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An appropriate therapeutic index is crucial for drug discovery and development since narrow therapeutic
index (NTI) drugs with slight dosage variation may induce severe adverse drug reactions or potential
treatment failure. To date, the shared characteristics underlying the targets of NTI drugs have been
explored by several studies, which have been applied to identify potential drug targets. However, the
association between the drug therapeutic index and the related disease has not been dissected, which
is important for revealing the NTI drug mechanism and optimizing drug design. Therefore, in this study,
two classes of disease (cancers and cardiovascular disorders) with the largest number of NTI drugs were
selected, and the target property of the corresponding NTI drugs was analyzed. By calculating the biolog-
ical system profiles and human protein-protein interaction (PPI) network properties of drug targets and
adopting an Al-based algorithm, differentiated features between two diseases were discovered to reveal
the distinct underlying mechanisms of NTI drugs in different diseases. Consequently, ten shared features
and four unique features were identified for both diseases to distinguish NTI from NNTI drug targets.
These computational discoveries, as well as the newly found features, suggest that in the clinical study
of avoiding narrow therapeutic index in those diseases, the ability of target to be a hub and the efficiency
of target signaling in the human PPI network should be considered, and it could thus provide novel guid-
ance in the drug discovery and clinical research process and help to estimate the drug safety of cancer and

cardiovascular disease.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A narrow therapeutic index (NTI) of a drug implies that a tiny
variation in the dosage of the drug might lead to treatment failure
or severe adverse drug reactions [1-5]. It also hampers drug devel-
opment since researchers have to conduct additional studies [6] to
modify the compound structure, and some failures in drug
research [7] are caused by the NTI of drug candidates. In the course
of clinical research, some NTI drugs pose great risks in clinical use
due to the lack of clear dose adjustment recommendations [4,8]. It
is essential to start mitigation methods to avoid unfavorable traits
or to potentially alter resources to alternative candidates by
gaining an early consideration of the likely TI value of a certain
drug [9-10]. Moreover, this is critical for avoiding clinical trials
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because TI with low indication specificity may be considered
morally unacceptable [2]. Therefore, the molecular mechanisms of
NTI drugs play a prominent role in pharmaceutical discovery and
clinical research and help to estimate drug safety and efficacy [11].

However, it is complicated to determine and interpret the Tl of a
drug because this depends not only on the stage of development
that affects the available data but also on the properties of the indi-
cations for which the drug is being developed [2,12]. A widely used
concept of TI is the quantitative relationship between pharmacol-
ogy and safety toxicology, but the definition of a therapeutic or
toxic effect is highly dependent on different therapeutic and toxic
effect types [3]. For example, imatinib can allow more toxicity with
a smaller TI value when used in cancer in pursuit of higher phar-
macological exposure, but there must be a larger and more reason-
able TI value when used for pulmonary hypertension [2,13]. This
adds complexity to the understanding of the molecular mecha-
nisms of NTI drugs. In fact, of the 161 NTI drugs currently FDA
approved, almost half of them belong to cancer and cardiovascular
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disease. Cancer is a group of diseases characterized by uncontrolled
cell growth. The cardiovascular disease usually involves narrowed
or blocked blood vessels, which can contribute to heart attack, ang-
ina, or stroke and is characterized by acute onset, critical condition,
and rapid progression [14]. These observations suggest that there
may be disease-specific pathology, resulting in different types of
the disease each with its characteristics [15], and the molecular
mechanisms of NTI drugs in different diseases may also exhibit
large variations. Therefore, when designing drugs and conducting
clinical research on these two types of diseases, it is necessary to
consider the different molecular mechanisms of NTI drugs between
them.

To enhance the understanding of TI, a variety of studies and
some approaches have been developed to enhance the ability to
reveal the mechanism underlying NTI drugs, such as the
exposure-centric TI approach [2], preclinical pharmacology model
[16-18], assessment of off-target safety margins [19]. Recently,
an article was published in Frontiers in Pharmacology [20] using a
target-based approach, combining the profiles of human protein-
protein interaction (PPI) network, and biological systems to find
features or feature groups that can be used to indicate the drug’s
narrow TI It identified 8 features that could collectively indicate
that NTI drug targets are tremendously connected and centralized
and are related to target druggability in all diseases. Agnieszka
Potega, et al. [21] have shown that this target-based approach to
study the mechanisms underlying NTI drugs is important to indi-
cate a well-balanced profile between efficacy and safety. However,
no studies have revealed the underlying mechanism behind the
complex definition and interpretation of TI in different diseases,
and what significantly limits NTI drug design and clinical studies
for both specific diseases, and this needs to be solved urgently.

Therefore, in this study, the underlying mechanisms of NTI
drugs aimed at cancer and cardiovascular disease were analyzed
based on not only the human PPI network features but also the bio-
logical system profiles. To discover this underlying mechanism, the
NTI and NNTI drug targets were divided into three groups: (i) NTI
drug targets of cancer, (ii) NTI drug targets of cardiovascular dis-
ease, and (iii) NNTI drug targets for all indications. Next, through
the comparative analysis of the target groups (i) and (iii) and the
target groups (ii) and (iii), several essential features that could
distinguish the two groups were identified, and further studies
revealed similarities and differences in the characteristics of cancer
and cardiovascular disease. Overall, these findings combined with
the newly recognized features can indicate the underlying mecha-
nisms of NTI drugs targeting cancer and cardiovascular disease,
respectively, which offer certain guidance in assessing the risks
and benefits of drug candidates, as well as drug discovery and clin-
ical research in cancer and cardiovascular disease.

2. Materials and methods

2.1. NTI drugs collection and associated targets and indications
identification

The NTI approved drugs and their related drug targets and indi-
cations were obtained through the following steps. First, 1,921 FDA
approved drugs with their related indications were systematically
collected and identified from the orange book of the US FDA [72].
Then, all the corresponding diseases were standardized by the
ICD-11 codes (the latest version of the International Classification
of Diseases) [73]. Next, the corresponding targets of the approved
drugs were authorized by the therapeutic target database (TTD)
[74], and 506 corresponding targets of the approved drugs were
confirmed. Third, a systematic literature review of all these drugs
was performed to confirm their TI value by searching the PubMed
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database using such keyword combinations as “Drug Name/
Synonym” + “Therapeutic ranges” | “Therapeutic index” | “Thera-
peutic ration” [ “Therapeutic window”. Consequently, 36 NTI drugs
targeting cancer and 18 NTI drugs targeting cardiovascular disease
are discovered, which account for approximately half of all NTI
drugs. Moreover, 29 NNTI drugs targeting all indications are also
distinguished. The FDA-approved NTI drugs for cancer and cardio-
vascular disease together with their standardized indication, ICD-
11 codes, and targets are provided in Table 1, and the NNTI drugs
for all indication together with their standardized indication, ICD-
11 codes, and targets are provided in Table 2.

2.2. Assessing the profile of human PPI network properties and
biological systems for corresponding therapeutic targets

The human PPI network properties studied in this research con-
sisted of 15,554 proteins and 642,304 interactions between these
proteins, and these were created via the information furnished
by the STRING database [75]. Only those protein interactions with
confidence above 0.95 were selected for further analysis to guaran-
tee the dependability of the analytical data [76-77]. Thus, in this
study, a subnetwork consisting of 8,509 proteins, and 40,468 inter-
actions between these proteins was developed for subsequent
study. Additionally, the PPI network characteristics of correspond-
ing therapeutic targets were obtained by the PROFEAT [78] and the
tool Network Analyzer of Cytoscape [79-80]. In summary, 32 PPI
network properties were calculated for further analysis, as shown
in Table 3 (six features that are all zeroes were deleted, which
are: ‘closeness centrality sum’, ‘bridging centrality’, ‘eigenvector
centrality’, ‘page rank centrality’, ‘number of selfloops’, and ‘cur-
rent flow closeness’). Then, the additional four features of each cor-
responding target in the biological system profile were estimated.

The first feature is the number of target-affiliated pathways that
were collected from the KEGG database [81]. This feature was con-
firmed by two aspects. On the one hand, the pathway of the corre-
sponding drug targets should be necessary for life not only for
patients but also in healthy individuals. On the other hand, the
therapeutic target should be upstream and have the ability to reg-
ulate the biological function of the pathway. The second feature is
the number of each therapeutic drug target distributed in human
tissues, which was offered in the TissueDistributionDBs [82] and
UniProt [83] databases. The determination of this feature depends
on a higher level of total protein (>5%) distributed in a particular
tissue or a higher target concentration in that tissue than the aver-
age protein concentration. To explore the off-target collateral
effect, the third feature was adopted, which is the number of
human similarity proteins. This was determined by counting the
number of similar proteins that are outside the target protein fam-
ily for the studied drug target [84-85]. This was calculated using
BLAST similarity screening with the cutoff value of e-
value < 0.005 [86-87] for the human proteome method furnished
in the UniProt database [83]. The differential expression of the tar-
get is the fourth feature, which is capable of reflecting the expres-
sion differences of the corresponding target between diseased and
healthy populations for specific diseases [74,88-89]. The expres-
sion data were gathered from TTD [90] and calculated by using
the HG-U133 Plus 2.0 platform which was determined by the Gene
Expression Omnibus database [91].

Collectively, these 36 features are valuable and meaningful
in revealing human protein-protein interaction data for a given
target, including their connectivity, organization, robustness,
and stability in the human PPI network [92-94] and the on-
target and off-target pharmacology of the studied targets
[85,95]. These two aspects are key to enhancing potency for
characterizing the underlying mechanisms of NTI drugs [2,96].
In previous publications, including our previous analysis [20],
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FDA approved NTI drugs of cancer and cardiovascular disease together with their standardized indication, ICD-11 code, and target. ADRA1: Adrenergic receptor alpha 1; ADRA2:
Adrenergic receptor alpha 2; ADRB1: Adrenergic receptor beta-1; ADRB2: Adrenergic receptor beta-2; ADRB3: Adrenergic receptor beta-3; ATIII: Antithrombin-IIl; BCL-2:
Apoptosis regulator BCL-2; F2: coagulation factor II; F10: Activated coagulation factor X; DHFR: Dihydrofolate reductase; TOP1: DNA topoisomerase [; TOP2: DNA topoisomerase
II; EGFR: Epidermal growth factor receptor; ESR: Estrogen receptor; hDNA: Human deoxyribonucleic acid; IMPDH1: Inosine-5'-monophosphate dehydrogenase 1; IFNA2:
Interferon-alpha 2; NET: Norepinephrine transporter; PDGFRB: Platelet-derived growth factor receptor; RET: Proto-oncogene c-Ret; RRM2: Ribonucleoside-diphosphate
reductase M2; mTOR: Serine/threonine-protein kinase mTOR; SPT ATPase: Sodium/potassium-transporting ATPase; TMP1: Thymidylate synthase; TUB: Tubulin; c-Kit: Tyrosine-
protein kinase Kit; KDR: Vascular endothelial growth factor receptor 2; VKORC1: Vitamin K epoxide reductase complex 1; SCN5A: Voltage-gated sodium channel alpha Nav1.5;
SCN5A: Voltage-gated sodium channel alpha Nav1.5; SCN11A: Voltage-gated sodium channel alpha Nav1.9.

FDA Approved Drug (Reference for NTI)  Time of Approval  FDA Approved Indication ICD-11 Code  Disease Class Target Name
Argatroban [22] 2000 Intracardiac thrombosis BC46 Cardiovascular  F2

Axitinib [23] 2012 Rectum cancer 2B92 Cancer KDR

Busulfan [24] 1954 Chronic myeloid leukemia 2B33 Cancer hDNA
Capecitabine [25] 1998 Breast cancer 2C60 Cancer TMP1
Carboplatin [26] 1989 Ovary cancer 2C73 Cancer hDNA

Cisplatin [27] 1978 Ovary cancer 2C73 Cancer hDNA
Clonidine [28] 1974 Hypertension BAOO Cardiovascular ~ ADRA2
Cyclophosphamide [29] 1959 Acute myeloid leukemia 2A60 Cancer hDNA
Dalteparin Sodium [22] 1994 Deep vein thrombosis BD71 Cardiovascular  ATIII

Digitoxin [30] 1982 Heart failure BD10 Cardiovascular ~ SPT ATPase
Digoxin [31] 1954 Heart failure BD10 Cardiovascular ~ SPT ATPase
Disopyramide Phosphate [32] 1977 Ventricular tachyarrhythmia BC71 Cardiovascular ~ SCN5A
Docetaxel [33] 1996 Breast cancer 2C60 Cancer TUB
Doxorubicin HCI [34] 1974 Breast cancer 2C60 Cancer TOP2
Epinephrine [35] 1951 Coronary artery disease BA80O Cardiovascular ~ ADRB1
Epirubicin HCl [36] 1999 Axillary node cancer 2D60 Cancer TOP2

Etoposide [37] 1983 Testis cancer 2C80 Cancer TOP2

Etoposide Phosphate [26] 1996 Ovary cancer 2C73 Cancer TOP2
Everolimus [38] 2009 Renal cell carcinoma 2C90 Cancer mTOR
Flecainide Acetate [39] 1985 Arrhythmic BC64 Cardiovascular ~ SCN5A
Fluorouracil [40] 1962 Colorectal cancer 2B91 Cancer TMP1
Fondaparinux Sodium [41] 2001 Deep vein thrombosis BD71 Cardiovascular ~ F10

Gefitinib [42] 2003 Lung cancer 2C25 Cancer EGFR
Gemcitabine HCI [43] 1996 Pancreatic cancer 2C10 Cancer RRM2
Guanethidine Monosulfate [22] 1960 Hypertensive crisis BAO3 Cardiovascular ~ NET

Interferon Alfa-2B [44] 1986 Melanoma 2C30 Cancer IFNA2
Irinotecan HCI [34] 1996 Colorectal cancer 2B91 Cancer TOP1

Lidocaine [45] 1948 Ventricular tachyarrhythmia BC71 Cardiovascular  SCN11A
Mercaptopurine [46] 1953 Acute lymphocytic leukemia 2A82 Cancer IMPDH1
Methotrexate Sodium [26] 1953 Breast cancer 2C60 Cancer DHFR
Mitomycin [47] 1981 Stomach cancer 2B72 Cancer hDNA

Mitotane [48] 1970 Adrenal gland cancer 2D11 Cancer ESR

Oxaliplatin [49] 2002 Colorectal cancer 2B91 Cancer hDNA
Paclitaxel [50] 1992 Kaposi sarcoma 2B57 Cancer TUB; BCL-2
Pazopanib HCI [23] 2009 Renal cell carcinoma 2C90 Cancer c-Kit; KDR; PDGFRB
Pemetrexed [51] 2004 Pleura cancer 2C26 Cancer DHFR; TMP1
Pemetrexed Disodium [51] 2004 Pleura cancer 2C26 Cancer DHFR; TMP1
Phenprocoumon [52] 1957 Intracardiac thrombosis BC46 Cardiovascular ~ VKORC1
Prazosin HCI [22] 1976 Hypertension BAOO Cardiovascular ~ ADRAL1
Procainamide HCI [53] 1950 Ventricular tachyarrhythmia BC71 Cardiovascular ~ BTX-activated cardiac channel
Propafenone HCI [22] 1989 Atrial fibrillation BC81 Cardiovascular ~ ADRB1; ADRB2; ADRB3
Quinidine [22] 1950 Ventricular tachyarrhythmia BC71 Cardiovascular ~ SCN5A
Regorafenib [23] 2012 Gastrointestinal stromal cancer ~ 2B5B Cancer c-Kit; KDR; RET
Sorafenib Tosylate [23] 2005 Adrenal gland cancer 2D11 Cancer EGFR; c-Kit; KDR; PDGFRB
Sotalol HCI [22] 1992 Ventricular tachyarrhythmia BC71 Cardiovascular ~ ADRB1
Sunitinib Malate [23] 2006 Gastrointestinal stromal cancer ~ 2B5B Cancer KDR
Teniposide [26] 1992 Acute lymphocytic leukemia 2A82 Cancer TOP2
Thioguanine [46] 1966 Acute myeloid leukemia 2A60 Cancer hDNA
Topotecan HCl [26] 1996 Ovary cancer 2C73 Cancer TOP1
Vandetanib [23] 2011 Thyroid gland cancer 2D10 Cancer EGFR; KDR; RET
Vinblastine Sulfate [39] 1965 Hodgkin lymphoma 2B30 Cancer TUB

Vincristine Sulfate [54] 1963 Acute lymphocytic leukemia 2A82 Cancer TUB
Vinorelbine Tartrate [55] 1994 Lung cancer 2C25 Cancer TUB

Warfarin Sodium [31] 1954 Pulmonary thromboembolism BB0O Cardiovascular ~ VKORC1

a series of analyses have been performed by these 36 features.
And these 36 features (30 features are described in Table 3,
excluding the 6 features that the calculated values are zero)
are still adopted in this study to further explore the different
features of NTI drug targets between two representative dis-
ease classes (cancers and cardiovascular diseases). Their calcu-
lation formulas and biological descriptions are separately
reflected in Supplementary Table S1.
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2.3. NTI drug characteristic identification in two diseases by an
artificial intelligence-based algorithm

Artificial intelligence (Al) has seen significant advancement in
recent decades for aiding drug treatment [97-101], predicting
drug-target or drug-drug interactions [5,102-103], and optimizing
treatment protocols [104-106], including machine learning
algorithms [107-109], deep learning methods [110-112], and



J. Yin, X. Li, F. Li et al.

Table 2
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FDA approved NNTI drugs of all indications together with their standardized indication, ICD-11 code, and target. ABAT: GABA transaminase; ACE: Angiotensin-converting
enzyme; CACNA1G: Voltage-gated calcium channel alpha Cav3.1; CACNA2D1: Voltage-gated calcium channel alpha-2/delta-1; CACNA2D2: Voltage-gated calcium channel alpha-
2/delta-2; CACNA2D3: Voltage-gated calcium channel alpha-2/delta-3; CYSLTR1: Leukotriene CysLT1 receptor; D2R: Dopamine D2 receptor; DPP4: Dipeptidyl peptidase 4;
DPYSL2: Dihydropyrimidinase related protein 2; F10: Activated coagulation factor X; GABRA1: GABA(A) receptor alpha-1; GABRG3: GABA(A) receptor gamma-3; GAR: Gamma-
aminobutyric acid receptor; GRIA: Glutamate receptor AMPA; GRIK1: Glutamate receptor ionotropic kainate 1; hDNA: Human deoxyribonucleic acid; HIV RT: Human
immunodeficiency virus Reverse transcriptase; KCNQ2: Voltage-gated potassium channel Kv7.2; KCNQ3: Voltage-gated potassium channel Kv7.3; NET: Norepinephrine
transporter; NMDAR: N-methyl-D-aspartate receptor; PPP3CA: Calcineurin; SCN11A: Voltage-gated sodium channel alpha Nav1.9.; SCN1A: Sodium channel protein type 1
subunit alpha; SV2A: Synaptic vesicle glycoprotein 2A; TACR1: Substance-P receptor; TOP2: DNA topoisomerase II.

FDA Approved Drug (Reference for NTI) Time of Approval FDA Approved Indication ICD-11 Code Disease Class Target Name
Apixaban [56] 2012 Deep vein thrombosis BD71 Cardiovascular F10

Aripiprazole [57] 2002 Schizophrenia 6A20 Mental disorder D2R
Atomoxetine HCI [58] 2002 ADHD 6A05 Mental disorder NET

Clobazam [59] 2011 Epilepsy or seizures 8A60 Nervous system GABRA1; GABRG3
Clonazepam [22] 1975 Epilepsy or seizures 8A60 Nervous system GABRA1

Enalapril Maleate [60] 1985 Hypertension BAOO Cardiovascular ACE
Ethosuximide [22] 1960 Epilepsy or seizures 8A60 Nervous system CACNAIG
Ezogabine [59] 2011 Epilepsy or seizures 8A60 Nervous system KCNQ2; KCNQ3
Felbamate [22] 1993 Epilepsy or seizures 8A60 Nervous system NMDAR
Gabapentin [61] 1993 Epilepsy or seizures 8A60 Nervous system CACNA2D2; CACNA2D3
Gabapentin Enacarbil [61] 1993 Epilepsy or seizures 8A60 Nervous system CACNA2D2; CACNA2D3
Lacosamide [62] 2008 Epilepsy or seizures 8A60 Nervous system DPYSL2
Lamivudine [63] 1995 HIV infection 1C62 Infection HIV RT
Lamotrigine [22] 1994 Bipolar disorders 6A60 Mental disorder SCN11A
Levetiracetam [22] 1999 Epilepsy or seizures 8A60 Nervous system SV2A

Linagliptin [64] 2011 Type 2 diabetes mellitus 5A11 Metabolic disease DPP4
Mechlorethamine HCI [65] 1949 Mature T-cell lymphoma 2A90 Cancer hDNA
Mitoxantrone HCl [66] 1987 Multiple sclerosis 8A40 Nervous system TOP2
Montelukast Sodium [67] 1998 Asthma CA23 Respiratory system CYSLTR1
Oxcarbazepine [22] 2000 Epilepsy or seizures 8A60 Nervous system SCN11A
Perampanel [56] 2012 Epilepsy or seizures 8A60 Nervous system GRIA
Pimecrolimus [68] 2001 Atopic eczema EA80 Skin disease PPP3CA
Pregabalin [69] 2004 Epilepsy or seizures 8A60 Nervous system CACNA2D1
Rivaroxaban [59] 2011 Deep vein thrombosis BD71 Cardiovascular F10

Rolapitant HCI [70] 2015 Nausea or vomiting DD90 Digestive system TACR1
Rufinamide [62] 2008 Epilepsy or seizures 8A60 Nervous system N.A.

Topiramate [22] 1996 Epilepsy or seizures 8A60 Nervous system GABRA1
Vigabatrin [71] 2009 Types of seizures 8A68 Nervous system ABAT

Zonisamide [22] 2000 Epilepsy or seizures 8A60 Nervous system SCN1A

cognitive-computing [113]. In this study, to better understand the
underlying mechanisms of NTI drugs, one of the most widely used
artificial intelligence algorithms, Boruta, which was based on a ran-
dom forest classifier [18,114], was adopted. This method compares
the correlation between real features and random probes to deter-
mine the extension of the correlation [115]. The Boruta algorithm
was built by an Al-based method (machine learning), which is par-
ticularly suitable for low-dimensional data sets in other available
strategies because of its strong stability in variable selection
[116-117]. Then, the different characteristics between NTI and
NNTI drug targets of cancer and cardiovascular disease were deter-
mined by the R package Boruta, respectively [118]. Notably, assess-
ing the profile of human PPI network properties and the biological
system for each target was conducted using the Boruta algorithm
in the R environment and setting the parameters as follows:
holdHistory and mcAdj TRUE, getlmp getImpRfZ, max-
Runs = 100, doTrace = 2, p-value < 0.05. Eventually, the features
that could elucidate the essential factors indicating narrow TI of
drugs in cancer and cardiovascular disease were respectively
selected.

3. Results and discussion

3.1. Merging the human PPI network and biological system properties
for artificial intelligence-based algorithm

The drug risk-to-benefit ratio (RBR) is mainly determined by the
drug target profile of the network properties and biological system
[84,119-121]. Network characteristics are inherent to drug targets
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in human PPI networks, and biological system properties can mir-
ror the pharmacology of on-target and off-target. In this paper, the
most comprehensive sets of characteristics belong to the human
PPI network properties and biological system profiles were chosen
to further explore the different features of NTI drug targets
between two representative diseases (cancer and cardiovascular
disease). Their calculation formulas and biological descriptions
are separately reflected in Supplementary Table S1. The average
and median values of 30 features for cancer NTI drug targets,
cardiovascular disease NTI drug targets, and NNTI drug targets
were also calculated (removing six characteristics equal to 0), as
shown in Table 3. These 30 features were classified into three cat-
egories according to the attributes inherent in each feature, that
is, the connectivity/adjacency-based properties, the shortest path
length-based properties, and the human biological system proper-
ties, as also shown in Table 3.

The mean and median values between the two groups of targets
(NTI and NNTI drug targets) for each disease in Table 3 show a sig-
nificant difference between the two groups of targets in many fea-
tures. However, none of them can be used separately as an
indicator to distinguish between NTI drug targets and NNTI drug
targets. Only through collective combination can NTI drug targets
be more effectively distinguished from NNTI drug targets [20].
Therefore, in the next part of the study, we integrated the feature
selection method based on artificial intelligence to select some
important indexes from these features that can be combined to
determine the drug targets of NTI and the drug targets of NNTI.
However, this approach seems to introduce a very strong bias
when 36 features are directly used for feature selection because
of the significant dependence between 19 of these features [20].
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The calculated mean and median values of 30 properties in the human PPI network and biological system profiles.

Feature Cancer Cardiovascular Disease
Mean Value  Median Value Mean Value Median Value Mean Value  Median Value Mean Value Median Value
of Targets of of Targets of  of Targets of  of Targets of of Targets of  of Targets of  of Targets of  of Targets of
the NTI the NTI the NNTI the NNTI the NTI the NTI the NNTI the NNTI
Connectivity/  Bridging 1.02E-01 4.10E-02 6.79E-01 6.10E-02 7.64E-01 1.40E-01 3.70E+00 3.23E-01
adjacency- coefficient
based Clustering 1.32E-01 9.90E-02 1.84E-01 7.60E-02 2.85E-01 3.17E-01 2.72E-01 1.00E-01
coefficient
Degree 2.12E+01 1.50E+01 2.07E+01 1.30E+01 5.66E+00 5.50E+00 4.92E+00 3.00E+00
Degree centrality 2.74E—03 2.00E-03 2.64E-03 2.00E-03 7.50E-04 1.00E-03 5.49E-04 0.00E+00
Interconnectivity 2.64E—-01 2.55E-01 4.13E-01 2.69E-01 4.83E-01 4.38E-01 5.28E-01 5.00E-01
Neighborhood 3.49E+01 2.77E+01 2.59E+01 2.04E+01 1.75E+01 1.47E+01 1.81E+01 1.13E+01
connectivity
Number of 3.00E+01 1.70E+01 4.60E+01 1.50E+01 2.53E+00 2.00E+00 2.50E+00 1.00E+00
triangles
Scaled degree 2.83E-02 2.00E-02 2.75E-02 1.70E-02 7.50E-03 7.50E-03 6.56E—-03 4.00E-03
Topological 9.63E-02 1.01E-01 1.70E-01 1.13E-01 2.57E-01 2.84E-01 2.76E-01 2.06E-01
coefficient
Z-score 3.41E-02 1.50E-02 3.23E-02 9.00E-03 —1.33E-02 —1.35E-02 —1.58E-02 —2.20E-02
Shortest path ~ Average shortest  3.90E+00 4.01E+00 4.41E+00 4.06E+00 4.80E+00 4.79E+00 4.95E+00 5.04E+00
length- path length
based Betweenness 2.14E-03 1.00E-03 2.04E-03 0.00E+00 5.00E—04 0.00E+00 4.02E-04 0.00E+00
centrality
Average 2.58E-01 2.50E-01 2.36E-01 2.46E-01 2.10E-01 2.09E-01 2.06E-01 1.99E-01
closeness
centrality
Current flow 4.33E-03 3.00E-03 3.86E-03 2.00E-03 1.25E-03 1.00E-03 1.13E-03 1.00E-03
betweenness
Deviation 9.89E+03 1.07E+04 1.39E+04 1.11E+04 1.70E+04 1.69E+04 1.82E+04 1.89E+04
Distance 7.30E+03 6.47E+03 7.04E+03 6.61E+03 3.06E+03 3.89E+03 4.35E+03 4.16E+03
deviation
Distance sum 3.11E+04 3.19E+04 3.51E+04 3.23E+04 3.82E+04 3.81E+04 3.94E+04 4.01E+04
Eccentric 1.08E+00 1.34E+00 1.10E+00 1.34E+00 8.23E-01 6.60E—01 6.32E-01 6.60E-01
Eccentricity 1.03E+01 1.00E+01 1.06E+01 1.00E+01 1.13E+01 1.20E+01 1.14E+01 1.10E+01
Eccentricity 9.77E-02 1.00E-01 9.53E-02 1.00E-01 8.91E-02 8.30E-02 8.82E-02 9.10E-02
dentrality
Harmonic 2.21E+03 2.12E+03 2.00E+03 2.10E+03 1.76E+03 1.75E+03 1.72E+03 1.64E+03
closeness
centrality
Load centrality 2.11E-03 1.00E-03 2.11E-03 0.00E+00 5.00E—-04 0.00E+00 4.02E-04 0.00E+00
Normalized 4.64E-03 2.00E-03 4.46E-03 1.00E-03 1.28E-03 1.00E-03 9.71E-04 0.00E+00
betweenness
Residual 6.77E+02 6.16E+02 5.49E+02 5.98E+02 3.78E+02 3.66E+02 3.58E+02 3.00E+02
closeness
centrality
Radiality 8.18E-01 8.12E-01 7.87E-01 8.09E-01 7.63E-01 7.63E-01 7.53E-01 7.48E-01
Stress 2.59E+06 9.00E+05 2.33E+06 4.81E+05 4.80E+05 3.25E+05 4.73E+05 2.08E+05
Biological Number of 3.70E+00 3.00E+00 2.65E+00 3.00E+00 2.00E+00 2.00E+00 1.65E+00 2.00E+00
system- affiliated
based pathways
Number of 1.35E+01 1.20E+01 9.55E+00 9.00E+00 2.33E+01 1.60E+01 1.05E+01 9.00E+00
similarity
proteins
Number of target 1.48E-01 7.14E-04 2.79E-01 2.65E-01 4.23E-01 1.91E-01 2.81E-01 2.08E-01
expression
Number of tissue  3.69E+00 4.00E+00 3.06E+00 3.00E+00 3.78E+00 4.00E+00 2.63E+00 2.00E+00

Therefore, after a thorough investigation of 36 features, the 19 fea-
tures were eventually merged into five features due to their innate
interdependence. Considering the remaining 17 relatively inde-
pendent features, a total of 22 features for each target were applied
for further feature selection. The method of feature integration
referred to previous research by our group [20], as well as the bio-
logical description and equation of those 36 properties in human
PPI networks and biological system profiles, provided in Supple-
mentary Table S1.

3.2. Revealing the essential properties of NTI drug targets in cancer by
an artificial intelligence-based algorithm

The Boruta algorithm was built by an artificial intelligence
method, which is particularly suitable for low-dimensional data
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sets compared to other available strategies because of its strong
stability in variable selection [20,116]. Specifically, by setting the
key parameters (described in detail in the Materials and Methods
section), the R package Boruta was used to selecting the key differ-
ence features from 22 target profiles. The feature selection result is
shown in Fig. 1, which means that 13 features were selected to col-
lectively reflect the underlying mechanism of cancer NTI drugs,
including ‘interconnectivity’, ‘bridging coefficient’, ‘average short-
est path length’, ‘average closeness centrality’, ‘radiality’, ‘topolog-
ical coefficient’, ‘number of affiliated pathways’, ‘number of
similarity proteins’, ‘stress’, ‘number of tissues’, ‘degree’, ‘neighbor-
hood connectivity’, and ‘number of triangles’. The violin districts
colored dark blue and light blue refer to the NTI drug targets in
cancer and NNTI drug targets in all indications, respectively.
Among these 13 selected features, some important features



J. Yin, X. Li, F. Li et al.

Computational and Structural Biotechnology Journal 19 (2021) 2318-2328

1.00 - 0.5 71 0.35 0.90 - 30- 10.0-
047 0.30 - 0.85 - Y 1
0.75 - 6- 75-
20-
03- 025 - 0.80 -
0.50 - 5+ 50-
02- t 0.20 - 0.75 -
10-
025 - ' 4- i 25-
0.1~ Q13 070 -
0.00 - 0.0~ 31 0.10 - 065 0- 0-
. . Ry =
. Bridging Average Shortest Average Closeness - Number of Number of
Interconnectivity . . Radiality Lo . .
Coefficient Path Length Centrality Similarity Proteins Affiliated Pathways
125 5
0.5 1.5e+07 - 6= 80~ 150 -
‘' ! T: fNTI D
10607 100~ ) 4 argets o rugs
0.3- (] 4- 75- for Cancer
4 40- ’ H
0.21 { . 50-
5.0e+06 = 50 -
20-
0.1- 24 20 25- Targets of NNTI Drugs
for All Indications
00- 0.0e+00 - 0- 0- 0-
Topological ; Neighborhood Number of
IpCoeic Stress Number of Tissue Degree o ;
Coefficient Connectivity Triangles

Fig. 1. Violin plot of the 13 features identified in cancer. For each feature, dark blue represents the targets of NTI drugs for cancer, and light blue represents the targets of NNTI
drugs for all indications. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

displayed an upward trend from NTI to NNTI drug targets (such as
‘interconnectivity’), while others showed a downward trend (such
as ‘average closeness centrality’). In particular, the ‘average close-
ness centrality’ is defined as the reciprocal of the average shortest
path length of the studied target. It measures how fast information
spreads from a studied drug target to other reachable proteins in
the PPI network [122], and the ‘interconnectivity’ is a connection
metric that indicates the quality or status of the studied targets
connected [123]. It was reported that a higher value of ‘average
closeness centrality’ and a higher level (lower value) of
‘interconnectivity’ of the target demonstrated a greater lethality
risk [20,124], which meant that a protein with tremendous central-
ity and connectivity carries a greater lethality risk. The results from
our study proved that the capabilities of the applied Boruta algo-
rithms in determining essential features of cancer NTI drug targets
were due to the trends of the values of features in NTI and NNTI in
Fig. 1, in agreement with these previous studies. Moreover, what
we found also suggested that some features could be indirectly rel-
evant to the drug risk-to-benefit ratio [124-125], and NTI drug tar-
gets of cancer in the biological network were not only inclined to
be hub proteins [126] but also to have high centrality and
connectivity.

3.3. Discovering the basic characteristics of NTI drug targets in
cardiovascular disease by artificial intelligence-based algorithm

To identify the features of NTI drugs treating cardiovascular dis-
ease, the Boruta algorithm was adopted. The results are shown in
Fig. 2. Eleven features were selected to collectively reflect the
underlying mechanism of cardiovascular disease NTI drugs, includ-
ing ‘interconnectivity’, ‘bridging coefficient’, ‘average shortest path
length’, ‘average closeness centrality’, ‘radiality’, ‘number of affili-
ated pathways’, ‘number of similarity proteins’, ‘topological coeffi-
cient’, ‘stress’, ‘number of tissues’, and ‘distance deviation’. In Fig. 2,
the violin districts colored dark orange and light orange refers to
the NTI drug targets in cardiovascular disease and NNTI drug tar-
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gets in all indications, respectively. Similar to drug targets in can-
cer, some important features displayed an upward trend from NTI
to NNTI drug targets (such as ‘average shortest path length’). In
contrast, some displayed a downward trend (such as ‘radiality’).
The ‘average shortest path length’ describes the average length of
shortest paths between the studied drug target and all other pro-
teins in the studied PPI network [127], and the ‘radiality’ is the
reachability level of the studied nodes through diverse shortest
paths throughout the network [128]. Moreover, the trend of these
features in NTI and NNTI drug targets meant that NTI drug targets
of cardiovascular disease were likely to have more links with other
proteins. [129].

3.4. Exploring the shared/differential characteristics of NTI drug targets
between cancers and cardiovascular diseases

The shared/differential features of NTI drug targets between
cancers and cardiovascular diseases identified in the study are
provided in Fig. 3. The boxes of pink background are the feature
class of Connectivity, the boxes of light green background are
the feature class of Centrality, and the box of yellow background
provides the feature class of Biological System Profile. Besides,
the dark blue bars indicated the characteristics of NTI drug
targets for cancers, and the orange bars denoted the character-
istics of NTI drug targets for cardiovascular diseases. Those 10
features in the first layer are shared by both cancers and car-
diovascular diseases. Seven of these 10 features are the same
as those identified by the previous report [20], which include
‘average shortest path length’, ‘bridging coefficient’, ‘closeness
centrality’, ‘interconnectivity’, ‘number of affiliated pathways’,
‘number of similarity proteins’ and ‘radiality’. These features
indicated that the NTI drug targets of cancers and cardiovascu-
lar diseases were greatly connected and centralized in human
PPI networks, and shared a biological system of the large
number of similar proteins and target-affiliated pathways [20].
Moreover, these results validated the capability of Boruta
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orange represents the targets of NNTI drugs for all indications. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
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Interconnectivity

Bridging Coefficient Radiality Num.of Affiliated Pathways

Avg. Shortest Path Length Closeness Centrality Num.of Similarity Proteins

Topological Coefficient Num.of Tissue

Neighborhood Connectivity Degree . Cardiovascular disease

Distance Deviation

Number of Triangles . Cancer

Connectivity Centrality Biological System Features

Fig. 3. Classification of the key features of cancer and cardiovascular disease determined in this study into three feature groups.

[114] in determining the features of NTI drug targets in differ- and ‘number of triangles’. For cardiovascular diseases, the discov-
ent disease classes. ered feature was ‘distance deviation’. As reported, drug targets

The second layer is unique characteristics identified for cancers tend to have a lower ‘clustering coefficient’ in cancer [15]. The
(dark blue) and cardiovascular diseases (organge). For cancers, the ‘clustering coefficient’ denoted neighborhood connectivity [130],
identified features included ‘neighborhood connectivity’, ‘degree’, and the ‘clustering coefficient’ decreased with the increase in the
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number of interacting proteins [131]. Therefore, a lower ‘clustering
coefficient’ indicates higher ‘neighborhood connectivity’. The ‘de-
gree’ means the total number of edges connected to the studied
node, and the ‘number of triangles’ that referred to the percentage
of the triangle between a node and its neighbors. The higher the
‘degree’ and ‘number of triangles’, the higher the centrality of the
drug target, and the more likely it is to lead to adverse drug reac-
tions [132]. Thus, the computational discoveries of our result that
cancer has a higher value of ‘degree’, ‘number of triangles’, and
‘neighborhood connectivity’ are consistent with literature reports.
These phenomena indicate that the molecular mechanisms under-
lying of NTI drug targets in cancer require greater attention for the
higher level of ‘degree’, ‘number of triangles’, and ‘neighborhood
connectivity’.

3.5. Clinical implication of the identified features underlying NTI drug
targets

Based on the above analyses, a total of ten features from three
feature groups were identified as common features for both dis-
ease classes (cancers & cardiovascular diseases) in distinguishing
NTI from NNTI drug targets, and there were another 4 features
from two feature groups that were singled out by one of those 2
disease classes. Those shared feature groups identified in this study
were consistent with our previous publication [20], which reaf-
firmed the importance of these shared features in differentiating
NTI drug targets from NNTI ones. Since the vast majority of all
NTI drugs were from those two disease classes (cancers & cardio-
vascular diseases), it was not surprising to have such similarity
in the shared feature groups. Such shared features could also pro-
vide a new direction for optimizing the drug efficacy-safety bal-
ance [20]. Particularly, the importance of these shared features in
the prediction of drug-induced hepatotoxicity has already been
reported by the previous publication [133].

More importantly, those features that were unique in different
disease classes were concentrated in two feature classes of Connec-
tivity and Centrality. Particularly, the features unique to cancer
included ‘degree’, ‘neighborhood connectivity’, and ‘number of tri-
angles’. The ‘degree’ denoted the number of proteins in the human
PPI network that interacted with the studied drug target [134]. The
‘neighborhood connectivity’ indicated the average number of inter-
acting proteins of all the studied drug target’s neighbors [135]. The
‘number of triangles’ showed the number of triangles that included
the studied target as a vertex [136], and this triangular relationship
includes the studied drug target and its interacting proteins, as
well as the interactions among the interacting proteins. In fact,
these three features could collectively represent whether the stud-
ied drug target acted as a hub in the human PPI network, the higher
their values the stronger the core position of the studied targets
[137]. These findings represent an emphasis by cancers in differen-
tiating NTI drug targets with respect to the target’s ability to be a
hub in the PPI network. In other words, the narrow therapeutic
index of an anticancer drug may originate from its interaction with
hub protein [138-139]. To improve the situation of the narrow
therapeutic index of anticancer drugs, it is necessary to impose
more requirements on target selection. The hub proteins in the
human PPI network should be avoided when designing anticancer
drugs.

Different from cancers, the unique feature singled out in cardio-
vascular diseases is ‘distance deviation’, which belongs to the con-
nectivity feature group. The ‘distance deviation’ indicated the
absolute difference between the sum of all shortest paths starting
from the studied target to all other proteins and the mean shortest
path length of all the proteins in the human PPI network [135]. This
implied an emphasis on the efficiency of inter-target signaling in
NTI drug targets for cardiovascular diseases [135,140], which
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may indicate the needs for a more in-depth study of target signal-
ing pathways when designing drugs for cardiovascular diseases. All
in all, this study identified the key target features indicating the
NTI drugs for cancers and cardiovascular diseases, which has great
clinical implications in the drug designs for both disease classes.

4. Conclusion

This work is the first practice to reveal the underlying mecha-
nism behind the complex definition and interpretation of NTI
between different disease classes. Ten shared and four unique fea-
tures were identified for both disease classes (cancers & cardiovas-
cular diseases) to distinguish NTI drug targets from NNTI ones. This
work suggested that in the clinical study of avoiding narrow ther-
apeutic index in those diseases, the ability of target to be a hub and
the efficiency of target signaling in the human PPI network should
be especially considered.
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