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Abstract: One of the methods to improve the performance of a heterogeneous electrocatalyst is the
dispersion of a catalytic material on a suitable substrate. In this study, femtosecond laser ablation was
used to prepare very rough but also ordered copper surfaces consisting of vertical, parallel ridges.
Then, a molybdenum sulfide coating was electrochemically deposited onto these surfaces. It was
observed by profilometry that the average roughness of the surface after coating with MoS2 had
decreased, but the developed surface area still remained significantly larger than the projected surface
area. The electrodes were then used as an electrocatalyst for the hydrogen evolution reaction in acidic
media. These were highly efficient, reaching 10 mA cm−2 of HER current at a −181 mV overpotential
and a Tafel slope of ~39 mV dec−1. Additionally, scanning electrochemical microscopy was used to
observe whether hydrogen evolution would preferentially occur in certain spots, for example, on the
peaks, but the obtained results suggest that the entire surface is active. Finally, the electrochemical
impedance spectroscopy data showed the difference in the double-layer capacitance between the
ablated and non-ablated surfaces (up to five times larger) as well as the parameters that describe the
improved catalytic activity of fs-Cu/MoS2 electrodes.

Keywords: femtosecond laser; hydrogen evolution; electrocatalysis; molybdenum sulfide; scanning
electrochemical microscopy; electrochemical impedance spectroscopy

1. Introduction

The use of femtosecond (fs) lasers through a process called laser ablation in material
processing has grown substantially in the last two decades [1–4] and is motivated by
unparalleled control of the processing parameters enabled by such a light source [5].
Among the other fields, surface structuring has benefited greatly from the usage of fs
lasers [6]. Here, it allows one to achieve true hierarchical surface features on a large variety
of substrates such as various metals [7], glasses [8], or polymers [9]. Therefore, it comes as
no surprise that surfaces made using a fs light source have been tested in a vast array of
applications including self-cleaning [10], anti-icing [11], anti-fouling [12], photonics, and
bionics [13,14], to name a few. Moreover, by optimizing the processing parameters, new
phases can be formed and modified on the surface by a process called laser alloying [15].

On the other hand, electrochemical catalysis is constantly searching for nano- or
micro-structured substrates with a significant volume-to-surface-area ratio such as metallic
foams [16]. There have already been reports of the strongly enhanced hydrogen evolution
reaction (HER) electrocatalytic activity of fs-blackened Cu compared to an unmodified
sample [17]. Moreover, several studies on fs-treated Ni have revealed its enhanced oxygen
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evolution reaction (OER) [18,19] and HER [20] electrocatalytic properties in alkaline media.
A broad range of transition metals including Ti, Mo, W, Co, and more have been investigated
for their enhanced electrocatalytic HER activity after laser ablation [21]. In these cases,
improved performance was related to a larger specific surface area created by fs-treatment.

The beneficial effect of femtosecond laser treatment on metallic surfaces for their
electrocatalytic properties is certain, but there is also the possibility of combining these
evolved morphologies with other catalytic materials. A potentially interesting method for
electrocatalyst synthesis has been reported recently, where fs-laser treatment was applied on
nickel surfaces immersed in aqueous salt solutions to form Ni-Mo-Fe alloys [22]. Another
way to combine fs-treatment with electrocatalysis is to coat an already treated substrate
with an electrocatalytic material. In a recent study, a Co oxide/CuO/Cu electrocatalyst
with enhanced OER/HER catalytic properties was constructed from fs-treated Cu and a
hydrothermally synthesized cobalt oxide coating [23].

The conductive nature of laser-ablated metal surfaces lends itself to the application
of electrochemical deposition. For electrocatalytic applications, many different catalytic
materials can be electrodeposited on various conductive surfaces [24–26]. The factor that
determines the catalyst selection is its desired properties such as electrocatalytic activity in
certain media (acidic or alkaline), efficiency, scalability, and even cost. The latter is why
transition metal chalcogenides have received much attention in the field of electrochemical
water splitting, as they are relatively inexpensive when compared to precious-metal-based
(e.g., platinum) catalysts. In particular, molybdenum disulfide (MoS2) is interesting because
it is a non-precious metal catalyst with an electrocatalytic activity that can approach that of
platinum for HER [27,28].

MoS2 coatings and films of various morphologies and structures can be prepared by
various methods: wet-chemical [29] or hydrothermal synthesis [27,30], ultrasonic spray
pyrolysis [31], electrochemical deposition [24,28,32,33], and more. Electrodeposition, in
particular, is interesting, because it allows a conductive electrode surface to be covered
homogeneously with a semiconducting but electrocatalytic MoS2 film. Additionally, the
process is relatively simple, can be carried out at room temperature, and typically yields
amorphous and highly electrocatalytically active films. The properties of the electrochemi-
cally synthesized films can be tuned by adding certain surfactants/reducing agents such as
sodium dodecyl sulfate [28] or sodium hypophosphite [34] into the electrodeposition solu-
tion. The former was found to have a beneficial effect on the HER electrocatalytic stability
of the MoS2 film, and the latter was observed by X-ray photoelectron spectroscopy (XPS) to
promote the formation of Mo(IV)-S bonds and slightly improve the catalytic efficiency of
the film.

Therefore, the aim of this study was to combine the surface engineering capabilities of
femtosecond laser ablation with the electrocatalysis of the hydrogen evolution reaction by
electrochemically deposited MoS2. To this end, copper surfaces were subjected to “fem-
tosecond blackening” (i.e., femtosecond laser ablation) to prepare unidirectional ridged
mesostructures. Then, the surfaces with evolved morphologies were coated with electro-
catalytic MoS2 by electrochemical deposition. The structures and surface morphologies
of the uncoated copper surfaces and catalytic electrodes were extensively characterized.
The prepared electrodes were tested for their HER electrocatalytic activity in acidic media,
paying attention to both the total electrode activity as well as the local electrocatalytic
activity observations by scanning electrochemical microscopy.

2. Materials and Methods
2.1. Femtosecond Blackening

A general femtosecond direct laser write system such as the one as in [35] was used.
It comprised a femtosecond laser with a central wavelength of 1030 nm, pulse duration
of 750 fs, a repetition rate of 500 kHz, and a galvanometric scanner with an F-theta lens
(focal distance 100 mm). The maximum working field of the optic was 45 × 45 mm. Treated
surfaces were designated as fs-Cu.
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2.2. MoS2 Electrodeposition

The MoS2 films were synthesized by electrochemical cathodic deposition from a
tetrathiomolybdate (MoS4

2−/TTM) solution that had been synthesized by the chemical
sulfidation of (NH4)6Mo7O24 (≥99%, Roth) with Na2S xH2O (60%, Roth). The composition
of the solution was as follows: 0.025 M MoS4

2−, 0.1 M Na2SO4 (≥99%, Roth), 0.1 M
NaH2PO2 (≥99%, Roth). The pH of the electrolyte was ~8. Sodium hypophosphite was
added because it was found to have a beneficial effect on the Mo-S bond formation during
cathodic MoS2 deposition in a previous study [34]. The depositions were carried out under
potentiostatic conditions at −1.1 V vs. Ag/AgCl by limiting the amount of charge passed
through the system to 5 C. The cathodic deposition of MoS2 occurs as in Equation (1) [36].

MoS4
2− + 2e− + 2H2O→MoS2 + 2SH− + 2OH− (1)

The MoS2 films were deposited on plain Cu (Cu/MoS2) and fs-blackened Cu (fs-
Cu/MoS2) substrates. The plain Cu was abraded with 1200 grit sandpaper in circular
motions until the surface visually appeared to be homogeneously rough. This is necessary
because when deposited on a mirror-smooth copper substrate for 5 C, the MoS2 films
would readily delaminate with hydrogen bubbling.

The surface morphology and elemental composition of the electrodeposited MoS2 films
were evaluated using a scanning electron microscope (SEM) TM 4000 plus with an AZete-
cOne detector (Hitachi Ltd., Tokyo, Japan) for the energy-dispersive X-ray spectroscopy
(EDX) measurements. Energy-dispersive X-ray spectroscopy was used to determine the
elemental and phase composition of the electrodes and electrodeposited catalysts. An X-ray
diffractometer (D2 Phaser, Bruker, Billerica, Massachusetts, USA, λ = 1.5418 Å/Cu Kα)
was used.

2.3. Characterization of HER Electrocatalytic Activity

All electrochemical experiments (potentiostatic electrodeposition, linear sweep voltam-
metry (LSV), electrochemical impedance spectroscopy (EIS)) were performed in a standard
three-electrode cell using a potentiostat/galvanostat Autolab 302N (Metrohm, Utrecht,
The Netherlands). Unless specified otherwise, all potentials are given as overpotentials
(η) in reference to the reversible hydrogen electrode (RHE). Electrocatalytic activity char-
acterization was carried out in 0.5 M H2SO4 by the following procedure: (1) settling of
open circuit potential (OCP) for 120 s; (2) 3 LSV sweeps at a rate of 2 mV s−1 from 0 V to a
cut off condition of −100 mA cm−2 as normalized by geometric surface area; and (3) EIS
measurements at −0.1 V, −0.2 V, −0.3 V overpotential. The EIS spectra were obtained in
the frequency range from 10 kHz to 100 mHz, with a perturbation amplitude of ±10 mV.
The electrochemical impedance data were modeled with equivalent electric circuits (EEC)
using Zview software. The determined solution resistance Rs was used to correct the ohmic
drop for Tafel slope analysis.

2.4. Profilometrical Analysis

The surface roughness and morphology of the samples with and without modification
were evaluated by means of a 3D optical profiler ContourGT-K (Bruker Nano GmBH, Berlin,
Germany) in non-contact mode using white light and phase shift interferometry. For each
measurement, 50× optics was used to scan the surface area of 500 µm × 500 µm. Then, the
parameters of the surface characteristics such as surface roughness (Sa—arithmetic mean
of the absolute departures of the roughness profile from the mean line), maximum peak
height above the mean line (Sp), maximum valley depth below the mean line (Sv), and the
projected and developed surface areas (Spar, Sdar) were evaluated. Vision64 and Profilm
Online software was used for data acquisition and surface analyses.
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2.5. Scanning Electrochemical Microscopy (SECM)

A Versa SCAN (Ametek, Berwyn, PA, USA) SECM workstation was used in connection
with a Versa STAT 3 and Versa STAT 3F bipotentiostat (Princeton Applied Research, Oak
Ridge, TN, USA). The substrate-generation tip-collection (SG/TC) mode was used, where
the sample being investigated was used to generate hydrogen, and the tip would oxidize
the generated products. The electrolyte was 0.5 M H2SO4, as previously used. The probe
was a Pt ultramicroelectrode with a diameter of 10 µm. The probe was positioned ~10 µm
above the sample and a constant height mode was used, which may be prone to errors from
uneven sample mounting. However, possible errors were minimized by examining a small
area (X–Y 100 × 150 µm) and a 5 µm s−1 tip scan rate. The SECM maps presented in the
discussion are 100 × 100 µm because the first 100 × 50 µm data were typically distorted by
the settling of either the substrate generation or tip collection current. The first scan lines
were considered as pretreatment and discarded.

3. Results and Discussion
3.1. Profilometrical Analysis, Surface Morphology and Structure

Optical profilometry was employed to obtain the initial information on the morphology
of the fs-blackened copper surfaces. The profilogram of the fs-Cu sample showed that
femtosecond processing created a homogeneous structure comprised from ordered rows
of peaks and pits (Figure 1a). The peaks had a width of up to 20 µm and the pits were
typically narrower than 10 µm. As can be seen from a 2D slice across the Y axis, the
peak-to-pit height difference was 10 to 25 µm (Figure 1c). The area roughness analysis data
are shown in Table 1. The mean height Sa = 6.86 µm (as measured across the 0.5 × 0.5 mm
profilogram shown in Figure S1), valley depth Sv was 53.11 µm, and the peak height Sp was
24.26 µm. The projected surface area (Spar) was 0.25 mm2, whereas the developed surface
area (Sdar) was 10.46 mm2, signifying the enhanced roughness. An identical analysis was
performed on the fs-Cu/MoS2 sample in order to estimate whether the electrochemically
deposited film had changed the surface topography. There appeared to be a narrow peak
in this profilogram (Figure 1b), but this is most likely related to the femtosecond ablation
process and is not the effect of the electrochemical MoS2 deposition. Overall, the surface
became less rough, the Sa decreased to 4.94 µm, the Sv to 48.36 µm, and Sp to 16.21 µm.
Consequently, Sdar = 4.68 mm2, which was under half of what had been approximated for
fs-Cu. The smoother surface was also reflected in the 2D slice, where it is evident that the
peak-to-pit height ratio had decreased. These results are expected because a significant
amount of the catalytic material was deposited. However, the decrease in roughness may
signal that more MoS2 is deposited in pits rather than on peaks, thus leveling out the
surface. This analysis already implies that assuming a known geometrical surface area of
an electrocatalytic electrode is at best inaccurate; this issue will later be addressed with
non-stationary electrochemical methods.

Table 1. The parameters calculated from the profilometric analysis.

Sa, µm Sv, µm Sp, µm Spar, mm2 Sdar, mm2

fs-Cu 6.86 53.11 24.26 0.25 10.46
fs-Cu/MoS2 4.94 48.36 16.21 0.25 4.68



Materials 2022, 15, 3926 5 of 20Materials 2022, 15, x FOR PEER REVIEW 5 of 20 
 

 

 

(a) (b) 

 
(c) 

Figure 1. The 3D profilograms of the (a) fs-Cu surface; (b) a fs-Cu/MoS2 surface; (c) 2D slices across 
the Y axis. 

The surface morphology was observed in detail by SEM. In agreement with the pro-
filometry, the fs-Cu surfaces consisted of ordered parallel ridges, and the width of a single 
ridge or pit-to-pit distance was ~20 μm (Figure 2a). At higher magnifications, it became 
apparent that femtosecond laser ablation in fact created a very coarse microstructure and 
that the edges of the peaks were rough (Figure 2c). When a MoS2 film is electrochemically 
deposited on the fs-Cu substrate, several things can be noted. The MoS2 deposits in both 
the peaks and pits, but it seems that more material is deposited within the pits (Figure 
2b,d). Especially from higher magnification images, it can be seen that MoS2 seems to pref-
erentially crystallize on the edges of the peaks, occasionally even forming bridges between 
them. In contrast, the morphology of the deposited MoS2 on the tops of the peaks was 
rather flat. This is likely to be the cause of the decrease in the surface roughness that was 
previously observed by profilometry—more material is simply deposited within the pits 
of the fs-ablated copper surface. Such deposition kinetics may have been caused by the 
higher local current densities that are formed within the pits, thus causing faster MoS2 
electrochemical deposition. 

5

15

25

35

45

0 50 100 150 200

H
ei

gh
t, 

µm

X-distance, µm

fs-Cu fs-Cu/MoS₂

Figure 1. The 3D profilograms of the (a) fs-Cu surface; (b) a fs-Cu/MoS2 surface; (c) 2D slices across
the Y axis.

The surface morphology was observed in detail by SEM. In agreement with the pro-
filometry, the fs-Cu surfaces consisted of ordered parallel ridges, and the width of a single
ridge or pit-to-pit distance was ~20 µm (Figure 2a). At higher magnifications, it became
apparent that femtosecond laser ablation in fact created a very coarse microstructure and
that the edges of the peaks were rough (Figure 2c). When a MoS2 film is electrochemi-
cally deposited on the fs-Cu substrate, several things can be noted. The MoS2 deposits
in both the peaks and pits, but it seems that more material is deposited within the pits
(Figure 2b,d). Especially from higher magnification images, it can be seen that MoS2 seems
to preferentially crystallize on the edges of the peaks, occasionally even forming bridges
between them. In contrast, the morphology of the deposited MoS2 on the tops of the peaks
was rather flat. This is likely to be the cause of the decrease in the surface roughness that
was previously observed by profilometry—more material is simply deposited within the
pits of the fs-ablated copper surface. Such deposition kinetics may have been caused by
the higher local current densities that are formed within the pits, thus causing faster MoS2
electrochemical deposition.
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Figure 2. The SEM images of the (a,c) fs-Cu, and (b,d) fs-Cu/MoS2 surfaces.

Regarding the atomic composition, the EDX measurements showed an average S to
Mo atomic % ratio of 2.8 (i.e., a stoichiometry of MoS2.8). MoS3 is known to exist but is
typically formed by the chemical disproportionation of [MoS4]2− at anodic potentials [37].
It is likely that here, unreacted S2− or HS− in the solution could have interacted with the
copper substrate, thus increasing the overall content of sulfur in the atomic composition
of these films. The XRD analysis revealed that, in accordance with other research on
electrochemically deposited MoS2, the films were amorphous (Figure S2) [28,38]. No peaks
that could be assigned to any phase of MoS2 were seen. Because the films were relatively
thin, there remains a strong signal from the substrate. It is worth noting that the (200)
peak became the most intense after depositing a MoS2 film on the fs-Cu, which probably
shows that MoS2 tends to deposit on the (111) plane. Moreover, an XPS analysis carried out
on similarly synthesized films in a previous study confirmed the formation of Mo(IV)-S
bonds [34].

3.2. Electrocatalytic Activity

The HER electrocatalytic activity of the samples was initially investigated by linear
sweep voltammetry in 0.5 M H2SO4. In each experiment, three curves were obtained, and
Figure 3 shows the third curve for each sample. Here, iR correction was applied by using the
solution resistance value that was obtained from the high frequency part of the EIS spectra,
which will be discussed later. It must be noted that the current density was normalized
to the geometric surface area of the substrate and the experiment represented the total
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electrode activity, which is heavily influenced by the actual electrochemically active surface
area. The plain Cu exhibited the poorest electrocatalytic activity, whereas the fs-Cu without
any catalyst coating already showed a marginally better performance. Again, it is important
to note that this is most likely related to the increased electrochemically active surface area.
When the MoS2 films form on these surfaces, the catalytic activity increases significantly
(i.e., higher current densities are reached at lower overpotentials). The electrode that
was prepared by electrochemically depositing the MoS2 onto the copper foil treated with
abrasive paper (Cu/MoS2) showed good electrocatalytic performance. However, the
highest catalytic activity (apart from platinum, which is presented for comparison) was
achieved with the fs-Cu/MoS2 sample.
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Several important parameters that describe the activity of electrocatalytic films were
extracted from these curves: the Tafel slope, exchange current density (j0), and the overpo-
tential required to reach 10 mA cm−2 of HER current (η10mA). These data are presented in
Table 2. Table 3 presents a broad comparison with other recent MoS2-based electrocatalysts
for HER in acidic media. The Tafel slopes are calculated from the HER kinetic region
where lg j is linearly related to the overpotential, as shown in Figure 4, as it is preferable
to calculate the Tafel slopes from as large a current range as experimentally possible [39].
The Tafel slopes were calculated from a wide current density region from 0.1 mA cm−2 to
~50 mA cm−2, which allowed for a fairly accurate estimation. Certain Tafel slope values
correspond to a particular mechanism of hydrogen evolution. The heterogeneously cat-
alyzed hydrogen evolution reaction occurs through a combination of the Volmer hydrogen
adsorption (Equation (2)), the Heyrovsky electrochemical recombination (Equation (3)), or
the Tafel chemical recombination (Equation (4)) steps [40].

H3O+ + e− + M � M-H + H2O (2)

M-H + H3O+ + e−� H2 + H2O + M (3)

2M-H � H2 + 2M (4)
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Table 2. The values of the Tafel slopes, exchange current densities, and overpotential needed to reach
10 mA cm−2 of the HER current of the samples considered in this study.

Sample Tafel Slope, mV dec−1 j0, µA cm−2 η10mA, mV

Cu 75.4 0.00089 −552
fs-Cu 69.8 0.0043 −445

Cu/MoS2 58.3 3.23 −193
fs-Cu/MoS2 45.0 0.65 −185

Pt 39.2 150 −97

Hydrogen adsorption must always occur. A widely accepted rule of thumb is that if
either the Volmer, Heyrovsky, or Tafel steps are rate-determining, then the observed Tafel
slope will be 120, 40, or 30 mV dec−1, respectively [40,41]. Naturally, deviations and mixed
kinetics do occur.

The results show that a slope of 75.4 mV dec−1 was observed on the Cu substrate.
In comparison, the Tafel slope of fs-Cu (69.8 mV dec−1) suggests that the mechanism of
HER on this electrode had not changed. Here, it must be mentioned that more recently,
reasonable doubt has been cast onto the Tafel slope evaluation from potentiodynamic
measurements, as they do not satisfy the true steady-state requirements unless carried
out at extremely low scan rates [42]. Therefore, it is best to refrain from any mechanistic
considerations from the Tafel slope values that are not standard. When an electrocat-
alytic MoS2 film is deposited on these substrates, the Tafel slopes typically observed for
MoS2 [43] are as follows: 58.3 mV dec−1 for Cu/MoS2 and 45 mV dec−1 for fs-Cu/MoS2.
This shows enhanced electrocatalytic activity and that hydrogen evolution occurs by the
Volmer–Heyrovsky hydrogen adsorption/electrochemical recombination mechanism. Be-
cause the solution resistance is, in fact, not perfectly constant as the overpotential is
increased, some over/undercorrection that manifests as a deviation from a linear trend can
be seen at higher overpotentials.



Materials 2022, 15, 3926 9 of 20

Table 3. The comparison of the reported Tafel slopes and overpotentials at the 10 mA cm−2 HER
current values (in 0.5 M H2SO4) of the MoS2-based electrocatalysts.

Sample Synthesis Method Tafel Slope, mV dec−1 η10mA, mV Reference

rGO/MoSx−100 ◦C Hydrothermal 48.8 −125 [27]
MoSx Electrodeposition 55 −211 [28]

67% Sbr-MoSx Chemical synthesis 46 −96 [29]
MoS6 Anodic electrodeposition - −161 [33]

Cu-foam/MoS2 Electrodeposition 49 −142 [34]
MoSx-TiO2NT Electrodeposition 43 −73 [44]

Co-doped MoS2 In situ sulfuration - −155 [45]
Pd0.2-MoS2 Solvothermal 60 −106 [46]
Cu/MoS2 Electrodeposition 58.3 −193 This work

fs-Cu/MoS2 Electrodeposition 45.0 −185 This work

The electrochemical stability of an electrocatalytically performing electrode is also
an important parameter, but there is no established standard estimation procedure in the
scientific literature. For an industrial electrocatalyst device, two main parameters are of
importance—on/off cycles and operational duration. In this study, the electrochemical
stability of the electrodes was evaluated by applying a relatively mild constant current
density of 10 mA cm−2 and registering the potential over the duration of 1 h, then by calcu-
lating how much their activity in terms of the initial η vs. end η had changed (Figure 5).
Broadly speaking, over the course of the experiment for the uncoated substrates, the over-
potential needed to maintain the set current decreased (Cu: −17%; fs-Cu: −21%), whereas
for the electrodes with MoS2, it increased (Cu/MoS2: + 6%; fs-Cu/MoS2: +7%). That is,
the Cu and fs-Cu gain some electrocatalytic activity, likely until the system approaches
equilibrium. In contrast, the electrodes coated in an actively electrocatalytic MoS2 film
lost activity over time, possibly due to the deactivation of the catalytically active sites
by the reaction of surface sulfur with oxygen to form less active or even inert Mo-OH
sites [47,48]. It is interesting to note that under these experimental conditions, plain Pt
also lost a significant amount of catalytic activity, in fact, more than the Cu/MoS2 and
fs-Cu/MoS2. Longer aging experiments would need to be conducted to investigate the
industrial viability, but the electrodes are, at the very least, stable for more comprehensive
electrochemical characterization.
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3.3. Scanning Electrochemical Microscopy Study

As the fs-Cu/MoS2 electrodes had a uniform surface profile, it was useful to expand on
their electrocatalytic activity characterization with a method that yielded a more local signal
than the total electrode activity measurements. The SECM is a fairly new experimental
technique that has recently been finding more use in the characterization of electrocatalytic
macroelectrode surfaces [49–51]. In this study, a substrate-generation tip-collection mode
was used, where the fs-Cu/MoS2 film was polarized in order to induce hydrogen evolution
(generator), and the probe was set to oxidize the generated products (thus collector). The
electrolyte here was the same as before—0.5 M H2SO4. The mechanism behind the processes
occurring at the substrate and tip as well as between them are interesting and complex [51],
but for the purpose of practical application, we assumed that H2 generates on the substrate
(Equation (3)), the signal at the tip comes from the oxidation of H2 (Equation (5)), and that
the H2 diffusion rate is steady at the tip measuring point.

H2 → 2H+ + 2e− (5)

Several preliminary experiments were conducted in order to characterize the system
and find the optimal conditions for mapping. First, after the fs-Cu/MoS2 sample was
mounted into the SECM cell holder and the system was fully assembled, an LSV curve was
obtained (Figure 6a), which provided information on the hydrogen bubbling location and
its rate. Additionally, it was determined that galvanostatic conditions are preferential to
apply in this mode, as this provides more reliable and reproducible results. Therefore, as a
second experiment, the sample was set at certain current densities from −0.5 mA cm−2 to
−10 mA cm−2 and the potential response was measured (Figure 6b). It is not surprising
that larger applied currents correspond to a higher overpotential, but what is important is
the time that it takes for the fs-Cu/MoS2 sample to approach the steady-state. Here, the
larger the applied current, the sooner the sample reaches the steady-state conditions.
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Figure 6. The results of the electrochemical behavior experiments of fs-Cu/MoS2 in the SECM:
(a) LSV curve; (b) settling of the substrate overpotential under different applied currents; (c) the
kinetics of the probe response to the substrate generation signal.

Finally, the electrochemical behavior of the Pt probe was examined. The 10 µm
diameter probe was lowered to ~10 µm from the surface and polarized potentiostatically at
0 V vs. Ag/AgCl, because this was found to provide a sufficient signal to sample the HER
in a previous experiment. For 50 s, the probe was kept at this potential and the sample
at the OCP. Then, the current was applied to the sample for 200 s and again turned off at
250 s (Figure 6c). This experiment was important to understand the nature of the signal
that can be expected. It was observed that the tip did register the signal from the sample,
most likely through the oxidation of evolved H2 that is not gaseous, but dissolved in the
solution. However, the tip current only began to increase at ~10 to 15 s after the current
had been switched on. This is related to the time that it takes for the fs-Cu/MoS2 to reach
the steady-state conditions, as shown in Figure 6b. The tip response time was faster when
higher current densities were applied on the sample, but the itip was lower (Figure S3). The
tip current then rose sharply until a peak was reached, after which a severe drop occurred
in most cases. This drop is likely to have been caused by the formation of gas bubbles
on or around the probe tip, which blocks product diffusion and, consequently, the rate of
the electrochemical reaction occurring at the tip. This presumed effect is particularly clear
when −2 mA was applied on the sample and the probe response current appeared choppy.
As the rate of the substrate HER increased (e.g., at −5 mA and −10 mA), the signal was
heavily distorted by the mixing that is caused by the rapid evolution of gaseous hydrogen.
The probe could even occasionally become blocked. However, it was assumed that in the
SECM area scans, when the probe is mobile, this effect should be largely suppressed. Then,
it is most important that the average itip should be stable over the course of the scan.

Then, the XY area scans were obtained in order to observe the effect of the ridged
morphology of the fs-Cu in the electrocatalytic activity of the fs-Cu/MoS2. Of course, any
positive results should be attributed first and foremost to the topography of the surface.
The SECM maps were obtained under several galvanostatic sample conditions (−1 mA,
−2 mA, and −5 mA), but it was observed that −2 mA was the optimal condition that
yielded the best signal. Although the 2D heatmap was not particularly revealing of the
surface morphology (Figure 7a), slices across the X axis at several discrete Y values clearly
reproduced the femtosecond-laser-induced ridges (Figure 7b). Errors in mapping could be
attributed to the uneven sample mounting, but there is also no reason to expect that the
distribution of the electrochemical HER activity on the sample is perfectly homogeneous.
The SECM maps that were obtained at −1 mA and −5 mA are shown in Figure S4. When
the substrate was set at −1 mA, not enough H2 was evolved to obtain a distinct localized
electrocatalytic activity signal over most of the surface (hence, the flat 2D slices). Conversely,
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when the substrate was set at −5 mA, significant signal distortion occurred due to the
vigorous evolution of gaseous H2.
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Figure 7. (a) The SECM map and (b) horizontal slices plus profilometry slice (from a different sample,
only shown for reference) in the black dashed line of fs-Cu/MoS2. The map obtained in SG/TC mode.
The sample galvanostatic at −2 mA, tip potentiostatic at 0 V vs. Ag/AgCl. Measured in 0.5 M H2SO4,
probe scan rate 5 µm s−1, tip diameter 10 µm. X step size 2 µm, Y step size 10 µm.

The width of the fs-Cu peaks and pits as observed from the SECM mapping corre-
sponded well to the results of the profilometric analysis. It must be noted that in this
case, the SECM signal was caused by the oxidation of the substrate-generated products,
so the map is a reflection of the radial diffusion of these products away from the sample.
Because some of the 2D slices (e.g., Y − 40 µm and Y − 60 µm) reproduce the profilometric
slice (Figure 7b, dashed line) so well, it may be inferred that the HER activity is similar
in pits and on peaks. However, in some other cases such as Y − 80 µm to Y − 100 µm,
the itip was almost constant, as if scanning over a completely flat surface, as can be seen in
Figure 7a. The SECM is a highly sensitive technique that is particularly difficult to apply
when gas generation is occurring, but this case proved to be of moderate success and further
confirmed that the laser-ablated morphology does have an impact on the performance of
the electrode as an electrocatalyst.

3.4. Electrochemical Impedance Spectroscopy Study

Electrochemical impedance spectroscopy is a very useful tool in heterogeneous electro-
catalyst characterization because it gives the ability to measure certain parameters that are
related to the electrochemically active or even electrocatalytically active surface area of the
electrode. In previous studies, EIS has been used to compare the electrocatalytic activities
of electrodes with an uncertain geometrical surface area [34,52] and a similar approach
was applied here. The EIS spectra were obtained at overpotentials where little to moderate
hydrogen evolution occurs, depending on the catalytic activity of the electrode (−0.1 V,
−0.2 V, −0.3 V).

The EIS study, unsurprisingly, revealed that there was a significant difference in the
electrocatalytic activity between the copper surfaces (Cu, fs-Cu) and those coated with
catalytic films (Cu/MoS2, fs-Cu/MoS2). The spectra of the plain Cu surfaces are shown
in Figure 8, and they were characterized by relatively large impedance magnitudes. For
fs-Cu, at lower overpotentials, the impedance response was almost capacitive, as seen
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from the profile of the spectra in complex coordinates (Figure 8a) and the tendency of the
phase shift Θ to approach −90◦ at low frequencies (Figure 8b). However, at −0.3 V, the
impedance magnitude dropped substantially due to the onset of a Faradaic reaction, which
must be HER under these conditions. The plain Cu exhibited similar tendencies, but its
impedance magnitudes were larger. Judging from the phase shift behavior, the double
layer charge/discharge kinetics were faster (because the phase maximum is reached at
higher frequencies), but the appearance of a small hump at the intermediate frequencies
(10 Hz to 1 Hz) suggests the onset of a Faradaic reaction. In comparison to fs-Cu, because
Θ approached 0 again at 0.1 Hz, this effectively means that no significant low-frequency
capacitive behavior (which could be related to hydrogen adsorption) was observed.
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Figure 8. The EIS spectra of the plain Cu and fs-Cu surfaces in the (a) Nyquist complex coordinates
and (b,c) Bode coordinates. Solid lines show equivalent circuit fits.

The EIS spectra of the MoS2-coated electrodes were significantly different due to
their superior electrocatalytic activity when compared to the uncoated copper surfaces
(Figure 9). For both Cu/MoS2 and fs-Cu/MoS2 the spectra followed similar trends. A
strongly capacitive response occurred at −0.1 V, as seen from the profile of the spectra in
complex coordinates (Figure 9a,b) and the phase shift approaching −90◦ (Figure 9c). This
is likely related to the adsorption of H+ to form a layer of Hads, because the Gibbs free
energy of hydrogen adsorption on the sulfur vacancies/active sites of MoS2−x is ∆GH

0

~−0.095 eV [53]. At higher overpotentials of −0.2 V and −0.3 V, hydrogen evolution began
to occur at a rapid rate, and this is reflected in the spectra as the system turned from
blocking to transmissive: semicircles were formed in complex coordinates (Figure 9b), Θ
approached 0◦ at low frequencies (Figure 9c), and the impedance magnitude |Z| remained
constant (Figure 9d). At first glance, there was little apparent difference between the
impedances of the Cu/MoS2 and fs-Cu/MoS2 samples, but especially from Figure 9d, it
can be inferred that the impedance magnitude of the fs-Cu/MoS2 was overall lower, which
means that the system was more conductive/electrocatalytically active.
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Figure 9. The EIS spectra of the Cu/MoS2 and fs-Cu/MoS2 electrodes in the (a,b) Nyquist complex
coordinates and (c,d) bode coordinates. Solid lines were fit to the equivalent circuits shown in
Figure 10.

The electrochemical impedance spectra were interpreted in terms of the equivalent
electric circuits in order to discern and calculate the certain parameters that describe the
surface/electrolyte interface. Two equivalent circuits were used for fitting: the uncoated
Cu and fs-Cu (Figure 10a) and the electrodes on which a MoS2 film had been electrode-
posited (Figure 10b). These circuits appeared similar, but they distinguished the different
mechanisms of the electrode processes. The circuit shown in Figure 10a describes a system
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where two charge transfer processes can occur independently of each other, whereas in the
second circuit, as shown in Figure 10b, the two processes must occur sequentially (i.e., the
hydrogen adsorption followed by electrochemical recombination) [54].
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In these equivalent circuits, the constant phase element (CPE) was used to account
for the inhomogeneity in the surface coverage by adsorbed hydrogen. The CPE values
were recalculated into the capacitance by Equations (6) and (7), colloquially known as Brug
et al.’s effective capacitance equation [55,56].
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where Ta are the values of the CPEa element.
The discrete parameters of the equivalent circuit correspond to certain measurable

processes occurring at the catalyst/electrolyte interface. For example, the double layer
capacitance Cdl is measured at high perturbation frequencies and is related to the charge and
discharge of the charge-compensating Helmholtz double layer. Therefore, it is proportional
to the electrochemically active surface area of the electrode. This provides insights into the
effective surface area of the electrodes. First of all, the Cdl of fs-Cu is on average five times
larger than that of unmodified Cu (Table 4). The Cdl values for both of these electrodes
remained relatively constant from −0.1 V to −0.3 V because this is a capacitive zone where
no Faradaic reaction occurs. A different tendency was observed for the electrodes coated
in a catalytic MoS2 film: Cdl decreased with the overpotential (which is likely related to
the increasing surface coverage of Hads). It is probably incorrect to compare the Cdl values
between the plain metal electrodes and MoS2 films because the mechanism and kinetics for
the formation of a compensating double layer may be different. However, the Cdl values of
fs-Cu/MoS2 were ~3 times larger than of Cu/MoS2, indicating that the former had a larger
electrochemically active surface area.
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Table 4. The equivalent circuit fitting results and fitting errors.

Cu

η, V Cdl, mF cm−2 Rct, Ω cm2 Ca, mF cm−2 Ra, kΩ cm2

−0.1 0.0529 ± 0.0035 1033 ± 32 0.176 ± 0.0091 4.53 ± 0.049
−0.2 0.114 ± 0.0089 546 ± 21 0.113 ± 0.0022 9.41 ± 0.069
−0.3 0.126 ± 0.018 191 ± 13 0.072 ± 0.0021 2.32 ± 0.011

fs-Cu

−0.1 0.607 ± 0.063 0.164 ± 0.0096 0.387 ± 0.0013 14.1 ± 0.33
−0.2 0.582 ± 0.063 0.169 ± 0.010 0.390 ± 0.0015 5.49 ± 0.063
−0.3 0.644 ± 0.23 0.138 ± 0.027 0.544 ± 0.010 0.258 ± 0.0028

Cu/MoS2

−0.1 3.76 ± 0.33 0.320 ± 0.013 49.6 ± 0.53 1.14 ± 0.068
−0.2 2.03 ± 0.19 0.264 ± 0.012 58.9 ± 1.7 0.00299 ± 4.3 × 10−5

−0.3 0.805 ± 0.073 0.149 ± 0.0083 33.6 ± 1.8 0.000768 ± 1.3 × 10−5

fs-Cu/MoS2

−0.1 10.2 ± 0.90 0.206 ± 0.011 64.9 ± 0.97 0.510 ± 0.16
−0.2 6.69 ± 0.51 0.155 ± 0.0069 82.7 ± 1.8 0.00163 ± 1.7 × 10−5

−0.3 2.64 ± 0.49 0.073 ± 0.0082 63.3 ± 5.6 0.000405 ± 1.3 × 10−5

The second capacitance in the equivalent circuits (CPEa)—adsorption capacitance
Ca—is related to the adsorption/desorption of H+ on the electrode surface. The rate of this
process is much slower than the charge/discharge of the Helmholtz double-layer, and is
therefore observed at low perturbation frequencies. Because hydrogen evolution occurs via
the adsorption (and subsequent electrochemical recombination) of H+ on the active site,
this means that Ca is proportional to the electrocatalytically active surface area. Here, it is
most apparent that the Ca of the Cu/MoS2 and fs-Cu/MoS2 samples (33–82 mF cm−2) was
at least two magnitudes larger than the Ca on the copper substrates (0.07–0.54 mF cm−2).
This signifies that hydrogen adsorption occurred much more readily on the MoS2 material.
As previously mentioned, the effect of the fs-ablated surface was apparent, as the Ca of the
fs-Cu/MoS2 was ~1.5 times larger than of Cu/MoS2.

It is interesting to note the observed peak for the Cu/MoS2 and fs-Cu/MoS2 Ca values
at −0.2 V. This appears to be in contrast to the expected result (that surface coverage by
Hads should increase with overpotential). This phenomenon can probably be attributed to
the fact that Ca (i.e., effective capacitance was recalculated from the dimensionless value of
the constant phase element CPEa). Table S1 shows the values of CPEa and n. In the case of
fs-Cu/MoS2, the CPEa values increased with the applied potential, but the n dropped from
0.92 at −0.1 V to 0.74 at −0.3 V. Here, n can be thought of as a coefficient that represents
the inhomogeneity of the capacitive layer, and n decreases when the hydrogen evolution
becomes more vigorous, and H2 gas bubbles disturb the catalyst/electrolyte interface.

The Rct and Ra parameters are also worth discussing. Here, the charge transfer resis-
tance Rct represents the resistance at the electrode/solution interface at high frequencies and
is a measure of the system’s resistance to a unit of charge being transferred across the double
layer. The values of Rct for fs-Cu, Cu/MoS2, and fs-Cu/MoS2 were from ~0.1 to 0.3 Ω cm2.
The main difference of significance here is that the Rct of Cu was 1033 Ω cm2 at −0.1 V and
dropped to 191 Ω cm2 at −0.3 V. As also suspected from the spectra in Figure 8a, this may
signal the occurrence of a Faradaic reaction that is not hydrogen evolution.

Ra, in particular, is representative of the electrode’s electrocatalytic HER performance.
Mechanistically it is the resistance that H+ needs to overcome in order to adsorb on an
active site and become Hads (Equation (2)). Lower Ra values correspond to faster HER
kinetics and better electrocatalytic activity at a certain overpotential. The large difference
between the copper substrates and MoS2 film was again evident (Figure 11). For Cu/MoS2
and fs-Cu/MoS2, the Ra values were magnitudes smaller than those for their respective
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plain substrate electrodes. Moreover, the tendency of Ra to decrease exponentially with the
overpotential (corresponding to exponentially increasing the HER current as in Figure 3)
was not observed for the substrate electrodes. When comparing Cu/MoS2 and fs-Cu/MoS2,
the latter again exhibited measurably better electrocatalytic activity.
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4. Conclusions

In this study, the femtosecond-laser-ablated copper surfaces were used as substrates
with an elaborated surface area for the electrochemical deposition of MoS2 to create an
efficient electrocatalytic cathode for hydrogen evolution in acidic media. Profilometric
analysis was used to approximate the observable developed surface area of fs-Cu, which
was ~40 times larger than the geometric surface area. However, after electrochemically
depositing a MoS2 film onto this surface, the observed surface area decreased in half, which
shows that extra care must be taken when approximating the surface area of heterogeneous
catalysts with complex surface geometries. The fs-ablated (fs-Cu, fs-Cu/MoS2) and plain
(Cu, Cu/MoS2) electrodes were characterized for their HER catalytic activity in 0.5 M
H2SO4. It was observed that fs-Cu was more active than Cu, and similarly, fs-Cu/MoS2
surpassed Cu/MoS2, even though the same amount of catalyst had been deposited. Scan-
ning electrochemical microscopy in a substrate generation/tip collection mode was used
to examine the local HER activity of the fs-Cu/MoS2 films, and it was found that a signal
could be obtained from both the pits and peaks, which suggests that hydrogen evolution
occurs across the entire surface. Finally, electrochemical impedance spectroscopy was used
to relate the surface structure/morphology to the electrocatalytic activity. The impedance
spectra were fitted by equivalent electric circuits, and Cdl and Ca were calculated from
the high- and low-frequency signals, respectively. The Cdl, which is proportional to the
electrochemically active surface area, was 2–5 times larger for fs-Cu and fs-Cu/MoS2 when
compared to Cu and Cu/MoS2, which proves that the fs-ablated surfaces had a much larger
electrochemically active surface area. Similarly, the Ca of fs-Cu/MoS2 (which is propor-
tional to the electrocatalytically active surface area) was larger than that of Cu/MoS2. This
conclusively shows that using a laser-ablated surface for the electrochemical deposition of
a catalyst yields a more efficient device that using planar substrates. These results show
that femtosecond laser ablation, which is a scalable and controllable process, can be used to
manufacture excellent substrates for heterogeneous electrocatalyst use.
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