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Abstract

In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of
the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is
more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must
replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-
dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We
found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last
organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus,
presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a
mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent
model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.
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Introduction

Protozoa cell division involves unique morphological changes to

accommodate DNA replication with the segregation of single copy

and essential organelles. This is the case of trypanosomatids, which

present typical morphological features such as the cytoskeleton,

composed of subpellicular microtubules, and a flagellum associ-

ated with a paraflagellar rod, a trilaminar lattice-like structure that

runs alongside the flagellum axoneme. The flagellum, which

protrudes from a flagellar pocket, is associated through the basal

body, with a single mitochondrion containing a network of circular

DNA, called the kinetoplast [1–4].

Some monoxenic trypanosomatids, which inhabit an inverte-

brate host during all its life cycle, present a single endosymbiotic

bacterium in their cytoplasm. This bacterium co-evolves through a

mutualistic relationship with the host protozoan, constituting a

valuable model to understand the symbiotic origin of organelles

(reviewed by [5]). When the endosymbiont is present ultrastruc-

tural alterations such as, a reduced paraflagellar rod and a looser

arrangement of kDNA network, are observed in the host

trypanosomatid [6–7]. An extensive metabolic exchange maintains

both partners together; the endosymbiont contains enzymes that

complete the protozoan metabolic pathways [8–10], while the

symbiotic bacterium may obtain ATP through the activity of host

glycosomes, which are organelles that compartmentalize glycolytic

enzymes [11]. The symbiont is enclosed by two unit membranes

and contains a reduced peptidoglycan layer, which is involved in

the bacterium shape maintenance and division [12]. Differently

from bacteria, but similar to most mitochondria, it lacks the

septum and does not form the FtsZ ring, structures which play

essential roles in prokaryote division [13–14]. Phylogenetic

analyses of ribosomal genes have revealed that the endosymbiont

of different trypanosomatid species are similar, being classified in

the b division of Proteobacteria, since it is phylogenetically related

to bacteria of the Bordetella genus [15].

The cell cycle of trypanosomes has been well characterized in

Trypanosoma brucei, with some studies in Trypanosoma cruzi, Crithidia

and Leishmania species [2,16–19]. At the beginning of the cell cycle,

trypanosomes present a single flagellum, one kinetoplast and one

nucleus. After faithful duplication and segregation of these

structures, two new viable cells are produced.

Usually, the cell cycle begins with the maturation of the

probasal body and the formation of a new flagellum [18,20–21]. In

the procyclic form of T. brucei, which replicates in the insect

midgut, the kinetoplast S phase initiates immediately before the

beginning of the nuclear S phase [22], whereas in Crithidia,
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Leishmania and T. cruzi, DNA synthesis in the nucleus starts before

DNA synthesis of the kinetoplast [16–18]. However, in both cases,

the kinetoplast S phase finishes before entry into the nuclear G2

phase. The kinetoplast also divides and segregates before the

nuclear division [18,20,22]. As the cell cycle proceeds, during the

nuclear G2 phase basal bodies separate in a microtubule and

centrin mediated process, promoting the kinetoplast and Golgi

segregation [23–24]. In all trypanosomatids, the nuclear chromo-

somal segregation takes place during a closed mitosis, with

formation of an intranuclear spindle without disruption of the

nuclear envelope [25]. Later on, the cytokinesis initiates at the

anterior end of the protozoan and continues with the ingression of

a cleavage furrow along the longitudinal axis of the dividing

trypanosome, passing between the two flagella to form daughter

cells [20,26].

The cell division cycle in endosymbiont-bearing trypanosoma-

tids has still not been explored. Previous studies have reported that

the symbiotic bacterium divides in synchrony with the host

protozoan structures, in such a way that each daughter cell carries

only one endosymbiont [5,14]. Although synchronous, the exact

time by which the symbiont divides is unknown. Therefore, in the

present work, we describe the morphological events that occur

during Crithidia deanei cell cycle, in particular the chronological

division of the symbiont, relative to the other trypanosomatid host

structures, such as the basal body, the kinetoplast, the flagellum

and the nucleus. This unique system provides an interesting model

to understand the relationship between cell cycle and organelle

division processes.

Methods

Protozoa growth
Crithidia deanei was growth at 28uC in Warren’s culture medium

[27] supplemented with 10% fetal calf serum. When the culture

reached 16108 cells/ml, it was used for experimental assays. New

cultures were obtained after inoculation of 10% of an old culture

maintained at 4uC The C. deanei generation time is equal to 6 h.

Transmission Electron Microscopy
For routine transmission electron microscopy, protozoa were

fixed for 1 h in 2.5% glutaraldehyde, diluted in 0.1 M cacodylate

buffer pH 7.2. Then, cells were washed twice in the same buffer

and post-fixed in 1% OsO4, 0.8% KFe(CN)6, 5 mM CaCl2 diluted

in 0.1 M cacodylate buffer. Later, cells were washed, dehydrated

in a graded series of acetone solutions and embedded in Epon.

Ultrathin sections were stained with uranyl acetate and lead citrate

before observation in a Zeiss 900 transmission electron micro-

scope.

FIB–SEM tomography
A FIB–SEM microscope is a scanning electron microscope

(SEM) combined with a focused ion beam (FIB) in such a manner

that both beams coincide at their focal points. This technique

involves the sample serial sectioning with the ion beam, thus

generating new block faces, which are then imaged at high

resolution with the electron beam. FIB-based tomography is a

powerful method for investigating three-dimensional (3D) struc-

ture of biological and geological materials, as well as ceramic

samples [28].

For observation in FIB-SEM, resin embedded samples were

mounted on a support stub for SEM (FEI Quanta 3D DualBeam

instrument, FEI Company). A 3 nm layer of platinum was

deposited onto the sample, with a sputter coated. Images of the

samples were taken with the ion beam at 30 kV acceleration

voltage and a beam current of 1000 pA, in the SE imaging mode.

The sample was tilted 52u to orientate the surface perpendicular to

the Ga+ ion beam and a U-shaped trench was cut around the area

of interest. For slice and view, the sample was tilted back to 0u, and

the block was milled with the ion beam pointing at an angle of 38u
to the sample surface, and the dwell time was 0.3 ms. After milling,

the sample was ready for slice and view. The slice thickness was

113.5 nm. Images of the cell surface were taken with the electron

beam at 5 kV acceleration voltage, beam current at 4000 pA and

dwell time 6 ms, in the BSE imaging mode.

Three-dimensional reconstruction
Models were constructed on computer running MIDAS and

IMOD software (Boulder Laboratory, University of Colorado,

Boulder, Colorado, USA) [29]. Image stacks were aligned using

MIDAS. IMOD was used to stack the aligned images and the

structures of interest were traced to provide a 3D representation.

Using the IMODmesh feature of IMOD, the contours of each

object were joined to form a 3D model. Movies of these models

rotating in space were made using Quick Time software.

Antibodies
The following antibodies were used in this work: (i) polyclonal

antibody produced against the recombinant FtsZ of the symbiont,

which was kindly provided by Dr. Stenio Fragoso and homoge-

neously labels the endosymbiont matrix [14], (ii) the MAb (TAT1),

which was kindly supplied by Dr. Keith Gull, and recognizes a-

tubulin, thus labeling the trypanosomatid cell body and the

flagellar axoneme [30] and (iii) an anti-c tubulin antibody which

was kindly provided Dr. Michel Bornens [31] and was used for

basal body labeling.

Immunofluorescence assays
Asynchronous and exponentially growing protozoa were

washed in phosphate buffer saline, pH 7.0 (PBS) and fixed by

incubation with 4% freshly prepared formaldehyde in PBS for

30 min. Then, cells were deposited on poly-L-lysine-treated

microscope slides and permeabilized with 1% NP-40 in PBS for

40 min. The slides were incubated in blocking solution containing

1.5% BSA, 0.5% teleostean gelatin, 0.02% Tween 20 in PBS, and

were then incubated for 1 h with the following antibodies diluted

in blocking solution: anti-symbiont FtsZ (1:50), MAb TAT1 (1:5)

and anti-c tubulin (1:50). It is worth mentioning that our previous

work showed that differently from most bacteria, the symbiont of

trypanosomatids does not form a Z ring, a structure involved in

bacterial cell division. Thus, the use of anti-FtsZ antibody

promotes a homogeneous labeling of the endosymbiont matrix

(Motta et al., 2004). After incubation with the primary antibody,

protozoa were washed and incubated for 45 min with Alexa 488-

conjugated anti-mouse IgG (to FtsZ), Alexa 456 conjugated anti-

mouse IgG (to a-tubulin) or Alexa 456 conjugated anti-rabbit IgG

(to c tubulin) diluted (1:200) in blocking solution. Later, cells were

incubated with 49,6-diamidino-2-phenylindole (DAPI, from Mo-

lecular Probes) for 5 min. The pre-immune serum or samples

incubated without the primary antibody were used as a control.

The slides were mounted in N-propyl gallate and serial image

stacks (0.2-mm Z-increment) were collected at 100x (oil immersion

1.4 NA) on a motorized Olympus BX microscope equipped with a

differential interference contrast optics, and a Orca R2 (Hama-

matsu, Japan). All images were collected with Cell‘M software

(Olympus), and fluorescence images were deconvolved by using

blind deconvolution with the AutoQuant 2.1 software (Media

Cybernetics). Alternatively, samples were visualized with confocal

laser scanning microscope (Zeiss LSM510 META). Projection of

Endosymbiont Division
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the Z axis and the 3D reconstructions were obtained and

processed using the Z-stack systems of the microscope software.

Cell cycle analysis
The period of the cell cycle that a cell takes with each form of

the symbiont (rod shaped, one dividing symbiont or two

symbionts) were calculated based on DAPI staining and labeling

of the symbiotic bacterium with anti-FtsZ antibody, using the

Willians analysis [32]:x = ln (1– y/2)/– a,where x is the cumulative

time within the cycle required to reach the end of the period in

question, y is the cumulative % of cells up to and including the

stage in question (expressed as a fraction of one unit) and a is the

specific growth rate. The description of events and timings in the

C. deanei cell cycle were based on counts of 1000 cells.

Results

Previous studies have suggested that the symbiotic bacterium

divides in synchrony with the host trypanosomatid structures, since

each daughter cell carries only one endosymbiont [5,14]. In order

to study the morphological changes that occur with the symbiont

during the C. deanei cell cycle, we first analyzed an asynchronous

culture of this protozoan by immunofluorescence assays using an

anti-FtsZ antibody, which specifically recognizes the bacterium.

Differently from most bacteria; the symbiont of trypanosomatids

does not form a Z ring, a structure involved in bacterial cell

division. Thus, the anti-FtsZ antibody produces a homogeneous

labeling of the endosymbiont matrix (Fig. 1), as previously

described [14]. In asynchronous culture of C. deanei, 22% of

trypanosomatids presented a rod-shaped endosymbiont (Fig. 1A,

single), 49% of protozoa contained a single bacterium with a

constriction, thus considered a dividing form (Fig. 1A, dividing)

and 29% of cells displayed two rod-shaped symbionts (Fig. 1A,

double). In order to certificate that the constricted or dividing form

is distinct from the already divided symbiont (double), protozoa

were observed by confocal microscopy by different angles (Fig. 1B).

Results clearly showed that the host protozoan presents endosym-

bionts with different shapes. After counting the different symbiont

formats in the host trypanosomatid and considering the generation

time of C. deanei (6 h), we were able to calculate the time that the

symbiont persists in each shape. Results, based on Williams cell

cycle analysis [32], as described in materials and methods section,

revealed that the symbiont remains as a single rod-shape

bacterium for about 1.0 h, whereas the constricted form persists

for about 3 h. After the bacterial division both symbionts are

maintained in the host protozoan for about 2 h.

Once established that the C. deanei symbiont can present

different shapes, we asked how these different bacterial formats

were associated to the host protozoan during its cell cycle. So, our

next step was to investigate C. deanei cell cycle, considering the

symbiont shape, number and position, in relation to the nucleus,

kinetoplast, basal body and flagellum. Immunofluorescence

analysis showed that the symbiotic bacterium can be observed

close or far from the host cell nucleus and varied in shape (Fig. 2A).

A round shaped symbiont was found in C. deanei with single

nucleus, kinetoplast and flagellum (Fig. 2A-a). Due to the

abundance of this pattern and the presence of single organelles,

we interpreted these forms as being in the G1 or S phase of C.

deanei cell cycle. Another population of cells presents just one

nucleus, one kinetoplast, one flagellum and a more elongated and

Figure 1. The different symbiont forms during C. deanei cell cycle. A non-synchronized cell culture were deposited on slides, previously
treated with poly-L-lysine, and incubated with anti-FtsZ to label the symbiont. Cells were observed by confocal microscopy in different sections (A) or
by different angles (B). Percentages in A are the proportion of each symbiont pattern (single rod-shape, constricted, double rod-shape) found in an
exponential growing C. deanei culture. In B the white head arrow shows the cell containing a single rod-shape symbiont and the white arrow shows
the cell containing double rod-shape symbiont. Bars = 2.5 mm.
doi:10.1371/journal.pone.0012415.g001

Endosymbiont Division
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Figure 2. Morphological patterns of exponentially growing C. deanei. (A–C) Cells were harvest by centrifugation, washed with PBS and fixed
with formaldehyde. Then, cells were deposited on slides, previously treated with poly-L-lysine. In panel A cells were incubated with anti-FtsZ in order
to label the symbiont and stained with DAPI (A). This figure (A-a-A-g) shows typical images of each observed cell morphological pattern until
cytokinesis. Note that during the cytokinesis the symbiont and the kinetoplast migrates to the posterior end of the protozoan cell body. In panel B
cells were incubated with anti-tubulin and stained with DAPI. In panel C cells were incubated with anti-Ftsz, anti-c-tubulin and stained with DAPI. In
A-C: the black arrow indicates the flagellum, while the white arrow shows kinetoplast and the head arrow shows the nucleus. (s) indicates the
symbiont and (bb) the basal body. Bars = 2.5 mm. (D) Graph shows the proportion of cells presenting each different morphological pattern
concerning the nucleus (N), kinetoplast (k), rod-shape or constricted (‘) forms of the symbiont (s), basal body (bb) and emerged flagellum (f)
(n = 1000).
doi:10.1371/journal.pone.0012415.g002
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constricted endosymbiont that lies down over the protozoan

nucleus (Fig. 2A-b). Less frequently, we observed two bacteria that

were symmetrically distributed from each other, considering the

nucleus position (Fig. 2A-c). These two symbionts were also

present in cells with a single flagellum, nucleus and kinetoplast.

This suggests that the symbiont divides before nucleus and

kinetoplast segregation, and before the appearance of the new

flagellum. After symbiont division, the kinetoplast divides, since we

could find cells with two rod shaped symbionts, two kinetoplasts,

one nucleus and a single flagellum emerging from the flagellar

pocket (Fig. 2A-d and movie S1). The next step on the cell cycle is

the nuclear division (Fig. 2A-e). At this cell cycle phase the

trypanosomatid presents a ‘‘heart-shape’’, where both kinetoplasts

have a posterior position in relation to the nucleus and are close to

rod shaped symbionts. Then the new flagellum emerges from the

flagellar pocket (Fig. 2A-f). It is important to note, that at this cell

cycle stage, the replicated rod shaped symbionts are located at the

posterior end of the host cell, while the segregated kinetoplasts

localizes at the anterior part of the trypanosomatid cell body

(Fig. 2A-g). It means that the kinetoplast position changes during

cytokinesis. At the end of cytokinesis, the new flagellum reaches

the size of the old one and the protozoan assumes a more

elongated form (Fig. 2A-g). The two daughter cells are formed

presenting a single number of structures, including a single rod-

shape symbiont that remains in the posterior region of the cell

body, while the kinetoplast is observed close to the nucleus, like in

paramastigote forms shown in Fig. 2A-a, when a new cell cycle of

C. deanei begins.

In order to better visualize the flagellum in relation to other cell

structures, protozoa were labeled with anti-a-tubulin (Fig. 2B). In

such assays, the symbiont was stained with DAPI, considering that

the anti-a-tubulin and anti-Ftsz were produced in mouse. Cells

presenting one symbiont (Fig. 2B-a), a dividing symbiont (Fig. 2B-

b) or even two symbionts (Fig. 2B-c) and just a single flagellum

were observed, indicating that the new flagellum only appears

after symbiont division. Next, we investigated if the basal body

segregation also occurs after symbiont division. Thus, we

performed double labeling assays using the anti-Ftsz to recognize

the symbiont and the anti-c-tubulin to observe the basal body

(Fig. 2C). Results showed that protozoa harboring a single

symbiont (Fig. 2C-a) or a dividing symbiont always contained a

single basal body (Fig. 2C-b), whereas protozoa with two

symbionts contained one (Fig. 2C-c) or two basal bodies (Fig. 2C-

d). Taken together, these data indicate that the basal body

segregation only occurs after symbiont division. The images also

revealed cells with two basal bodies and just one kinetoplast

(Fig. 2C-d), confirming that the basal body segregation occurs

before the kinetoplast division. Interestingly, the basal body

position is not coincident with that of the bacterium during C.

deanei cell cycle (Fig. 2C a-d).

The quantitative analysis of cellular patterns of C. deanei is

showed in Fig. 2D. In asynchronous cultures, 22% of cells

presented one nucleus, one kinetoplast, one flagellum, one basal

body and one symbiont (1N1k1s1bb1f). Most C. deanei (49%)

presented one nucleus, one kinetoplast, one flagellum, one basal

body and one constricted symbiont (1N1k8s1bb1f). Just 7%

presented two symbionts and a single copy of other structures

(1N1k2s1bb1f). In 14% of protozoa the symbiont and the basal

body were found duplicated while nucleus, kinetoplast and

flagellum were observed as single structures (1N1k2s2bb1f). Cells

in mitosis (1N2k2s2bb1f), or in cytokinesis (2N2k2s2bb2f),

represented 1% and 7% of the total cell number, respectively.

These numbers further confirm that the endosymbiont is the first

structure that divides in C. deanei. In order to better investigate the

physical relation between the nucleus and the endosymbiont, we

performed ultrastructural analysis by transmission electron

microscopy (TEM). The rod-shaped endosymbiont can be found

far from the nucleus (Fig. 3A), but as the bacterium becomes more

elongated it is observed closer to this structure (Fig. 3B).

Interestingly, during its division process the symbiont presents a

constricted shape that lies down over the nucleus (Fig. 3C) and

embraces this structure (Fig. 3D and 3E). This bacterium position

Figure 3. There is a close association between the endosymbiont and the host protozoan nucleus. The symbiotic bacterium was
observed as a rod-shape (Fig. 1A and 1B), or forming a constricted structure, which lies down over the nucleus (Fig. 1C) before division (Fig. 1D). Note
the symmetrical distribution of the symbionts in relation to the nucleus (Fig. 1E), probably allowing the distribution of equal number of bacteria per
protozoan during the cytokinesis (Fig. 1F). FP – flagellar pocket, N – nucleus, S – symbiont. Bars are 0.5 mm.
doi:10.1371/journal.pone.0012415.g003
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probably assures that each new daughter cell will contain just a

single symbiont (Fig. 3F).

TEM images of C. deanei profiles suggested that the symbiont

division is dependent on a close association with the host cell

nucleus. However, the random visualization of such phenomenon

in thin sections could lead to misinterpretation. Thus, we

performed 3D reconstructions of C. deanei, by using the FIB–

SEM microscope (Fig. 4A). The obtained results generated cellular

models showing that the symbiont presents a rod-shape (Fig. 4B

and movie S2) or a dumb-bell format, with the handle associated

with the C. deanei nucleus (Fig. 4C – arrowhead and movie S3).

After division, both bacteria present a symmetrical distribution

considering the nuclear position (Fig. 4D). Profiles of the protozoa

in the surface of the block (oriented in the Z stack), as used for the

3D reconstruction, revealed a more electrondense region in points

where the bacterium touches the nuclear surface (Fig. 4E -

arrowhead), supporting the idea that the constrained endosymbi-

ont is physically associated to the host cell nucleus.

Discussion

Here we describe the morphological events taking place in the

cell cycle of C. deanei containing an endosymbiont. We also provide

clear evidence that the endosymbiont divides before the basal body

segregation and kinetoplast and nucleus duplication. Figure 5

illustrates these events. Newly replicated protozoa present single

structures, which includes a unique symbiotic bacterium (Fig. 5A).

As the cell cycle proceeds the endosymbiont elongates and lies

Figure 4. Three-dimensional reconstruction of Crithidia deanei. Three-dimensional reconstruction was obtained by focused ion beam
associated to the scanning electron microscope (FIB-SEM) tomography. Note the close association between the endosymbiont (green color) and the
nucleus (light blue) in figures 2A and C. The protozoan cell membranes are in dark blue and the flagellum in lilac color. The endosymbiont changes its
format during the C. deanei cell cycle from a rod-shape (Fig. 2B and the supplementary data 2) to a more constricted or dividing form, which is
associated to the host cell nucleus (Fig. 2C arrowhead and the supplementary data 3). After division both bacteria are simetrically distributed in
relation to the nucleus (Fig. 2A). Thick sections used in the trypanosomatid 3D reconstruction showed an electron dense area, in points where the
symbiont is closely associated to the nuclear surface (Fig. 2E-arrowhead). Bar = 0.5 mm.
doi:10.1371/journal.pone.0012415.g004

Endosymbiont Division
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down over the host cell nucleus (Fig. 5B). The symbiont is the first

structure to divide (Fig. 5C). After the symbiont duplication, the

kinetoplast starts the migration to the posterior end of the cell body

and the new flagellum grows inside the flagellar pocket (Fig. 5D-E).

Then, the kinetoplast segregates (Fig. 5-F) and the nucleus divides

(Fig. 5G). It is interesting to point out that when the cytokinesis

begins, the duplicated bacteria and both kinetoplasts are located in

the posterior region of the trypanosomatid (Fig. 5G). As the

cytokinesis advances kinetoplasts returns to the anterior end of the

cell, while the symbiont remains at the protozoan posterior end

(Fig. 5H-I). In the choanomastigote form, the new flagellum only

emerges from the long flagellar pocket at the end of cytokinesis,

when the flagellar pocket probably segregates (Fig. 5 H-J). Since

each flagellum beats in opposite directions, this could provide in a

late dividing protozoan, a propelling force to generate new

daughter cells (Fig. 5 J-K).

Based on the percentage of each endosymbiont pattern in an

asynchronous culture during the cell cycle (Fig. 1), as well as the

sequence that organelles and structures divide (Fig. 2) we could

establish the C. deanei cell cycle considering different morphological

patterns of this protozoan. The symbiont remains as a single rod-

shape bacterium for 1 h after C. deanei cytokinesis, when each host

protozoan presents just one nucleus, one kinetoplast and one

flagellum. After that, the symbiont presents its dividing shape for

3 h when the host protozoan usually presents single copy

structures. After bacterial division both symbionts are maintained

in the host protozoan for 2 h, before the generation of two new

daughter cells, when all structures are replicated.

Previous studies of trypanosomatid have shown that cell division

proceeds in the sense basal body-flagellum-kinetoplast-nucleus

[18,20,22,33]; this was confirmed in the present work with C.

deanei, with the bacterium division taking place before basal body

segregation. Another interesting aspect of our study is that during

the protozoan cytokinesis, the bacterium and the kinetoplast

migrates to the posterior end of the host cell. Thus, in this phase of

the cell cycle this Crithidia species is morphologically similar to the

proliferative opisthomastigote forms described in the symbiont-

harboring trypanosomatid Herpetomonas roitmani [34].

The genome sequencing of the C. deanei endosymbiont performed

by our group (manuscript in preparation), has showed that some

genes pertaining to the division and cell wall cluster were lost by the

endosymbiont. This explains in part the symbiont inability to divide

outside the protozoan and suggests that the trypanosomatid may

provide key elements to the bacterium division. In organelles of

symbiotic origin, such as the mitochondrion and chloroplasts,

proteins of the bacterial division machinery are partially lost. For

example, chloroplasts still divide using components derived from

prokaryotic ancestors, as the FtsZ ring. In contrast, mitochondria,

which are evolutionarily much older than chloroplasts, lost division

components of bacterial origin with the exception of those present in

primitive eukaryotes, which retained the Z ring. However, in both

organelles, fission depends on dividing rings and dynamin-related

Figure 5. Schematic representation that summarizes the morphological alterations during the C. deanei cell cycle. Recently replicated
protozoa present a single symbiotic bacterium in rod-shape format (A), the endosymbiont elongates and lies down over the host cell nucleus (B). The
bacterium is the first structure to divide (C). After the symbiont duplication, the kinetoplast migrates to the posterior end of the host protozoan
(arrow) and the new flagellum grows inside the flagellar pocket (D–E). Then, the kinetoplast segregates (F) and the nucleus divides (G). When the
cytokinesis begins, the duplicated bacteria are seen in the posterior end of the protozoan, as well as the duplicated kinetoplasts, considering the
nuclear position (G). As the cytokinesis advances kinetoplasts return to the anterior cell end (arrows), while the symbiont remains in the posterior part
of the cell body (H–I). The new flagellum only emerges from the flagellar pocket at the end of cytokinesis, when the flagellar pocket probably
segregates (Fig. 5 H–J). The flagellar beat in opposite directions (arrows) generates a propelling force in a late dividing protozoan (Fig. 5 I). At the end
of the division process each daughter cell contains a single copy structure, including the symbiotic bacterium (J). The symbiont remains as a single
rod-shape bacterium for 1.0 h (A), whereas the constricted symbiont persists in this format for 3 h (B and C’). After the symbiont division both
bacteria are maintained in the host trypanosomatid for 2 h, before the generation of two new daughter cells (C–K).
doi:10.1371/journal.pone.0012415.g005
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proteins, which are associated with the outer membrane and face

the cytosol [35–36]. Interestingly, obligate intracellular bacteria, like

those from Chlamydia genus, lack the ftsz genes, as well as a

detectable peptidoglycan layer [37–38].

Notwithstanding, we should consider that in symbiosis the host

cell usually controls the number of associated partners in order to

guarantee a perfect relationship. The study of co-evolution

between a host protozoan and a symbiotic bacterium has been

used to better understand the origin of organelles in the eukaryotic

cell. Such studies have shown that the number of prokaryotes per

host cell varies from dozens to thousands [39–41]. What makes the

endosymbiosis in trypanosomatids a special model to study cellular

evolution is the fact that each protozoan contains only one

symbiotic bacterium, indicating that the host imposes tight control

over the endosymbiont division.

The mechanisms by which trypanosomatids control the

symbiont division and segregation remains to be elucidated. Our

observations suggest that the endosymbiont replication is linked to

nuclear fission, since the bacterium shows a close association to the

host cell nucleus during the entire protozoan cell cycle.

Ultrastructural analysis, by transmission electron microscopy and

3D reconstruction, showed that during the division process, the

single symbiont becomes elongated and lies down over the nuclear

surface, probably to guarantee a symmetrical distribution of

bacteria to both daughter cells. In accordance with this idea, it has

been shown that in Apicomplexa parasites, the apicoplast

replication is associated with the machinery used for nuclear

division [42]. In fact, the segregation of this chloroplast-like

organelle depends on a tight association with the protozoan cell

centrosome and on the presence of a host dynamin-related protein

to guarantee that plastid fission is coincident with daughter cell

formation and budding [42–44]. However, in this work the basal

body position was not seen in coincidence with that of the

symbiont during all C. deanei cell cycle, indicating that this

microtubule-organizing structure is not directly involved in the

bacterium division and segregation.

In conclusion, this study shows for the first time that in

trypanosomatids, the symbiont division is coordinated with other

cellular structures, especially the nucleus. Although the molecular

mechanisms involved in the construction, division and segregation

of the symbiont remain to be identified, the present work establish

a valuable model to study cell division and the origin of symbiotic

organelles.

Supporting Information

Movie S1 3D reconstruction of a cell containing one nucleus

(light blue), two kinetoplast (dark blue), two symbionts (green) and

two basal bodies (red).

Found at: doi:10.1371/journal.pone.0012415.s001 (0.33 MB

WMV)

Movie S2 Movie of C. deanei three-dimensional reconstruction

obtained by FIB-SEM. The symbiont (green) is close to the host

protozoan nucleus (light blue), but does not touch this organelle.

Found at: doi:10.1371/journal.pone.0012415.s002 (0.53 MB

MOV)

Movie S3 Movie of C. deanei three-dimensional reconstruction

obtained by FIB-SEM. The symbiont presents a constricted or

dividing format, which is seen associated to the host cell nucleus

(light blue).

Found at: doi:10.1371/journal.pone.0012415.s003 (0.81 MB

MOV)
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