Þ and G2 = ðV2;E2Þ, we denote mG1
and mG2

as the average Euclidean dis-

tance distributions ofG1 andG2, respectively. The dissimilarity betweenG1 andG2 (DNEðG1;G2Þ) is given by

DNEðG1;G2Þ = u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
�
mG1

;mG2

�
log 2

s
+ ð1 � uÞ

������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSðG1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSðG2Þ

p ���; (Equation 2)

where u ˛ ½0; 1� is a tunable parameter that controls the extent of global and local differences while

comparing two networks, and thus we have DNE ˛ ½0; 1�. The first term in Equation (2) compares the global

dissimilarities between networks through calculating the average Euclidean distance distributions. The

second term compares the local differences through evaluating the dissimilarity of Euclidean distance het-

erogeneity between two networks. Smaller value of DNEðG1;G2Þ indicates that G1 and G2 are more similar.

To obtain node embedding vector from DeepWalk, we set the parameters such as embedding dimension

d = 128, number of walks per node s = 10, the length of each walk l = 60, and the context window size

w = 8. In addition, we set L = 10 in the Euclidean distance distribution Hi ði = 1; 2;/;NÞ. The influence of

distribution length L and the parameters d, s, l, and w of DeepWalk on the performance of network com-

parison is further given in Figures S5–S16, which shows different settings of these parameters will not

change the similarity trend between networks.

In Figure 1, we show the network dissimilarity comparison process of our method DNE . In Figure 1A, we

show two networks, i.e., G1 and G2, in which G1 is a fully connected network and G2 has one isolated

Figure 1. Illustration of the network embedding-based comparison method

(A) Visualization of two networks G1 and G2, each with 12 nodes and 12 edges. It should be noted that our method is applicable to compare networks with

different node and edge sizes.

(B–C) Example of how to compute network embedding-based dissimilarity, including the characterization of the node embedding, calculation of the node

Euclidean distance, node distance distribution, average Euclidean distance distribution, and the dissimilarity between network G1 and G2, where we use

u = 0:5.
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node. The detailed calculation process of the method is shown in Figures 1B and 1C, which include the

calculation of node embedding vector, node Euclidean distance matrix, node distance distribution, and

the dissimilarity between the two networks via Equations (1) and (2). The dissimilarity between G1 and

G2 via DNE is as high as 0.32.

Synthetic network comparison

To verify the ability of our method in quantifying the network dissimilarity, we perform the comparison on

synthetic networks including networks generated by WS and BA models. In all the network models, we use

the network sizeN = 1000. InWSmodel, we compare networks generated by different rewiring probability

p, where the network average degree is 10. Figures 2A–2C show the dissimilarity values obtained by DNE ,

DSP , andDC between networks generated byWSmodel with different p. Generally, we find that all the three

kinds of dissimilarity values of the networks generated with similar p values are much smaller than those of

the networks generated with dramatically different values of p. The proposed method DNE can detect the

network dissimilarity for all the p values (Figure 2A), while DSP and DC cannot identify the difference be-

tween networks for large values of p (Figures 2B and 2C). The definition of DNE , DSP , and DC is based on

the embedding-based distance distribution, the shortest path distance distribution, and the node commu-

nicability distribution, respectively. The embedding-based distance distributions are distinguishable

across different p (Figure 2D). However, the distributions of shortest path distance and node

Figure 2. Performance of three comparison methods on synthetic networks

(A–C) Dissimilarity values DNE , DSP , and DC of networks generated by WS model, respectively.

(D) The embedding-based average distance distributions of networks generated by WS model with different p based on DNE .

(E) The average distance distributions of networks generated by WS model with different p based on DSP .

(F) The node communicability distributions of networks generated by WS model with different p based on DC .

(G–I) Dissimilarity values DNE , DSP , and DC of networks generated by BA model under different m, respectively, in which m˛ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g.
(J) The embedding-based average distance distributions of networks generated by BA model with different m based on method DNE .

(K) The average distance distribution of networks generated by BA model with different m based on method DSP .

(L) The node communicability distribution of networks generated by BA model with different m based on method DC . All the results are averaged over 100

realizations, where we use u = 0.5.
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communicability are so narrow for large p values (Figures 2E and 2F), leading to no difference for the cor-

responding network comparison methods. Besides, the comparison of networks generated by WS model

in the log-spaced of p is further given in Figures S1A–S1C, which reveals the same results as that of

Figures 2A–2C. In BA model, we generate networks by changing the value of m, which is the number of

edges per node added at each time step. Figures 2G–2I show the comparison of networks generated by

BA model with m˛ ½1; 10� via the three methods. Similarly as the WS model, DNE shows the best perfor-

mance. The reason that DSP and DC perform worse is given by the average shortest path distance distribu-

tions and the node communicability distributions when changing m in Figures 2K and 2L, respectively. In

addition, we also compare the dissimilarities between the preferential attachment networks generated

by different values of nonlinear preferential attachment kernel a in Figures S1D–S11F, which again shows

our method outperforms the baselines.

We show how the dissimilarity between networks changes with the parameter u in Figures S2A and S2B. In

all the networks, we keep the average degree as 10. Each point in Figure S2A shows the dissimilarity be-

tween a network generated by WS model with size N = 1000 and N = f1500; 2000; 2500; 3000;
3500; 4000; 4500; 5000g, respectively. We set rewiring probability as p = 0:3. Different curves show the

dissimilarity when we use different u. We find that a network generated by WS model with size N =

1000 is more similar to networks generated with close size, and different u does not affect the similarity

trend. However, large value of u results in larger dissimilarity values between networks. In Figure S2B,

we give the same analysis for BA model, which shows the similar results as those of WS model. We also

compare the differences between the following networks: BA, WSL (it is obtained by rewiring 1% of edges

in K-regular network), andWSH (it is obtained by rewiring 10% of edges in K-regular network) in Figure S2C.

Figure S2C shows the change of the dissimilarity values with the increase of u, and the results show that

large value of u gives large dissimilarity value. Furthermore, when u = 0, indicating that only local struc-

tural information is used (Equation (2)), the differences between the three pairs of synthetic networks are

not effectively distinguished. On the contrary, when u = 1, the global information of the network can bet-

ter distinguish the network differences. Therefore, we set u = 1 in the following analysis.

To compare with different dissimilarity methods, we also show the dissimilarity between four synthetic net-

works with the same node size N = 1000, edge size jEj = 5000 and average node degree 10. The four

networks include K-regular, WSL, WSH, and BA model. From the generation model, we know that the de-

scending order of similarity value between K-regular and the other three networks is as follows: WSL, WSH,

and BA. Figure 3 gives the dissimilarity between the four networks with three methods, i.e., DNE , DSP , and

DC . Figure 3 implies that dissimilarities between the four networks obtained by the three network compar-

ison methods are consistent with the rules of network generation models. However, the dissimilarity values

Figure 3. Comparison of four synthetic networks (K-regular, WSL, WSH, and BA)

We use three different methods, i.e., DNE , DSP , and DC , respectively, in which DNE is the method of network embedding,

DSP calculates the dissimilarity value based on the method using distance distribution, and DC calculates the dissimilarity

value based on the communication sequence entropy. We consider network sizeN = 1000, average node degree 10. All

the results are averaged over 100 realizations with u = 1:0.
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(DSP ) between K-regular andWSL, K-regular andWSH are almost the same and the dissimilarity values (DSP )

between the four synthetic networks are very close, indicating that the method DSP cannot effectively

discriminate the differences between these synthetic networks.

Real networks comparison

We validate the effectiveness of our network embedding-based comparison method upon real networks

from different domains. Table 1 gives the basic properties of the real networks, including the number of

nodes (N), the number of edges (jEj), average degree (Ad), average path length (Avl), link density (Ld), clus-

tering coefficient (C), and diameter (dia). The 12 real networks range from the protein-protein interaction

(Yeast) and metabolic network (Metabolic) in biology, to the human contact (Infectious, Windsurfers), and

to the social communication networks (Pgp, Rovira, Petster, Petsterc, and Irvine).

Firstly, we show the difference between a real network and its corresponding null models in Figure 4A. For

a network G, we consider three kinds of null models (k-order null models, including k = 1.0, 2.0, and 2.5)

(Orsini et al., 2015), which is defined as Dk1:0, Dk2:0, and Dk2:5, respectively. Specifically, different values

of k indicate the preservation of network topology to different degrees. k = 1:0 indicates that the gener-

ated network retains the degree sequence. When k = 2:0, the degree sequence and degree correlation

properties are invariant during the rewiring process. k = 2:5 preserves the clustering spectrum property

of the original network. The dissimilarity values are averaged over 100 repeated independent runs. With

the increase of k, the dissimilarity between a real network and its randomized networks tends to be smaller

across different networks (each row in Figure 4A). The pattern of the network dissimilarity values is consis-

tent with the randomization process, where larger k indicates that the randomized networks share more

properties with the original network, leading to the more similarity to the original network.

We also compare the real networks with the networks after certain perturbation. The perturbation is per-

formed as follows: for a given network, we randomly add (or delete) a certain fraction f ˛ ½0; 1� of edges,
and then compare the dissimilarity between the original network and the perturbed network. Positive f rep-

resents addition process, and negative f represents deletion process. Figure 4B shows the dissimilarity be-

tween Petsterc network and the perturbed networks after random addition or deletion of edges. It implies

that the more we perturb the network, the more dissimilar it is to the original network. We show the similar

trend of the other networks in Figure S6. The results indicate that our comparison method can distinguish

the differences between a real network and the networks generated after certain perturbation.

Analysis on the hybrid method

Figure 2 shows DNE is an effective way to distinguish networks and shortest path distance-based method

(DSP ) can partly tell the difference between different synthetic networks. We further hybridize these two

Table 1. Basic properties of real networks

Networks N jEj Ad Avl Ld C dia

Pgp 10,680 24,316 4.55 7.49 0.0004 0.266 24

Yeast 1,870 2,203 2.44 6.81 0.0013 0.067 19

Contiguous 49 107 4.37 4.16 0.0910 0.497 11

Infectious 410 2,765 13.49 3.63 0.0330 0.456 9

Rovira 1,133 5,451 9.62 3.61 0.0085 0.220 8

Petsterc 2,426 16,631 13.71 3.59 0.0057 0.538 10

Petster 1,858 12,534 13.49 3.45 0.0073 0.141 14

Irvine 1,899 59,835 14.57 3.06 0.0079 0.109 8

Metabolic 453 2,025 8.94 2.68 0.0198 0.646 7

Jazz 198 2742 27.69 2.24 0.1406 0.617 6

Chesapeake 39 170 8.72 1.83 0.2294 0.450 3

Windsurfers 43 336 15.63 1.69 0.3721 0.653 3

N, jEj, Ad, Avl, Ld, C, and dia represent the number of nodes, the number of edges, average degree, average shortest path

length, link density, average clustering coefficient, and network diameter, respectively.
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distance distributions to explore the performance of the hybrid method on network comparison. To

recap, we use PN3N and HN3L to represent the shortest path distance distribution and the distance

distribution based on network embedding, respectively. As the dimension of p and H is different,

we expand short dimension matrix with zero values. That is to say, if N<L, we expand Pi to L31

dimensions, i.e., Pi = ðPi1; Pi2;/; PiN; 0;/; 0Þ. And if N>L, we expand Hi to N31 dimensions, i.e., Hi =

ðHi1;Hi2;/;HiL;0;/;0Þ. For each node vi, the hybrid distance distributionMi is defined as the normalization

of lPi +ð1 � lÞHi. Thus, we define the hybrid distance distribution M as

M = lP + ð1 � lÞH; (Equation 3)

where l is a tunable parameter. We useM to replace H in Equation (2), and obtain the hybrid network com-

parison method, which is denoted as DM.

We test the performance of DM on the comparison of a network and its null models (i.e., Dk1:0, Dk2:0, and

Dk2:5) in Figure 5.We useDMðDk1:0Þ,DMðDk2:0Þ, andDMðDk2:5Þ to represent the dissimilarity between the

original network and its null models, respectively. The pattern of the dissimilarity between a real network

and its null models (i.e., DMðDk1:0Þ>DMðDk2:0Þ>DMðDk2:5Þ) when l< 1 is consistent with the order of the

null models. However, DM cannot tell the difference between the network and its null models very well, i.e.,

DMðDk2:0Þ andDMðDk2:5Þ share the same value in Figures 5H, 5I, and 5K when l = 1. In fact, l = 1 indicates

that the hybrid distance distribution degrades into only considering the shortest path distance distribution

(Equation (3)), leading toDMzDSP for l = 1. The network basic features show that the average shortest path

length of Irvine (Figure 5H), Metabolic (Figure 5I), Chesapeake (Figure 5K), and Windsurfers (Figure 5L) are

significantly smaller than the other networks, which cannot be well compared according to DM for l = 1. It

indicates thatDSP cannot well tell the difference of the real network with small average shortest path length,

which is consistent with the findings in the synthetic networks (Figures 2B and 2E). And for l = 0, which

means the hybrid method degrades into DNE , shows better discriminative performance on network com-

parison across networks with different average shortest path length, which implies the robustness of

DNE upon different network structure.

Comparison between real networks

The dissimilarity between the 12 real networks is given in Figure 6. We show DNE between network pairs in

Figure 6A; we find that networks that have the similar value of average shortest path length tend to be

similar. It implies thatDNE considers the path properties of a network when comparing networks. The impli-

cation is further amplified by the high Pearson correlation coefficient (r = 0:50;p = 2:73 10� 5) between

Figure 4. Dissimilarity between real networks

(A) Comparison between real networks and their null models. We consider the Dk models with different k-values (1.0, 2.0, and 2.5).

(B) Dissimilarity between Petsterc network and the networks generated after certain perturbations, where negative value of f corresponds to the random

deletion of edges with the given ratios, and vice versa. Each point in the figure is averaged over 100 times. The shaded error area shows the standard

deviation of 100 times.
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DSP and DNE given in Figure 6B, where the values of DSP and DNE are computed between the 12 real net-

works. Given two networks G1 and G2, we define the average shortest path length difference and the link

density difference between them as DAvl = jAvl1 � Avl2j and DLd = jLd1 � Ld2j, respectively. In Figure 6C,

we show the Pearson correlation between DNE and DAvl, which is as high as r = 0:43 (p = 3:4310� 4). It

further explains the results of Figure 6A, i.e., networks with similar average shortest path length tend to

be similar. Meanwhile, the high Pearson correlation coefficient (Figure 6D, r = 0:42, p = 4:93 10� 4) is

also found between DNE and DLd. In conclusion, the network embedding-based comparison method

can capture network properties such as average shortest path length and link density.

Modularity reflects the strength of division of a network into communities (Newman, 2006), i.e., a network

with a high modularity indicates that nodes are densely connected within the communities and sparsely

connected across different communities. Thus, we explore the relationship between modularity and

network structural difference. We define the community segmentation with the maximal network modu-

larity as Q, which corresponds to the optimal division of a network (Newman and Girvan, 2004). Given

A

D

G

J K L

H I

E F

B C

Figure 5. The dissimilarity between a network and its null models characterized by the hybrid method

When parameter l = 0, the hybrid method degenerates to DNE ; when l = 1, the real shortest path distance distribution of

the network is used to characterize the dissimilarity. The red line in each figure describes the dissimilarities between the

real network and the DK1.0 changing with the parameter l. The blue line in each figure describes the dissimilarities

between the real network and the DK2.0 changing with the parameter l. The green line in each figure describes the

dissimilarities between the real network and the DK2.5 changing with the parameter l.
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two networks G1 and G2, we define the modularity difference between them as DQ = jQ1 � Q2j. Figure 7

shows the correlation between DQ and dissimilarity value DNE on 12 real networks. The result shows that

the similar networks tend to have small value of DQ and vice versa. It further emphasizes the good perfor-

mance of our network embedding-based comparison method.

DISCUSSION

In this paper, we propose a network embedding-based comparison method DNE , which is based on node

distance distribution and Jensen-Shannon divergence. Specifically, we firstly obtain the embedding vector

for each node throughDeepWalk and calculate the Euclidean distance between each of the node pairs. We

measure the distance distribution heterogeneity of a network via defining the Jensen-Shannon divergence

of the node distance distributions. The dissimilarity between two networks is further defined by the com-

bination of the difference of the average distance distribution of the networks and the network Euclidean

distance distribution heterogeneity. We compare the proposed method DNE with two state-of-the-art

methods, i.e., network dissimilarity based on shortest path distance distribution (DSP ) and network dissim-

ilarity based on communicability sequence (DC ), on various synthetic and real networks. Furthermore, we

find that DNE shows better performance in quantifying network difference in almost all the networks. In

addition, we find that DNE is also linearly correlated with DSP (Pearson correlation coefficient r = 0:5),

and thus can capture network properties such as average shortest path length and link density. Moreover,

it shows that real networks that are similar to each other tend to have small difference in modularity.

Figure 6. Correlation analysis in real networks

(A) Comparison between real networks, in which networks are sorted in descending order based on average shortest path

length.

(B) Correlation between network comparison methods DSP and DNE .

(C) Correlation between network dissimilarities DNE and average shortest path length differences DAvl on 12 real

networks.

(D) Correlation between network dissimilarities DNE and link density differences DLd on 12 real networks. Where r value

shows the Pearson correlation, p value shows the assumption probability and the shaded error area shows the confidence

interval.
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We confined ourselves to DeepWalk to embed networks, which is a simple and efficient network embed-

ding method. According to previous work, more advanced embedding methods, such as Node2Vec

(Grover and Leskovec, 2016) and graph neural network (Zhang and Chen, 2018), can better capture the to-

pology of the network, generating better performance in tasks such as link prediction, clustering, and clas-

sification. Therefore, these embedding methods could be promising in quantifying network dissimilarity.

We deem that our methods can also be generalized to other network types, such as multilayer networks

(Kivelä et al., 2014), temporal networks (Holme, 2015), signed networks (Wang et al., 2017), and hyper-

graphs (Feng et al., 2019).

Limitations of the study

The distance distribution used in our comparison method is based on a random walk embedding algo-

rithm, i.e., DeepWalk, which is a black box model. Therefore, it is hard to theoretically deduce the specific

properties that can be captured by the comparison method.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contacts, Xiu-Xiu Zhan (zhanxiuxiu@hznu.edu.cn), or Zi-Ke Zhang (zkz@zju.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. The DOI is listed in the key resources table.

d All original code has been deposited on GitHub through Zenodo. The DOI is listed in the key resources

table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This work does not use experimental models typical in the life sciences.

METHOD DETAILS

Datasets

We consider 12 kinds of real networks, the description of each network is as follows:

� Pgp is a interaction network of users of the Pretty Good Privacy (PGP) algorithm, which only contains

the giant connected component.

� Yeast and Metabolic are the biological networks, in which Yeast is the protein interaction network

and Metabolic is a metabolic network of Caenorhabditis elegans.

� Contiguous is a regional border network in the United States excepted isolated states Alaska and

Hawaii.

� Rovira is an e-mail communication network at the University Rovira i Virgili in Tarragona in the south

of Catalonia in Spain.

� Petsterc and Petster contain friendships and family links between users of the website, in which Pet-

ster is the giant connected component.

� Irvine is a messaging network between the users of an online community of students from the Uni-

versity of California, Irvine.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Network data This paper https://doi.org/10.5281/zenodo.6526610

Code This paper https://doi.org/10.5281/zenodo.6526610

Software and algorithms

Python version 3.6 Python Software Foundation https://www.python.org

OriginPro 9.1 Data Analysis and Graphing Software https://www.originlab.com/
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� Jazz is a collaboration network between Jazz musicians.

� Chesapeake is a mesohaline trophic network of Chesapeake Bay, an estuary in the United States of

America.

� Windsurfers contains interpersonal contacts between windsurfers in southern California during the

fall of 1986.

Baselines

Network dissimilarity based on shortest path distance distribution

Suppose the shortest path distance distribution of node vi is denoted by Pi = fpiðjÞg, in which piðjÞ is

defined as the fraction of nodes at distance j from node vi . Network node dispersion NND measures the

network connectivity heterogeneity in terms of shortest path distance and is defined by the following

equation:

NNDðGÞ =
JðP1;.;PNÞ
logðdia+ 1Þ ; (Equation 4)

where dia represents the network diameter and JðP1;.;PNÞ is the Jensen-Shannon divergence of the node

distance distribution. The dissimilarity measure DSP is based on three distance-based probability distribu-

tion function vectors and is defined as follows:

DSPðG1;G2Þ = u1
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(Equation 5)

where u1, u2, u3, and a are tunable parameters, in which u1 +u2 +u3 = 1. The first term in Equations (4)

and (5) indicates the dissimilarity characterized by the averaged shortest path distance distributions,

i.e., mG1
and mG2

. The second term characterizes the difference of network node dispersion. The

last term is the difference of the a-centrality distributions, in which Gc is the complementary

graph of G. We set u1 = u2 = 0:45 and u3 = 0:1, which are the default settings used in (Schieber

et al., 2017).

Network dissimilarity based on communicability sequence

The communicability matrix C measures the communicability between nodes and is defined as follows:

C = eA =
XN
z = 0

1

z!
Az =

8>><
>>:

c11 c12 / c1N
c21 c22 / c2N
« « 1 «
cN1 cN2 / cNN

9>>=
>>;; (Equation 6)

where cij unveils the communicability between node vi and vj . Let P = fP1;P2;/;PMg be the normalized

communicability sequence, in which Pz =
cijPN

i = 1

PN

j = i
cij

(1% z%M, 1% i% j%N and M = NðN+ 1Þ
2 ). The

Jensen-Shannon entropy of the sequence is expressed as follows:

SðPÞ = �
XM
i = 1

Pi log 2Pi (Equation 7)

Given two networks G1 and G2, normalized communicability sequences are given by PG1 and PG2 , respec-

tively. We sort the values in PG1 (PG2 ) in an ascending order and obtain new communicability sequences as

~P
G1

(~P
G2
). Therefore, the communicability based dissimilarity is defined as DCðG1;G2Þ:

DCðG1;G2Þ = S

 
~P
G1

+ ~P
G2

2

!
� 1

2

�
S
�
~P
G1�

+ S
�
~P
G2��

(Equation 8)
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QUANTIFICATION AND STATISTICAL ANALYSIS

We give the average dissimilarities between a pair of networks for 100 runs and give the standard deviation

of the dissimilarities between the original real networks and the networks generated after certain pertur-

bations. The confidence interval, Pearson correlation coefficient and p value in Figure 6 are calculated

by Origin.

ADDITIONAL RESOURCES

This work does not include any additional resources.
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