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Abstract—The course of an infection was modeled as a controlled nonlinear process. Understanding the sub-
stantial differences observed in the trajectory of the disease caused by the new coronavirus SARS-CoV-2 is of
critical importance at the moment. Numerous factors have been considered to explain the fact that symptoms
vary highly among different people and the infection transmission rate varies among local populations. Virus
replication within the host cell and the development of an immune response to virus antigens in the body are
two interdependent processes, which have aftereffects and depend on the preexisting states of the cell and
virus populations. Different scenarios with the same input parameters are necessary to consider for modeling
the properties of the states. The efficiency of the immune response is the most important factor, including the
time it takes to develop defense responses from three levels of the immune system, which is a complex system
of the body. A computational description of infection scenarios was proposed on the basis of a delay differen-
tial equation with two values of the time lag. In the new model, transitions between phases of infectious dis-
ease depend on the initial virus dose and the delayed immune response to infection. A variation in the dose
of the virus and response time can lead to a transition from an acute phase of the disease with overt symptoms
to a chronic phase or fatal outcome. Asymptomatic transmission of viral infection was calculated and
described in the model as a situation where the virus is rapidly and efficiently suppressed after a short repli-
cation phase, while still persisting in the body in minor amounts. An analysis of the model behavior is con-
sistent with the theory that the initial number of virions can affect the quality of the immune response. The
reasons that high individual differences are observed in the trajectory of COVID-19 disease and the formation
of types of the immune response to coronavirus are still poorly understood. Known trajectories of hepatitis C
virus (HCV) infection were used as a basis for model scenarios.
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model, initial infectious dose, epidemics, virus transmission rate, asymptomatic scenario, COVID-19 varia-
tion
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INTRODUCTION

This article further develops the previous works on
modeling the extreme and special transition modes of
existence that an aggressive species takes in a new
environment [1]; however, another mathematical
apparatus is used here to study this important prob-
lem. The method to be employed in modeling should
be constructed and chosen as being the most adequate
to the specific biological collision. What should
remain unchanged is the principle that the logic of sit-
uation development is considered as a set of computa-
tional scenarios. A single scenario is rarely possible for
the processes of interactions between species [2]. Inva-
sion dynamics substantially varies when foreign spe-
cies enter various habitats [3]. Likewise, the propaga-
tion rates of infectious diseases vary among subpopu-
lations. Infection with a pathogenic virus can be
considered as a particular case of invasion processes

that occurs in conditions of intense counteraction,
which determines the outcome of the interplay
between the defense systems of the body and the para-
site evolving in the body.

The objective of this work was to provide ground-
work to a phenomenological model that describes the
differences observed in disease trajectory as dependent
on the initial virus dose at infection and the time it
takes to develop an efficient response. A continuous
model is therefore better suited for explaining the out-
comes of fighting a virus compared with a model of
iteration chaotic dynamics of the trajectory with a set
of controlled bifurcations, which was previously used
to describe forest pest irruptions. A delayed regulation
of the formation of a response is formalized in the
equation with regard to the subthreshold viral load at
which the effect of infection on the body becomes a
significant factor. The subcritical concentration intro-
duced together with two values of the response lag
327



328 PEREVARYUKHA
should vary among different organisms to explain the
variation in disease scenario among cases with differ-
ent initial infectious doses. The model was developed
to describe the scenarios by which hepatitis C virus
(HCV) infection becomes chronic after an acute
phase. An asymptomatic disease development with
persistence of the causal agent was considered in the
model as an important feature of the unusual course of
the new COVID-19 disease.

Given the pandemic, it is interesting to discuss the
reasons that the infection transmission rate is so vari-
able and the reasons that several variants are observed
for the waning phase in local epidemics. The issues are
of particular interest in terms of the lockdown effi-
ciency. The first part of the article analyzes the current
data on the qualitative dynamics of the SARS-CoV-2
epidemics and provides several explanations of the dif-
ferences from the viewpoint of the indefinite regula-
tion of processes. Transition types and a mathematical
classification of scenarios observed in particular
regions are noted as unusual issues that should receive
special attention when modeling the period for the
epidemic process to end and predicting a repeated
spreading of the new RNA virus, possibly a mutant
variant.

DIFFERENT AND COMMON FEATURES 
OF EPIDEMIC PROCESSES UPON THEIR 

GLOBALIZATION

Epidemics are long known to follow different sce-
narios in different countries. As an example, substan-
tial differences between African regions were observed
for Ebola virus disease [4]. Certain features and
unusual phenomena are characteristic of the current
pandemic, giving more room for speculation. Once
the SARS-CoV-2 pandemic is over, analyses will con-
tinue in epidemiology and mathematics to evaluate the
lockdown efficiency in various countries, to compare
graphs, and to construct models and prognoses for
future epidemics. Opposite conclusions will certainly
be made, as was observed in many other cases [5].

Compared with the epidemic wave in the United
States, the number of cases increased more slowly by
one order of magnitude in Mexico. The worst form of
a fast-developing epidemic with an extended
Π-shaped peak is observed in the United States based
on general data. The qualitative epidemic dynamics
varies greatly among individual states, and it is there-
fore difficult to obtain well-grounded predictions of
the disease incidence for neighbor states.

The apparent variation in virus spreading rate is so
great that they joke in Mexico they are ready to build
the Mexico–United States border wall themselves.
The virus proved to be powerless in Vietnam; i.e., not
a single lethal outcome has been recorded in Vietnam-
ese statistics by the time of writing this article. After
doing 180 000 tests, Vietnam declared April 20, 2020
that the threat had been warded off and lockdown
restrictions ended. National behavioral stereotypes
should not be ignored when making predictions. It is
possible that Italians suffered more severely because
they are communicative and talkative [6], and there
are physical grounds for this assumption. A study of
virus transmission routes showed that swirls of micro-
scopic saliva droplets are emitted during intense con-
versations and that the louder one speaks the more
virions are emitted and the more likely virus transmis-
sion is [7].

A classic example is provided by different conse-
quences that the Spanish f lu had in two American cit-
ies 1 century ago. Two main scenarios are demon-
strated by epidemic (mortality per 100000 population)
plots constructed for Philadelphia and St. Louis. A
dichotomy observed in the development of the epi-
demic processes in 1919 provided a basis for mobility
restrictions introduced in March. Isolation measures
were taken in a timely manner and all public events
were canceled in St. Louis, thus preventing an epi-
demic outbreak with a Λ-shaped mortality peak.
Local scenarios that differ so greatly are impractical to
combine in statistics, and aggregate data on disease
incidence are confusing. After 2 months of the epi-
demic, a single Λ-shaped peak did not seem that awful
in view of economic collapse. The epidemic curve
suddenly started to grow again after f lattening in many
American cities. The coronavirus transmission rate
increased again after a deceleration, thus contributing
to further differentiation of epidemic scenarios in
2020.

A crucial question is what factors determine the
dichotomy of epidemic scenarios [8]. Either rapid
growth occurs in the first 2 weeks and the resources of
the health care system fail to cope with the number of
severely ill people, or the process takes a smooth (or
sporadic) form. We note that Philadelphia with its
classic Λ-shaped peak is a seaport and a communica-
tion center. Therefore, substantial differences in the
initial conditions for triggering an epidemic presum-
ably preexisted between the two cities. Each primary
spreader induces a chain of transmissions, which are
unpredictably wide in scale in some cases.

A greater number of infected people and possible
latent carriers (patients zero) naturally arrive to a sea-
port from centers of infection, and the infection trans-
mission rate may start accelerating faster without leav-
ing time for proper measures to be taken. The plots
shown in Fig. 1 are often referred to as an illustrative
example, but it must be admitted that the initial con-
ditions were different in the two cities at the starting
point. It is not known for certain where the virus
emerged in 1918 and whether a cook in a Kansas mili-
tary camp was the first victim. After peaking again in
large cities with a greater mortality rate, the Spanish
flu mysteriously disappeared from Europe in June
1919 forever [9], although the Blue Death was
BIOPHYSICS  Vol. 66  No. 2  2021
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Fig. 1. Comparison (by mortality rate) of the development of the Spanish flu epidemics in 1918 between two American cities.
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expected to return in 1920. Predicting the time for an
epidemic to end is an intricate multifactorial problem
for deterministic models.

In the United States, a critical situation with the
coronavirus was observed in New York in April 2020.
New York is the largest center of the Chinese diaspora
and a historical emigrant gateway of North America.
The new virus will spread everywhere sooner or later as
a result of globalization. Many virus spreaders may
arrive at once in some towns. Transmission chains will
multiply, and then local hospitals will face a series of
epidemic waves.

A well-grounded theory [10] states that an epi-
demic (as well as irruption of an invading species) rap-
idly accelerates once the affected patient concentra-
tion has reached a certain threshold in the population
and similarly rapidly wanes once sufficient herd
immunity has formed in people recovered from the ill-
ness and unsusceptible people. The idea is mathemat-
ically based, in particular, on modifications of Whit-
tle’s threshold theorem [11] with an epidemics being
considered as a branching stochastic process [12]
where everyone has a probability of node transition
from the ill state to the immunized state [13].

Once the incidence reached 500 cases per day, the
epidemics, in fact, dramatically accelerated in the
United States as judged from a renewable plot. A four-
fold increase in daily new cases was observed instantly.
The increase is seen on the plot as a jump over a
threshold, where a certain chain of events creates the
critical concentration. In fact, the respective people
were ill long ago because there is an indefinite lag in
how the plot of daily new cases reflects the state of the
epidemic process (with incomplete data). An actual
threshold state is the infected case concentration at
which an eruptive phase is triggered in the infection
site; this state has been passed slightly more to the left
BIOPHYSICS  Vol. 66  No. 2  2021
on the time axis at a lower number of (detected) new
infection cases.

As is seen from a renewable plot of current statistics
by country (e.g., the one on the Financial Times web
page), lockdown measures were efficient when intro-
duced after detecting single cases, as was done in
South Korea. When stay-at-home orders are intro-
duced later and are not strict, they fail to quickly
change the quality of the process. The epidemic pro-
cess appears to be an inertial process. Ireland intro-
duced the stay-at-home orders on March 20, 2020 and
made them stricter on March 24, 2020. A plateau was
reached in Ireland by April 8, 2020. There were
380 daily new cases according to a smooth logistic
curve, but then the epidemic rapidly accelerated, there
were 500 new cases on April 9, 2020, and a psycholog-
ically important level of 1500 daily new cases was sur-
passed on April 4, 2020. Ireland provides an interest-
ing example where a model equilibrium value, at
which the curve is expected to stop growing (a pla-
teau), turns to be a threshold and unexpectedly leads
to a dramatic acceleration of the epidemic. By May 5,
2020, daily new cases did not decrease in Ireland to the
level observed on April 8. The ultimate mortality per
100000 population will probably not differ between
Ireland and lockdown-free Sweden. The analysis leads
to the hypothesis that a peak is unavoidable when
lockdown is delayed; i.e., the principle “if you are late,
then you are late” holds.

Sweden did not implement stay-at-home mea-
sures, and a classic Λ-shaped peak was not observed;
however, volatile dynamics with alternating periods of
growths or decreases in daily new cases will be
observed for long. On April 21, 2020, there were
700 new cases in Sweden and 3500 in Italy, where “stai
a casa” orders were implemented long ago. When
qualitatively analyzing the epidemic process, disease
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Fig. 2. Modeling of the threshold scenario of a population outburst by damping (reproduced from [1]).
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incidence data on metropolises should be considered
separately from aggregated statistics on the total coun-
try. This is especially important in the case of Moscow,
New York, and Mexico, where the population density
is far greater than the density averaged over the respec-
tive country. Cases omitted earlier were recorded at a
later time in some countries (France), and the delay
distorts the scenario of the process and creates false
maximums in the infection statistics.

China’s anti-epidemic measures work only in
China. Hong Kong and Singapore have already
reported a victory over the epidemic, but Singapore’s
authorities expect repeated outbursts because of the
need for foreign workers. The curve of new daily cases
often becomes alternating after peaking; the variation
in detection lag acts as a factor. Patients are most com-
monly identified when they have already developed
symptoms and an immune response. Latent develop-
ment of the infection process in the body plays an
important role and creates the effect of an integral
delay in transmission, and a temporal decrease in daily
new cases should therefore not be interpreted as a suc-
cess. In Iran, an apparent second wave of the epidemic
has been reported from July after a quiet period.

A smooth scenario of the epidemics (the second
derivative should be the focus of attention here) was
observed in Germany compared with Italy and Spain,
where 16 and 20 days elapsed, respectively, from the
start to the first maximum. The scenario with a rapid
peak is similar to a threshold-dependent triggering of
an outburst after a long-term stabilization in the vicin-
ity of an unstable equilibrium [1] (see Fig. 2). A turbu-
lent mode develops after a plateau in this case.

In the case of an epidemic, a similarity is observed
in some cases for the phase of a threshold-dependent
transition from fluctuations to a rapid growth. The end
of an epidemic is similarly rapid only in rare cases, like
a drop in the population size of insects after their
intense propagation.
COVID-19 spreads faster than swine f lu and has a
latent period that averages 5.5 days [14] and ranges
from 0 to 15 days (according to Wuhan data [15]). It
was observed as early as in Wuhan that virus transmis-
sion is possible at the asymptomatic stage, when infec-
tion develops and evades adaptive immunity. The time
to fever as a main nonspecific response of the body to
respiratory infection (and the time to a release of pyro-
genic interleukins) in the case of COVID-19 is greater
on average [19] than in the case of the related SARS
virus of 2003. Neutralizing antibodies were detected
using pseudovirus particles in 79, 92, and 98% of sam-
ples collected, respectively, from infected healthcare
providers who did not require hospitalization 13–20,
21–27, and 28–41 days after the onset of symptoms
[17]. The response was certainly slow compared with
responses to the majority of the viruses that cause
acute respiratory infections. Data on killer T cells are
unavailable. Activation of immune system mediators
in response to SARS-CoV-2 is delayed in a substantial
part of infected patients because of an important, but
still unclear factor. This is advantageous for the virus
and allows its latent virus transmission. However, the
apparent slow development of the response might pro-
tect the body from a greater risk when the initial dose
is not considered to be critical.

The issue of what biological factors are responsible
for the great variation in latent disease phase, which is
unusually extended for an acute respiratory infection,
will be investigated and discussed in medicine for
many years. Attention is paid to the unusual concom-
itant symptoms, such as loss of smell and loss of taste,
which are uncommon for acute respiratory viral infec-
tions [18]. It seems reasonable to assume that symp-
toms become overt when a certain threshold virion
concentration is exceeded. Surprising results have
been published by Italian healthcare specialists [19].
The majority (90 and 80%) of a municipal population
was tested twice, and 40% of the cases were reported to
be asymptomatic. The viral load was found to be much
BIOPHYSICS  Vol. 66  No. 2  2021
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the same in virus carriers with overt symptoms and
asymptomatic cases. This observation still lacks a reli-
able explanation. The term “slow,” rather than
“asymptomatic,” infection scenario is safer to use.
Mathematically, this means that virus replication per-
sists in stable equilibrium (for an indefinite period of
time). If symptoms have not developed within a week,
this does not necessarily mean that they will not
develop after a year. Certain viruses (e.g., HIV) are
known to persist in a subclinical state for many years.
Other mechanisms that fight infection may come to
exhaustion, or the virus may evade the mechanisms as
a result of antigenic drift in the body. The variation in
disease progression rate in the case of HIV is explained
by the fact that a greater number of viral glycoprotein
variants bind with antibodies in some people, while
avidity for a minor portion of virions is observed in
some others. Immunity responds to antigens as indi-
vidual regions of proteins of an infectious agent, but
these regions can be variable. Some regions change
rapidly, while others are conserved. Quantitative anti-
body-related parameters of the immune response do
not characterize the efficiency of neutralization of a
virus when stably affine immunoglobulin variants are
lacking. This is a probabilistic factor in response effi-
ciency. Cases are known where virus-induced systemic
inflammation persists after the virus has been elimi-
nated.

In 2020, modeling specialists received unique
opportunities to monitor the epidemic trajectories of
various countries in real time and to make predictions
that can be verified quickly. However, the predictions
have failed one after another because of the specific
properties of COVID-19. Data on percent positive
tests in the total daily test number would be informa-
tive in the current situation, but are not available.
Long-term model predictions are not feasible to make
for the future situation with COVID-19 until the main
questions are answered: how immunity forms, how
rapidly a response arises in different components of
the immune system, and how long recovered patients
remain protected. Data on the very early stage of
COVID-19 development would be interesting to have
for modeling because transition modes and threshold
effects may depend on the initial conditions in nonlin-
ear systems. Another important question is whether
the initial infectious dose affects the rate of pneumo-
nia development and the immune response, which
may be aggressive as a nuclear chain reaction and inef-
fective at the same time. A sensitivity to N(0) is essen-
tial for an adequate model of the variants of new dis-
ease development.

FEATURES OF HOW THE STATISTICS 
OF THE EPIDEMIC ARE PERCEIVED

Available statistical data on virus spreading does
not guarantee correct conclusions. Systematic testing
of the total population was immediately launched only
BIOPHYSICS  Vol. 66  No. 2  2021
in Iceland and, in part, Australia, once it was under-
stood that an infected person starts spreading the virus
as early as at 3 days of infection. Data from these coun-
tries will be used as reference statistics in future analy-
ses of COVID-19. It was early understood on the
island that infected, rather than healthy, people are
those who need isolation. Funds are more effectively
spent on means for mass testing. Figure 3 shows a
comparison with the percent distribution of the coro-
navirus statistic of the Netherlands, were tests were
performed only for patients hospitalized with symp-
toms of viral acute respiratory infection. If this fact is
not known, a biologist or statistician may decide in the
future that some genetic differences in virus suscepti-
bility have accumulated in the Icelandic population
over its long isolation on the island with low genetic
diversity.

Data from Iceland demolish the myth that elderly
people are more often affected by the coronavirus.
Middle-aged people are actually affected more often.
Complications are more intense in the elderly on aver-
age. Given this fact, a maximum would indeed be
observed at 60+ if tests were performed only in those
seeking medical advice. COVID is not the first infec-
tion that is milder for people at a young age. Many are
aware how unwelcome rubella is in adulthood. Our
immune system is a self-regulating taught system that
protects the body and consists of several levels. It is
easier for the immune system to detect and fight new
agents at a younger age than to quickly retrain itself in
the face of sudden threats later in life. When a simple
explanation is possible, the most logical connections
between facts are better for use in mathematical mod-
eling.

PROBLEMS IN PREDICTING 
AND COMPARING THE SEQUELS 

OF EPIDEMICS

The basic reproduction number R0 is estimated for

a virus causing an epidemic. The number shows how
many other people get infection from one carrier on
average. In the case of the SARS-CoV-2 virus, R0 was

estimated at 2.0 by mathematical modeling [20] and
2.5 by analyzing the Wuhan statistics [15] (there are
grounds to believe that the data were underreported).
The R0 values are statistics for a reference book. The

characteristic fails to explain rapid local outbursts. An
apparently higher basic reproduction number was
observed in Italy [19]. We assume that an average
COVID-19 patient transmits infection to 3.5 other
people and that some patients can transmit infection
to a far greater number of people. There is a hypothesis
about superspreaders, and superspreader events have
been described [21]. Such a mechanism was assumed
for a HIV epidemic of 1980, which was explained by
actions of a Canadian f light attendant who transmit-
ted infection to hundreds of people throughout North
America, although the virus found its way into the
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Fig. 3. The relative numbers of coronavirus-infected cases by age group in Iceland and the Netherlands (from
https://www.covid.is).
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United States several decades earlier. The first con-
firmed case of AIDS was detected in St. Louis in 1966.
However, the epidemics did not develop to a rapid
spreading phase during the Summer of Love of 1969,
but progressed slowly for 11 years. Records of the 19th
century describe several cases of typhoid spreaders
who did not have typhoid symptoms, but caused mass
infection.

Trigger effects and pulsed activities are difficult to
include in classical models based on systems of com-
mon differential equations. However, pulsed scenarios
are important to consider with due regard of cases
where many people simultaneously contracted infec-
tion, their long-term consequences, and the effect of
inertia in the epidemic dynamics. Football matches,
such as an Atalanta vs. Valencia match, triggered an
acceleration of an epidemic. One event created a group
of infected spreader fans in Bergamo, thus provoking a
Λ-shaped peak of the epidemic with a 12% mortality
rate according to current estimates. The mortality rate,
in addition to daily new cases, is a key characteristic to
be used to compare different epidemics.

What is comparable can be compared, that is,
countries that are similar in the availability of health-
care and report unbiased statistics. A dramatic differ-
ence in mortality rate between neighboring countries
(e.g., 10% in Spain and 4% in Portugal) is highly diffi-
cult to attribute to differences in the quality of medical
services. An explanation can be based on the immuno-
logical imprinting hypothesis. If a HxNx influenza
virus is the first one to cause f lu in childhood, than the
person becomes forever resistant to all strains that are
similar to the initial type, but is unprotected against
HxNy viruses and becomes ill every year because the
immune system fails to detect any difference and acti-
vates the memory B cells that remember the old anti-
gen. As is known from the history of vaccinations,
cowpox provided resistance to natural smallpox, and
their similarity was thus advantageous to humans. A
series of experiments in mice confirmed the effect of a
blind spot in the immune system; i.e., there is a
threshold in detecting variants of viral proteins [22].
Infection with a new influenza virus strain leads to
production of antibodies against protein variants of
the old virus strains. Antibodies that bind their target
poorly interfere with recovery. Hemagglutinin/neur-
aminidase virus types were considered in the hypoth-
esis. However, human coronaviruses have been stud-
ied far less comprehensively, coronavirus vaccines
have not been tested, and uncertainty may act as a fac-
tor here to increase differentiation of disease scenarios.
There is no guarantee that antibodies to a desired pro-
tein always occur at a maximal frequency in the total
diversity of possible antibodies. Several β-coronavi-
ruses have long been present among the agents of sea-
sonal viral acute respiratory infections, but the distri-
bution of coronavirus types was not analyzed in
regions as thoroughly. The hypothesis suggests that
people who did not have coronavirus infections earlier
develop a milder COVID-19 disease compared with
people who were infected earlier with other members
of the family Orthocoronavirinae. Older people might
have an infection with a strain that is similar in anti-
genic properties in the 1980s, and only a weak
response is now produced by one of the components of
their immune system. An irregular frequency distribu-
tion as a probabilistic component thus arises in the
formation of the immune response upon antigen pre-
sentation. Transmembrane spike proteins vary sub-
stantially among RNA viruses. Protruding spike
regions are a priory thought to be immunodominant,
while conserved nucleoproteins and large proteins
responsible for RNA packaging in virions are also
immunogenic (targets accessible to T cells). Immune
memory cells that remember nucleoprotein antigens
can act as a helpful factor upon infection with a virus
that has modified regions in crown spikes.
BIOPHYSICS  Vol. 66  No. 2  2021
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To check the hypothesis of a blind spot in immune
memory, it is interesting to compare the antibody vari-
ants, including those to two parts of the spike protein
and alternative N proteins, between patients with mild
disease and those with a fatal outcome and to analyze
their frequency distribution. If negative tests for anti-
bodies are observed in a substantial portion of severe
COVID-19 cases confirmed by PCR tests and positive
tests for antibodies are observed in PCR test-negative
cases, the discrepancy will provide indirect evidence
for the hypothesis. An argument against the hypothe-
sis of an “original antigenic sin” is that circulating
virus types must have been regularly distributed
throughout Europe in globalization conditions. In
genetics, variants of histocompatibility gene regions
that are responsible for immunity are analyzed in
terms of frequency to explain the differences observed
in COVID-19 mortality rate.

Several methods are used to model disease spread-
ing, but they are not universally suitable for prediction
in a pandemic and, even more importantly, estimating
the future mortality rates. Modifications of the SIRS
model for spread of disease are common and have
been studied both in the form of systems of differential
equations and in a discrete algorithmic form. The
algorithms included both fully deterministic ones [22]
and those allowing for probabilistic parameters of out-
comes (infection, recovery, and death) [23]. There are
cameral SIRS models, which include the isolation of
subpopulations and various risk groups for the spread-
ing of special infections. Infection with a sensitive
variant and infection with a resistant variant were sep-
arated in a study of certain treatment aspects [24]. A
patient has a probability to die or become immune in
automatic SIRS models, but it remains unclear how a
transition to the asymptomatic carrier state should be
included in the transition set. Young people with mild
symptoms remain virus spreaders (with viral RNA car-
riage confirmed) for 2 months according to reports
from Italy; however, data on the time course of the
immune response are necessary for modeling.

There are still no uniform guidelines on how
restrictive measures should be introduced by a coun-
try’s authorities to stop the spreading of infection.
Restrictive measures are efficient when introduced in
all countries at the same time. The World Health
Organization declared a pandemic on March 11, 2020,
but after the fact. Predictions and mathematical mod-
els of coronavirus spreading scenario were available to
the authorities, but did not play an appreciable role in
decision making. The availability of numerous mathe-
matical models [25] does not help when officers of the
World Health Organization lack the will to make deci-
sions and to introduce operating algorithms manda-
tory for all countries. Studies published as early as
2007 already warned that an epidemic was possible if a
SARS virus circulating in chiropteran populations is
transmitted to humans (see [26, 27]).
BIOPHYSICS  Vol. 66  No. 2  2021
The issues of the optimal time to relax lockdown
rules without provoking a repeated outbreak and when
it becomes certain that a repeated increase in disease
incidence is unavoidable in a given scenario are
important to predict. Data from earlier epidemics
show that repeated peaks occur 2–4 months after the
first epidemic wave has waned, as was the case with
Spanish f lu and a plague epidemic that hit Marseille in
1720. Predicting a repeated wave of the epidemic is a
pressing problem of modeling. It is important to dis-
tinguish a repeated outbreak as an event from an oscil-
lation phase when the epidemic process follows an
oscillatory scenario. The key issues that are of critical
importance to know for modeling and prediction are
how permanent immunity forms, how long it works,
and whether a virus reactivation is possible when a
latent infection site persists in the body. There are
reports that the virus was detected again after its disap-
pearance from the body in some cases. This is a con-
cern, and it is unclear how rare such cases are.

One drawback of many SARS models is that quali-
tative modes of behavior are independent of the initial
state observed at the start of a local epidemic process.
According to one hypothesis, a difference in the initial
number of infected people may explain the difference
in epidemic scenario between different regions, acting
together with other factors. The social contact density
is the main one among these factors and is poorly for-
malizable in equations.

It is essential for modern epidemic modeling that
the mortality rate is a functional rather than a param-
eter set a priory in a system of equations, even when it
is set to be a random number with a known distribu-
tion through age groups. A model will have predictive
potential when demographic and immunological
parameters of subpopulations are used to estimate the
probable mortality rate in computational experiments.

Detailed network models of virus transmission in a
heterogeneous population can be built with current
computational capacity, but the virus potential for
latent spreading prevents the use of medical statistics.
Conventional modeling methods are certainly of use
for analyzing the local variants of how phases of the
process and the portion of recovering patients change
depending on the time course of daily new cases and
the scenarios of the disease course in the body.

FORMALIZATION OF DELAYED 
REGULATION IN POPULATION PROCESSES

Phenomenological models are important when the
actual mechanisms are unknown and infeasible to
describe directly or when their complexity is impossi-
ble to formalize. The functions of immune subsystems
were mathematically modeled in many studies [28].
Humoral and cell-mediated immune responses were
long considered separately when constructing models.
Marchuk et al. [29] analyzed immune system aging
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due to a higher antigenic load. However, the structure
of innate immunity and difficulties in triggering adap-
tive immunity remained unclear until recently. Studies
of the T-helper subtypes and receptor selection algo-
rithms are still far from complete. The findings of
Medzhitov et al. [30] mean that in terms of biological
cybernetics that the system that regulates immune
responses works in a trigger manner, through a cas-
cade of signals, and belongs to the paradigm of dis-
crete-continuous and hybrid types of dynamic pro-
cesses [31].

In modeling the direct interaction between a pest
and a forest or a virus and an organism, the problem is
that the time scales of two fighting species are not
comparable (in particular, a HIV virion lives for up to
half a day). Assuming a classification of phenomeno-
logical models in biology, the interaction between the
immune system and a virus does not belong to the
predator–prey or parasite–host type, but is close to a
model of war as a confrontation of two fighting armies.
The efficiency of means of destroying the opposing
side can be calculated in models without describing
their internal mechanics. Scenarios of how the
extreme interaction ends are also important to analyze
in models.

Delay equations provide a common means to con-
struct biological models with intricate dynamics [32]
(a synonym of Volterra’s hereditary phenomena). In
this approach, the regulation of an ongoing process
corresponds to a past state observed in the system a
certain period of time previously [33]. A delay reflects
a set of actual time-related factors in biology [34] and
is not restricted to the time of reaching maturity. As an
example, several time-related parameters characterize
various intracellular processes, such as protein expres-
sion mediated by mRNA [35].

Response delay factors are important in the case of
formation of the immune response. The factors
depend within a narrow time range on the frequency at
which active cells encounter the virus. The body has
both means to immediately respond to infection and
means to produce a response that is specific to a par-
ticular target, but is delayed because dendritic cells
have first to present the viral antigens (by analogy, as a
composite portrait is presented by police).

Volterra was the first to consider the equations with
N(t – τ) in mathematical biology. The Hutchinson,
Nicholson, and Gopalsamy delay models are the best
known in biology and have several modifications [36].
The Hutchinson equation was not derived by
Hutchinson himself in 1948, in contrast to what may
often be found in publications (old works have been
digitalized and are available, and classic works are now
possible to read rather than to refer to from habit).
Hutchinson [37] briefly outlined the hypothesis that
earlier states affect the reproduction efficiency; the
idea was not the main idea of the work. The model was
ascribed to Wright in [38], while Wright [39] provided
a somewhat different form:

May [40] was probably the first to write the equa-
tion in its conventional form:

(1)

Equation (1) is actually a complication of the Ver-
hulst logistic model with the delay τ introduced for the
regulation that is determined by the carrying capacity
K of the ecological niche. K is an important parameter
and was theoretically grounded by the ecologist
Hutchinson. K is more than merely a constant in a
model, but is a principle of the intraspecific regulation
in theoretical ecology [41] and is based on the a priori
assumption that there exists the maximum allowable

equilibrium population size . The mathematical

model gave origin to common theories of r- and
K-strategies in species evolution, although a theoreti-
cal mathematical description of the European popula-
tion of the mid-19th century was originally developed
by Verhulst and was never intended for describing the
extreme situations that arise upon new species inva-
sion.

When the delay τ is low, the equation provides a
phenomenological description for a mode actually
observed for decaying population oscillations N(t) →
K. At rτ ≈ π/2 ± ε, N(0) < K, trajectory (1) describes
the character of a waveform epidemic, such as a
repeated phase of growing new daily COVID cases in
Texas (Fig. 4a), but not in New York or Italy. A distinct
oscillatory scenario of the epidemics is observed on a
plot constructed for Iran without averaging (Fig. 4b).
The scenario can be called the “second wave,” but,
mathematically, this wave is part of an integral decay-
ing oscillatory process. Differences between the two
situations were earlier described with the examples of
a repeated pest outburst in a gum-tree forest as a sep-
arate stochastic event and continuous oscillations of a
leaf-roller moth population in Canada as an integral
long-term population phenomenon [42].

The condition , N(0) < K, N(t) ≤ K is true for the

equations included in the Verhulst, Gompertz, Rich-
ards, and other logistic models, but is inconsistent
with rapid invasion scenarios. A scenario observed at

 < tm, N(tσ) > K, and N(tm) < K corresponds to a

classical σ-shaped curve, which E. Odum used in his
Ecology to show a typical scenario where the size of an
invader population grows with the overshoot N(tσ) >

K, but without an extreme outburst phase. The invader
population cannot immediately stop increasing in size
once niche K is reached (the population is unaware of
this fact) and the overshoot N(tσ) > K consequently

arises until the size stops growing (N(tσ = 0) and

decreases without forced to an acceptable equilibrium
with the biotic surrounding. The overshoot does not

( ) ( )[ ]'( ) 1 1 , 0.y t y t y t= −α − + α >

( )( )
( ) 1 .

N tdN rN t
dt K

− τ= −

t∀

t∀

tσ∃
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Fig. 4. (a) A plot of new COVID cases in Texas with a smoothed curve obtained by data averaging over 7-day periods (data from
The New York Times) and (b) an oscillating COVID epidemic in Iran.
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belong to extreme transition modes. The growth in
size stops on its own (N(t∞) = K), as a parameter regu-

lated in the absence of external counteraction. The
dynamics following Eq. (1) can describe the scenario
only when an ecological niche is filled in a “peaceful”
manner, without damaging the environment, via com-
petitive displacement and the population size does not
drop dramatically after the overshoot, that is, an
increase over the a priori niche capacity. Cases are
known were the invader population was too aggressive
and died completely. The achievement of the point of
a zero increase in population size does not necessarily
mean a balance with the environment in many actual
situations. As an example, K as the limit number of
cells accessible to viral infection is determined by the
efficiency of interferons in the body.

The solution of Eq. (1) is dissipative: N(t) ≤ (–1) +
exp(rτ) regardless of N(0) [43]. The properties of
Eq. (1) with the formation of an orbitally stable cycle
and nonharmonic oscillations are well known [45] as
BIOPHYSICS  Vol. 66  No. 2  2021
the formation of autowaves in systems with a delay
[44]. The trajectory of Eq. (1) passes to a cyclic mode
for a population with the reproductive potential r after
an Andronov–Hopf bifurcation when the bifurcation
parameter product rτ > π/2 [46]. When biological
problems are studied, Eq. (1) is analyzed with the con-

stant prehistory  ∈ [–τ, 0], N(t) = N(0). A single-

parameter form is used in mathematical studies:  =

λ[1 – N(t – 1)] and the results are difficult to convert
back and to express in terms of ecosystem processes. A
generalization of the Hutchinson equation can be
written as follows to allow for the age structure of the
population:

(2)

The drawbacks of the Hutchinson equation and its
generalizations are well known in applied ecology [47].
Relaxation cycle minimums (1) become prolonged

t∀
N�

2

1

1
1 ( ) ( ) .

N r d s N t s N
t K

−τ

−τ

 ∂ = − +  ∂  
 v
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and deep with the increasing amplitude and actually
fall within the ε vicinity of zero. The mode is unrealis-
tic in the context of interpreting the properties of an
isolated population. There are grounds to state that the
potential for essential biological interpretation of
behavior is lost at high τ values so that the model fails
to describe rapid abrupt changes.

An alternative blowfly equation does not explicitly
includes the limit capacity of the niche:

(3)

The model in the form of a differential equation
was proposed for describing the large-amplitude oscil-
lations observed in a laboratory blowfly population in
Nicholson’s experiments [48]. The well-known Ricker
function is used in Eq. (3) to formalize intraspecific
competition at an increasing density, but a delay is
introduced at the reproductive term; i.e., it is an ana-

log of the equation xn + 1 = . The Ricker

function iteration that has long been used as a model
of replenishment and harvesting of a fish population in
fishery has a chaotic mode following the scenario of
Feigenbaum’s period doubling. The iteration cycles

Ψn(x) = Ψ(n + p)(x), p = 2φ are unsuitable for describing
the population f luctuations. A doubling of the period
p creates pairs of points around the unstable point x*,
while population cycles are serial permutations with a

maximum at the end of a period:  <  i =

0…p – 1. Analysis of Eq. (3) belongs to the field of cha-
otic dynamics [49] and is beyond the scope of this arti-
cle. The Malthusian coefficient r already reflects the
difference between the natural birth and natural death
rates; then δ in Eq. (3) corresponds to additional mor-
tality as an external factor.

Maximums arising in an oscillatory mode after a
bifurcation of cycle creation in the Gopolsamy model
[50] agree better with the views of regulatory oscilla-
tions:

(4)

Ecological models with a divergent argument were
considered in many studies, and diverse modifications
of delay models were reviewed [51, 52].

Model modifications are proposed below for
describing the rare and specific biological processes
that include variable scenarios. Unfortunately, epi-
demics do not occur in stable cycles. Oscillations of
population processes are often sporadic and lack a
constant period, thus representing intermittent f luctu-
ations. The scenario of a spontaneous termination of a
rapid invasion phase is important to describe in the
case where reaching the equilibrium limt → ∞N(t) = K is

an unreal scenario. Cyclic dynamics is not a main key
property of epidemic models.

( )exp( ( )) ( ).
dN rN t bN t N t
dt

= − τ − − τ − δ

1nbx
n nax e x−− − δ

1
*
p ix − −

* ,p ix −

( )
( ) .

( )

K N tdN rN t
dt K jN t

− − τ =  + − τ 
MODIFICATION OF A MODEL FOR CYCLIC 
ACTIVITY OF POPULATIONS

To obtain the oscillations that are realistic in terms
of ecodynamics, a delay equation was develop on the
basis of Eq. (3) with formalization of nonlinear thresh-
old counteraction, which occurs in the mode of oscil-
lations that arise after the Andronof–Hopf bifurcation
and decay spontaneously. The equation is as follows:

(5)

Model (5) can describe the specific dynamics of
the COVID epidemics in Michigan as a series of
decaying peaks following a main abrupt outburst
(Fig. 5). A similar development of the coronavirus epi-
demic was observed in Wyoming; however, the second
peak was far higher than the first one. Such a scenario
has long been known as sawtooth-like oscillations with
different-sized decaying peaks in pest activity dynam-
ics. Identical dynamics of phase changes can be abso-
lutely different biological processes, which may be
explained by a common mathematical form of their
regulation functions [53].

The model scenario is important in the assumption
that the epidemic will not wane in full, but will lose its
pandemic character to become as common as other
sporadically active virus acute respiratory infections.
Pests do not disappear after their outburst is over;
however, their population size becomes small and
their activity is not included in forest reports. In
model (5), an abrupt change in N(t) without a bifurca-
tion can evoke a new transition mode with oscillations.

Comparisons confirm that decay in an epidemic
after a peak is a rather volatile, nonmonotonic process
with a stochastic component and local outbursts. A
smooth decrease is suggestive of willful falsification of
statistics for reports. The variance of a series decreases
when statistics are falsified. A scatter of more than
25% in daily new cases is commonly observed in real
epidemics.

To further modify the model, it is reasonable to
hypothesize that a relative regulatory factor, rather
than a constant factor with a value fixed a priori, is
present in the ecological niche. A transition to an out-
burst cannot start with single individuals in natural
insect populations. It is important to note that data on
forest damage, rather than the pest population size,
are shown in outburst dynamics plots. The reproduc-
tion efficiency is low and depends on stochastic events
in small groups. A sufficiently dense group of individ-
uals is necessary for triggering an outburst, which may
result from their efficient reproduction. A simple
modification of Eq. (4) with nonlinearity increasing in
a nonuniform manner in the numerator and denomi-
nator upon the regulation of reproduction and a rela-
tive character of the niche is:

( 2 )
( )exp( ( )) .

( )

N tdN rN t bN t q
dt A N t

− τ= − τ − − τ −
− − τ
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Fig. 5. (a) A series of decreasing peaks of the epidemics was observed in Michigan; (b) spontaneously decaying oscillations arise
in model (5) after a bifurcation because the parameter r increases.
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(6)

Thus, Eq. (6) makes it possible to obtain a saw-
tooth-like oscillation mode (Fig. 6) where a series of
population size peaks start after the Andronov–Hopf
bifurcation in the vicinity of a steady state that exists
before the bifurcation and where the first triangular
peak of the transition mode is greater in amplitude
than the subsequent peaks. To trigger an oscillating
outburst, a primary inducing factor is necessary in the
case of Eq. (6). A certain effect exerted on the regula-
tory mechanisms makes the equilibrium that existed in
the system lose its stability.

To allow for counteraction of the environment to
invasion of an aggressive species, the additional non-
linear term Ψ with a delay is introduced in the right
part of Eq. (6):

(7)

2

3

( )
( ) , .

( )

C N tdN rN t C K
dt K N t

 − − τ= < + γ − τ 

[ ]
2

3

( )
( ) ( ) .

( )

kC N tdN rN t N t h
dt K N t

 − − τ= − Ψ − + γ − τ 
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Equation (7) makes it possible to obtain a series of

different-sized peaks and oscillations with a nonsta-

tionary period. A specific mode corresponds to the

scenario where an oscillating outburst with intermit-

tent Λ-shaped peaks is suddenly triggered in an insect

population after reaching a substantial average popu-

lation size. Figure 7 shows the dynamics of forest dam-

age area in two regions of Alaska (LACL—Lake Clark

National Park, KATM—Katmai National Park). The

activity of the pest beetle Dendroctonus rufipennis is

responsible for the damage and has been observed over

a decade to occur as an outburst with a series of Λ-

shaped peaks. Canada and Alaska have reliable public

information on the state of forests over a century and

the extent of damage to forests by various insects.

Canadian data are therefore better to use in verifying

the adequacy of a model when modeling extreme

activity in biological processes. The dynamics shown

in Fig. 7 confirms the hypothesis that population

oscillations observed for insect pests of forests in

nature are unstable transition modes and sporadic
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Fig. 6. Λ-shaped peaks of an oscillating outburst in model (6) without changes in parameters.
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Fig. 7. The dynamics of damage to forests in two Alaskan regions after the start of an oscillating outburst of the spruce beetle Den-
droctonus rufipennis (from a Forest Service report [54]) https://www.nps.gov/articles/insectsswan.htm.
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events in ecosystems, in contrast to the stable cycles of
Volterra’s systems of equations.

Another regularly oscillating activity (Fig. 8) is
observed in the mosquito Aedes aegypti, which is a car-
rier of dengue fever in South Asia. The threshold at
which a new peak starts was found to increase with
warming [55].

In model (6), it is important how close the size of
the invader population is to a certain subthreshold
level at which the pressure of the invader (or virus)
population on the environment becomes high. The
level differs between different biosystems (or organ-
isms). Outbursts with series of rapid peaks (sawtooth-
like oscillations), which were observed in certain
insects, belong to types of extreme dynamics. Scenar-
ios of this kind are beyond the theory of density-
dependent regulation and the tendency to equilibrium
in biosystems. The relative equilibrium niche capacity
becomes the lower value for outburst activity. Regular
series of outbursts usually tend to decay in the butter-
flies Malacosoma disstria and Lymantria dispar. The
similarity of regulatory functions in these phenomena
is important here.

THE INTERPRETATION 
OF THE AGGREGATE DELAY

The delay parameter is independent of the charac-
teristic of a biological species and the period durations
in its life cycle. In New Brunswick, the spruce bud-
worm moth Choristoneura fumiferana generates
extended activity cycles [56] with decade-long inter-
vals between catastrophic outbursts. The intervals
between peaks do not correlate with the duration of
the development of an insect generation. The delay
that is included in population models (1) and (2) is a
phenomenological description of changes in popula-
tion size dynamics [57]. This method extends the pos-
BIOPHYSICS  Vol. 66  No. 2  2021
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Fig. 8. Activity peaks of dengue fever carriers in southern China (from [55]).
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sibility of describing the changes in modes of trajec-
tory behavior, but with changes in parameters. Known
equations do not include the factor of changes in qual-
itative dynamics of scenarios as a function of the initial
conditions [58]. The dynamics of infectious diseases
do not necessarily follow one scenario because the
immune system is individual to each person and there
are unlikely variants and particular cases.

The delay τ, rather than the reproductive potential r,
is a bifurcation parameter in Eq. (6) in my opinion. A
delayed regulation is an adaptive aggregate character-
istic in the model. The delay τ results from the interac-
tion that forms between the species and particular
biotic environment in the given region. The acting
delay value in Eq. (5) includes the ontogenetic delay of
developmental stages, the resource restoration rate,
the time to response from parasites and pathogens,
and migration. It is expedient to isolate the regulatory
reproductive and adaptive components in the delay
when analyzing the models. The latter is necessary for
the population (or the organism) to develop adaptive
responses and may change during invasion. In the case
of a confrontation between the immune system and a
virus in the body, the delay is an individual-dependent
characteristic of all activation reactions and its average
value may vary in local subpopulations (not necessar-
ily as a result of genetic factors).

The Hutchinson and Nicholson equations fail to
describe the end of an outburst or an epidemic, which
cannot be a stable cycle and continue at t → ∞ in real-
ity. Outbursts of insect populations and virus epidem-
ics are transition modes, which are limited in time and
have phases in their development and termination.
Model (5) shows a possible termination path, but lacks
variation. All extreme biological processes inevitably
end, even if with complete degradation of the environ-
ment and death of the intensely reproducing species.
Several scenarios are possible for termination and, in
particular, the situation where minimal equilibrium is
achieved with the formation of a latent infection site
BIOPHYSICS  Vol. 66  No. 2  2021
that does not exert an appreciable effect on the envi-
ronment. As was noted previously in a study of a trig-
ger iteration model of population outbursts in psyllids
[1], describing the scenario of triggering the eruptive
phase and modeling the end of an outbursts are two
separate problems, and a spontaneous decrease in
population size is more difficult to model. A virus
imposes less strict requirements on its environment,
and activation of virus suppression mechanisms will
exert a triggering effect in the case of infection. We
consider a bifurcation-free model of infection devel-
opment scenarios.

MODELING OF DIFFERENCES 
IN SCENARIOS OF THE INFECTION 

PROCESS

A complex system of interacting cells of many types
governs the set of body responses to suppress infection.
The immune response is a cooperative response. A
narrow role, or a few roles, as in the case of B cells, can
be defined for each component [59]. Certain steps
must be performed in the activation algorithms of each
component of the immune response, and certain time
is necessary for their activation. There are two large
interconnected structural complexes, innate and
adaptive, in the immune system. Different times to
activation are the main difference between them in the
context of modeling the infection scenarios. Antigens
should be captured and presented to helper T cells (the
distinguishing characteristics of the antigens should be
detected), and respective antigen-specific killer cells
should start propagating. The processes cannot occur
in an instant. Antigen presentation is a process that
results in migration of mature T cells into tissues to
recognize and kill the infected cells that express the
respective antigen on their membranes. It is problem-
atic to reduce the time to a response from the adaptive
cell complex.
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Virus replication is a continuous process in contrast
to a succession of insect generations, and a delay dif-
ferential equation is therefore proper to use in order to
analyze the scenarios. The succession of phases in the
course of a disease is interesting to model based on the
internal logics of counteracting invasion in scenarios
that lack external induction and bifurcations due to
fluctuations of internal parameters. Changes in the
parameters are possible in the long term. It is irrational
to describe transitions between phases in primary
infection by f luctuations in characteristics and appar-
ent bifurcation-related changes.

The main problem to analyze with the modified
model is the issue of what scenarios are possible for
spontaneous termination of an extreme process, that
is, its transition to another quality after the phase of a
rapid growth in virion number. The initial number of
virions entering the body is thought to be important in
certain situations [60]. The disease course may depend
nonlinearly on the initial N(0) [61]. A dose-dependent
immune response should be considered in many cases,
as is important for efficient vaccination [62]. Den-
dritic cells have to interact with lymphocytes after con-
tact with an antigen. When N(0) is low, the virus may
evade the immune system.

Two (low and extremely high) doses of influenza
virus were used to infect different groups of mice in
experiments [63]. A 1000-fold difference is of interest
in experiments, while in reality a tenfold difference is
already large. The initial infectious dose was shown to
regulate the early response and the release of immuno-
mediator cytokines. At the higher initial dose of virus,
symptoms of inflammation were more intense, inter-
ferons were induced more rapidly, and, unexpectedly,
active infiltration with CD8-positive T cells was
observed earlier in the lungs. It was noted that, surpris-
ingly, although virus titers in the lungs were substan-
tially higher in the mice infected at the high dose in
first days after infection, relative virus amplification at
a peak viral load was substantially (125 times) higher in
the mice infected with the lower virus dose. The initial
infectious dose affected only the response from cell-
mediated immunity according to the experimental
findings, while production of neutralizing antibodies
remained independent in its dynamics. Surviving mice
were infected again, and those that had survived the
higher virus dose were found to acquire resistance due
to persisting CD8 cells.

Unfortunately, integral parameters of the immune
response were not used in the study, while a general-
ized plot would make it possible to analyze the prob-
lem mathematically and to build the functional depen-
dence between the initial infectious dose and
the response from the immune system. The
response should be similarly suppressed later because
IgG4-class antibodies decrease inflammation by
inhibiting the activity of phagocytic cells [64]. Thresh-
old effects are the most interesting in the hypothetical
dependence between the dose and response rate. The
initial infectious dose can determine the qualitative
characteristics and rate of the immune response in
virus diseases according to experimental data and
should be considered as a factor that affects the disease
scenario in model computational experiments.

Changes in the behavior of Eqs. (5) and (6) are
observed when a bifurcation is induced by instanta-
neous changes in control parameters; the changes are
not always possible to attribute to essential factors. It is
necessary in each case to theoretically explain the
mechanisms by which an increase in r (or τ) arises to
provoke a f luctuating outburst. All characteristics of
species are variable in nature; however, their changes
are usually smooth.

A new model is proposed that assumes an import-
ant role for the subcritical pathogen level H, which is
the subthreshold viral load: N(0) < H < K. A logarith-
mic, rather than quadratic or exponential, function is
used as a regulatory function:

(8)

In Eq. (8), H ref lects a particular state of the body
upon the interaction between the immune system and
the given infection and K is a threshold set a priori, but
is not the same as the carrying capacity of the niche in
the logistic model. The limit saturation level is under-
stood as a state that is achievable and may be slightly
exceeded for a short period of time, but cannot be pre-
served in the environment. The characteristic plays a
dual role, i.e., the lower its value is, the milder the
symptoms are, but the closer the critical threshold is
for which a transition over it is irreversible.

We consider two main scenarios of the new
model (8). We assume that h can only slightly exceed
the regulatory lag τ, i.e., h = τ + ξ; τ is a substantial
value; and H = K/3 is constant. In the first scenario,
the phase of a decelerating logistic growth in popula-
tion size is identical to the Hutchinson model at rτ ≈
π/2 with the overshoot N(tm) > K, N(t) → K, but equi-

librium achieved after decaying oscillations is unsta-
ble. There is no final equilibrium in this scenario
(Fig. 9).

The trajectory t > tm abruptly leaves the vicinity of

K, so that limt → ∞N(t) = ∞ and the solution of model

(8) at the given values of N(0) and τ is no longer dissi-
pative. This scenario means destruction of the envi-
ronment in the case where preexisting initial immunity
is insufficient for controlling invasion. An acute vire-
mia phase and the stage with tK > 2τ that occurs after

max N(t) and consists in long-term pseudostable
severe disease are followed by irreversible destruction
of the environment. In a computational experiment,
computation of the transition mode after a trajectory
outbreak stops with an overrun error from the accu-
racy of the numerical method.

( ) ln ( ( )).
( )

dN KrN t H N t h
dt N t

 = − − − τ 
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Fig. 9. The nondissipative trajectory by which the solution of model (8) passes from the state N(t) ≈ K into the mode N(t) → ∞ at
τ = 58, K = 15 000, H = 5000, r = 0.00000335, N(0) = 190, and ξ = 2.
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Fig. 10. The equilibrium that the trajectory of model (8) reaches after N(t) ≈ K in the state N(t) → H; N(0) = 1099.
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A different scenario is observed in model (8) where
the initial population size upon infection is closer to H.
After a similar growth phase with N(t) → K, there is a
transition from short-term fluctuations in the vicinity
of K to f luctuations that occur with a far lower popu-
lation number in the vicinity of H and decay slowly
(limt → ∞N(t) = H). The growth phase is more rapid,

but the time of infection in the vicinity of K is shorter.
In the computational experiment shown in Fig. 10, the
trajectory reaches stable equilibrium after a transition
mode with N(t) ≈ K at similar parameters of model (8).
The condition N(0) > H was not considered because it
is impossible in reality; certainly lethal virus doses are
injected only to mice in experiments.

Alternative scenarios of asymptotic behavior are
possible for the solution of Eq. (8) without changes in
key parameters of the interaction. In the context of
viral infection, r, τ, and H are constants. The initial
population size N(0) is important in comparison with
BIOPHYSICS  Vol. 66  No. 2  2021
the subcritical capacity H of the environment. It is
assumed that N(0) ≥ μ0; i.e., a near-zero population

size does not start the infection. The parameters H and
K are interpreted as characteristics of the body,
namely, properties of its innate immunity. K varies
within the host population and its variation is respon-
sible for the variation in severity of symptoms. H is
more conserved, but fails to remain constant with age
and is a natural variable environmental parameter that
influences the behavior of the model. When the lag is
reduced to 3/4 h in model (8), the resulting scenario
has a less distinct acute phase of infection, that is,
milder disease occurs (Fig. 11). Direct changes in
parameters more substantially change the position of
max N(t) in the transition mode.

Symptoms seem to be insignificant and of a short
duration in the transition dynamics because the stage
with N(t) ≈ K is absent; however, the asymptotic state
of the process is similar to that in the scenario with
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Fig. 11. The scenario of asymptomatic chronification of infection with max N(t) < K is observed at a lower regulatory lag in model
(8); N(0) = 1200.
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Fig. 12. The dynamics of the HCV RNA concentration and generation of various immune response types as acute infection
changes to a chronic scenario (according to [65]).
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severe symptoms. Biologically, the scenario can be

explained as follows. Innate immunity and antibodies

quickly stopped virus propagation, but did not kill all

infected cells, and long-term equilibrium was thus cre-

ated. It can be assumed that the immune system

became “blind” and failed to complete its function

(without T-killer activity), but a more logical assump-

tion is that the immune response slowed. Negative

feedback is known for the immune reaction and is due

to suppressor T cells, which inhibit activities of other

lymphocytes. The third scenario is deceptive because

patients may be unaware of the severity of their illness

for a long time. A one-way increase in reproductive

activity to rm @ r in model (8) logically triggers the fast

mode with N(t) → ∞ as an irreversible fatal variant of

development with a short period of staying in the

vicinity of an unstable equilibrium.
The qualitative pattern of disease dynamics
obtained in model (8) is most common for hepatitis C
virus (HCV) infection. Figure 12 shows a transition
from an acute to a chronic phase, which is observed in
reality [65].

Plots constructed from the start of infection show
how quickly alanine aminotransferase becomes
detectable once the virus reaches the threshold vicinity
of K. Alanine aminotransferase is an intracellular
enzyme and is detected in the blood at substantial con-
centrations when liver cells are damaged; characteris-
tic acute symptoms develop at the same time. A peak
of alanine aminotransferase release is delayed relative
to the growth of HCV RNA concentration in the
blood. Interferon-stimulated mechanisms are acti-
vated faster [66], but are incapable of suppressing the
virus and act as a damping regulator. There is a sub-
stantial lag in the appearance of efficient lymphocytes
BIOPHYSICS  Vol. 66  No. 2  2021
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that are capable of decreasing the HCV virions and
subsequently reduce the alanine aminotransferase
level. Even a greater lag is observed for the appearance
of specific neutralizing antibodies in this scenario.
Protein expression from a large group of interferon-
responsive genes involved in interferon-stimulated
defense mechanisms (not all of the genes have been
studied) suppresses virus propagation in cells [67],
thus creating a threshold K level, that is, a level of tem-
porary unstable balance where virus reproduction
remains reliably controlled.

An increase in virus particles over the unstable level
K is allowable for a period of time, as is seen in the sce-
nario of chronification with decaying oscillations, but
the period should not exceed τ.

Mathematically, intracellular antivirus proteins
involved in interferon-stimulated defense mechanisms
and the zinc-finger antiviral protein (ZAP) convert
the exponential growth to a logarithmic curve. The
regulators provide time for cell-dependent immunity
to execute the response algorithm. Primary defense
mechanisms always work from birth and would have
saved the victim from infection, but certain viruses
have evolved means to counteract interferon synthesis
and to evade ZAP. Innate immune-system cells, which
do not undergo antigen-dependent selection, fight
many viruses poorly and prevent infection sequels
poorly. A CD8-positive T-cell response produced in a
timely manner is crucial for stopping infection; a f lu
lasts 1 week because the maximum T-cell concentra-
tion is observed 7 days after infection in experiments
[68].

The counteracting response included in the above
scenarios does not completely suppress the virus, but
converts infection to a state where a persisting infec-
tion focus does not threatens the host’s life, although
presenting a latent threat. The Ebola virus is hidden in
Sertoli cells. The time interval between contraction of
infection and the start of activity of specific immune
system cells is an important factor in resistance. The
initial dose of the infectious agent is another import-
ant parameter in model (8). The two delay parameters
of the model are determined, first, by the properties of
virus replication and virion assembly algorithms and,
second, by the efficiency of a complex set of immune
response mediators, that is, the interleukin system of
mutual cell stimulation. A lag is an attribute of the rep-
lication–suppression system.

An equilibrium state does not preclude repeated
peaks of infection. Many viral infections recur after
prolonged immunosuppression. The immune
response shown in Fig. 12 usually decreases with the
decreasing HCV load, and only IgG remains in the
plasma. To cause a disturbance in model (8), changes
in the key parameter r may be unnecessary, and abrupt
changes in H or τ suffice to cause a new transition
mode with an infection growth phase.
BIOPHYSICS  Vol. 66  No. 2  2021
VARIANTS OF MODIFICATION 
OF THE INFECTION SCENARIOS 

WITH THERAPY

Chronification in model (8) is an unenforced tran-
sition of the trajectory through the vicinity of an
unstable state to stable equilibrium. In one important
scenario the aggressive invader species dies in the envi-
ronment by being destroyed by the species. An eradi-
cation model with N(t∞) = 0 can be constructed using

the idea of Bazykin’s equation, that is, by including
the population size L that is clearly critical for the exis-
tence of the species, but raised to the power of 1/3:

(9)

Models with the critical lower limit population size
L require that N(0) > L, and a complete elimination of
the disease focus is obtained in this scenario (9), while
variants of extremely fast invasion of an initially small
amount of a pathogenic organism escape analysis [69].
Viruses do not need partners to reproduce and only
have to evade the immune system. A single virus is
capable of causing smallpox according to published
estimates [70]. Fortunately, this is not true for com-
mon seasonal viral acute respiratory infections and
COVID.

In the context of computational modeling, subsys-
tems of the immune system are conveniently classified
into three categories by time to response. A third cate-
gory includes killer cells and neutralizing immuno-
globulins with affinity for constant virus antigens. It is
not necessary to know their physiological mechanisms
for mathematical formalization, but it is important to
know the time to their triggering and the corrective
factors that adjust their effects. Quantitative parame-
ters of the adaptive component of the immune
response may be substantial, but the lag in their
achievement may be critical for the body, leading to a
fatal outcome. Insufficient specificity is observed in
some cases; that is, the interaction with a given virus
subtype is poor. To reflect active counteraction by
means of special therapies and, for example, cytotoxic
lymphocytes and CD8-positive cells, the nonlinear

component Ψ[Nk(t – h)] can be expediently included
in an infection model as follows:

(10)

Special cells are capable of eliminating intracellular
parasites, which persist in sites that are inaccessible to
antibodies. In addition, model (10) makes it possible
to obtain the scenario where the asymptotic tendency
N(t) → 0 is very slow. Lymphocyte activity starts to be
inhibited by the body in reality [71]. It is interesting to

3ln ( ) ( ) ,
( )

0 .

dN Kr N t N t L
dt N t
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consider the model scenario where the activity dura-
tion of immune killer cells, which undergo an intricate
selection procedure and are active towards a particular
target antigen, directly depends on the initial state at
contraction. The component Ψ[N(t – h, N(0)] should
be formalized for the purpose. Its formalization will be
considered in a future publication, when data on coro-
navirus infection phases and the dynamics of immune
responses of different types are available. There are all
grounds to believe that a great diversity of disease tra-
jectories will be reported and that several dynamic sce-
narios will be described for confrontation with the
components of the immune system. Supporting data
are accumulating for the observation that an imbal-
anced immune response with a dysregulation of the
expression profile of inflammatory cytokines (not
only for interleukin 6) [72] makes COVID sequels
more severe.

It is expedient to model antiviral therapy differ-
ently, by using the functional r(t) to reflect a decrease
in reproductive potential because the available drugs
used to treat HCV and HIV infections suppress virus
replication and inhibit virus polymerase, but without
causing lysis. The method is important for predicting
the dynamics after the end of treatment.

We note an important applied conclusion from the
model scenarios: equilibrium is an asymptotically sta-
ble state in the chronification scenario, while trivial
equilibrium is not. If therapy is started when the sys-
tem is in a stable state, its efficacy is low and ultimate
success is problematic. Therapy should start in a tran-
sition mode with an unstable balance and a cure may
rapidly be achieved in this case without the disease
becoming chronic. Mathematically, one possible solu-
tion is to convert the process to an acute phase again in
order to trigger the immune response simultaneously
with the start of therapy, but this solution will not be
approved. An argument against the solution is that the
state K of the critical unstable balance may be ephem-
eral when a repeated acute phase occurs in a body that
is already exhausted by fighting the disease. In our
case, the higher the intermediate value of N(t) is, the
greater the symptoms and risks are.

CONCLUSIONS

Comparisons were performed for original models
(5), (6), and (8) of specific trajectories of biological
processes in biosystems. Different variants are possible
for the start (and the end) of extreme or f luctuating
dynamics of invasion according to the respective equa-
tions. Variants arise, first, when the reproductive
activity parameter increases and bifurcations occur
and, second, when abrupt changes occur in the
invader population size without changes in other
parameters. Third, transformations in properties of a
transition mode depend on the initial infectious dose
of the virus and its new environment in Eq. (8), which
is important for analyzing the infection phases in the
case where a lag is observed in the immune response.
The infectious dose was varied fivefold in the compu-
tational scenarios. Bifurcation-dependent scenarios of
changes in behavior are also possible in model (8).
Transformations of limiting sets of trajectories are not
as important for analyzing the rapid phases of inva-
sion. Separate consideration was given to the models
that allow for apparent nonlinear counteraction,
which is described using an additional functional of
the effect (variant (7)).

Alternative imitation scenarios were consecutively
analyzed with new model (8), including development
of the infection process to a fatal outcome, a critically
severe course of acute infection with persistence of a
chronic focus, and an asymptomatic scenario with
max N(t) ≈ 2/3K. Two variants substantially differ in
the transition mode and are similar in asymptotic
behavior. The equation is relatively simple and easy to
understand; there is no need to adjust the reproductive
coefficient r of the virus, change other parameters, or
induce bifurcations for each of the three scenarios.
Computational experiments based on the formaliza-
tion of a delayed interaction in the equation were per-
formed by varying the initial conditions, which existed
prior to infection, relative to the concentration that is
subcritical for the virus and specific to the current state
of the infected organism. The three scenarios do not
mean that changes in the mode of behavior cannot be
triggered directly by disturbing the coefficients r and τ
in the model, but it is not as interesting to describe the
transitions between disease stages by f luctuations in
parameters. The structure allows a range of modifica-
tions for analyzing the scenarios of virus elimination
with N(t) → 0 with an additional nonlinear active
influence in model variant (10).

The parameter K included in model (8) to consider
the infection process is not identical in meaning to the
carrying capacity of an ecological niche or the amount
of cells accessible to infection because a fatal outcome
would otherwise occur far earlier than this level is
achieved. The level K is the infection level that can
occur in the system only for a limited period of time,
but cannot be tolerated by the environment; this level
is not constant in a population. The process conse-
quently either passes to a terminal stage or decreases to
a stable equilibrium level. The critical state K is not
achieved when the immune system responds effi-
ciently and quickly. It is clear that the mode N(t) → 0
will not occur in real processes. The variant where dis-
sipative properties are lost by the model solution is
considered to be a terminal scenario at N(t) = 5H. A

simple and rapid fatal scenario, like N(t) = N(0)ert, is
certainly possible in model (8) when the reproductive
parameter r is high and not compensated for. The
higher the values of K and r are, the more difficult it is
for the body to overcome the acute infection phase.
The time interval tK, in which the trajectory occurs in

the vicinity of the limit infection level, is an important
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characteristic calculated in model (8) for the transition
process. The parameters t – τ and t – h, which were
included in model (8), are aggregate characteristics.

In a previous iteration model [1], pseudostabiliza-
tion occurs before an insect outburst at a threshold
state. In the new model, a threshold state is stable for
a long period of time, but equilibrium achieved at
higher values of the population size K is repeller equi-
librium. There is no extended period of a stably high
population size in the case of a dangerous pathogenic
virus, but a chronic focus may persist. Various scenar-
ios of phase succession are possible for many infec-
tious diseases even within a subpopulation, as is clearly
seen with COVID-19. The properties of the model
scenarios explain the observations made in Italy at the
same average viral load. One mathematical explana-
tion is that that limit critical saturation level differs,
while the subthreshold asymptotic level is the same
and is preserved for a long period of time. Average val-
ues were compared in [18], but data averaging fails to
fully characterize the essence of a phenomenon in
some cases, and the scatter of values within the groups
to be compared is important.

Abundant data are now available for the dynamics
of the immune response and the succession of phases
in coronavirus infection, but the data are discrepant.
Logic suggests that many diverse variants will be found
to enhance the response. Immunosenescence is
observed in elderly people with a lower interleukin-7
level and a lower sensitivity to interferon γ; i.e., T-cell
proliferation stops and the immune response becomes
insufficient. However, fatal outcomes were observed
in healthy young people without concomitant disor-
ders, many of them were healthcare providers. Deaths
of healthcare providers are still the main argument
that the infectious dose exerts an important effect.

There are reports that a hyperactive response of
immune cells is associated with the most severe
sequels of coronavirus infection for the body [74].
Cytokine release syndrome occurs as prolonged sys-
temic inflammation, while a cytokine storm after a
cascade release of signaling molecules is an irreversible
extreme phase [75]. Normal cells also undergo apop-
tosis after fast hypercytokinemia.

We assume that the regulatory algorithm makes it
possible to adjust the targeted response, be it rapid and
massive or delayed. Slow response regulation, which
the immune system utilizes in asymptomatic disease,
is a rational and cautious method in this context. An
affinity maturation mechanism is triggered and, algo-
rithmically, consists in a spatial search for antibodies
with higher antigen binding constants among the
available amino acid sequences. In terms of biological
cybernetics, when extreme features are lacking and the
situation allows, an optimal strategy is taking time to
produce agents with high affinity for antigens (that is,
IgG3 antibodies and mature CD8-positive killer cells)
rather than immediately releasing huge amounts of
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neutrophils and macrophages in the lungs. SARS-
CoV-2 is most likely capable of entering these cells and
killing leukocytes and thus triggers a destructive
inflammation feedback loop in alveolar sacs of the
lungs. The function of an intermediate component is
necessary for the f lexible regulation scenario. The role
may be played efficiently by NK cells, which account
for less than 10% of all lymphocytes. Initial amounts
of means to control the response (IgG4 and suppres-
sor T cells, which account for ≈5% of the total CD4
cell population) are important, but the respective tests
are not included in conventional blood counts.

When the humoral immune response and antibody
titers correlate poorly with the increase in viral load,
antibody-dependent enhancement of infection it is
likely; i.e., imperfect antibodies form unstable com-
plexes with the virus and thus help the virus to enter
leukocytes, be released, and start replication in mono-
cytes and macrophages. The effect was responsible for
the failure of a dengue fever vaccination campaign in
Philippines. Disease symptoms in unvaccinated peo-
ple without antibodies were milder than in vaccinated
people with low-affinity IgG antibodies, which bind
the virus poorly. Successful development of a COVID
vaccine was not reported in China by the early summer
of 2020, and it is most logical to assume that develop-
ers observed signs of antibody-dependent enhance-
ment of infection (which increases the risk even when
observed in 5% of cases). Modern achievements in
molecular 3D modeling will help to solve the problem
by selecting the optimal protein region and construct-
ing a gene for its expression in a vaccine strain.

There are examples where severe sequels were
avoided by controlling the immune response in a
timely manner [77]. The example of an efficient
response control that attracted the greatest attention
pertains to simian immunodeficiency virus, which
replicates without causing immunodeficiency in cer-
tain species (e.g., the mangabey Cercocebus atys), but
causes symptoms similar to human AIDS in other pri-
mates. Immune activation was found to be limited in
resistant monkeys, and their CD4-positive immune
cells did not start proliferating. Their dendritic cells
showed a low cytokine release after virus administra-
tion in experiments [78]. Mathematically, this is the
following scenario in the notation of the models:

 < K: limt → ∞N(t) = H,  > 0, N(t) ≤ H.

Young monkeys developed an optimization solu-
tion for the problem of simian immunodeficiency viral
infection without fighting the virus. With optimal con-
trol of immune responses, we will have a perfect
means to overcome new threats without an acute
phase. The SARS-CoV-2 genome [79] is large com-
pared with the genomes of related viruses and codes
for several new short proteins with unknown functions
[80]. Artificial expression has been achieved for 26 out
of its 29 proteins. Five viral proteins serve to overcome
the immune system at the intracellular level [81].

(0)N∀ t∀
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Physically, RNA replication and packaging will take a
longer period of time and inevitably proceed with sto-
chastic errors to produce half-functional virion vari-
ants in the body, thus increasing antigen differentia-
tion of infection.

It is interesting to experimentally study to the issue
of to what extent the initial infectious dose may
increase the risk of a fatal autoimmune scenario. As
already mentioned, cytokine induction in mice
infected at a higher dose was far greater than in mice
infected at a lower dose of influenza virus [63]. If a
strong relationship is assumed for the initial virus dose
and the (maximal) concentration of main cytokine
types, a step, rather than smooth, function will reflect
the relationship. However, a smooth response is
observed normally [82].

It is noteworthy that an initial lag in cytokine
expression was observed prior to hypercytokinemia in
experiments with tularemia [83]. A threshold-depen-
dent triggering is therefore the most likely for the pro-
cess. A storm scenario is mathematically possible
when a threshold is reached suddenly and natural
immunosuppressive mechanisms fail to control the
fast chain activation of all other cell types. A trigger-
based description of changes in the development of
scenarios is proper to use when transitions are
extremely fast. In the case of COVID, the initial dose
is not only important, but it may act as a critical risk
factor for a fatal scenario mediated by rapid hyperacti-
vation of inflammatory reactions by the host immune
system. A threshold value is often closer than
expected.

The model with achievable unstable equilibrium K
is proper for applied problems of ecodynamics, such as
a biological control of dangerous invader species [84],
fish resource management [85], and biological reme-
diation of water bodies after pollution with oil [86].
The equation provides broad opportunities of further
modification in order to evaluate the strategies of anti-
viral therapy and the infection scenarios with due
regard to vaccination, which reduces the time to effi-
cient response from cell-mediated immunity. The
majority of modern vaccines are evaluated by titers of
antigen-specific antibodies in the serum or on mucous
membranes after vaccination. However, the response
rate of immune memory cells was found to be more
important [87]. A bottleneck was noted in the function
of the most efficient component of the immune sys-
tem; i.e., the rate of T-cell migration to lymph nodes
may be limited by the throughput capacity of venules
with a high endothelium [88].
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