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Alzheimer’s disease (AD) is a neurodegenerative disease that commonly affects the

elderly; early diagnosis and timely treatment are very important to delay the course of the

disease. In the past, most brain regions related to AD were identified based on imaging

methods, and only some atrophic brain regions could be identified. In this work, the

authors used mathematical models to identify the potential brain regions related to AD.

In this study, 20 patients with AD and 13 healthy controls (non-AD) were recruited by

the neurology outpatient department or the neurology ward of Peking University First

Hospital from September 2017 to March 2019. First, diffusion tensor imaging (DTI)

was used to construct the brain structural network. Next, the authors set a new local

feature index 2hop-connectivity to measure the correlation between different regions.

Compared with the traditional graph theory index, 2hop-connectivity exploits the higher-

order information of the graph structure. And for this purpose, the authors proposed

a novel algorithm called 2hopRWR to measure 2hop-connectivity. Then, a new index

global feature score (GFS) based on a global feature was proposed by combing five

local features, namely degree centrality, betweenness centrality, closeness centrality, the

number of maximal cliques, and 2hop-connectivity, to judge which brain regions are

related to AD. As a result, the top ten brain regions identified using the GFS scoring

difference between the AD and the non-AD groups were associated to AD by literature

verification. The results of the literature validation comparing GFS with the local features

showed that GFS was superior to individual local features. Finally, the results of the

canonical correlation analysis showed that the GFS was significantly correlated with the

scores of the Mini-Mental State Examination (MMSE) scale and the Montreal Cognitive

Assessment (MoCA) scale. Therefore, the authors believe the GFS can also be used as

a new biomarker to assist in diagnosis and objective monitoring of disease progression.

Besides, themethod proposed in this paper can be used as a differential network analysis

method for network analysis in other domains.

Keywords: Alzheimer’s disease, diffusion tensor imaging, brain structural network, 2hop-connectivity, global

featurescore, differential network analysis
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease that
commonly affects the elderly. It is a continuous process, from
the pre-clinical stage to mild cognitive impairment (MCI) to
dementia. Effective intervention in the pre-dementia or MCI
stage can slow down or reverse the disease process. Therefore,
early identification of patients with AD in the pre-dementia or
MCI stage, as well as early and timely intervention, are of great
importance to the prognosis of patients. With the development
of imaging technology, the detection of AD is no longer limited
to the phenomenon of abnormal protein deposition. Analysis of
structural brain network information, such as brain connectome
analysis, may be an effective method for early diagnosis and
monitoring of disease progression (Fan et al., 2016).

Previous studies (Liu et al., 2017) have shown that changes
in the topological features of the brain structural network are a
hallmark of multiple neuropsychiatric disorders. Currently, there
are several research efforts based on the graph theory of brain
structural networks (Sanz-Arigita et al., 2010; John et al., 2017).
The common method is to analyze some local features such as
the degree centrality of nodes, clustering coefficient, and shortest
path length of the brain structural network. Local features are
difficult to be used to reveal the overall characteristics of the
network. The global property by combining local properties
can reveal the topological characteristics of the network more
effectively, but it is never easy to choose which local indices are
to be used. In this paper, the authors first defined a new local
feature index, 2hop-connectivity, of the network to analyze the
brain network more completely.

In this work, 20 patients with AD and 13 patients in the
pre-dementia stages (non-AD) were recruited. The authors
collected demographic data and clinical data and completed
neuropsychological scale assessments and DTI scans. After
preprocessing, the brain structural network was constructed
based on the number of fibers between different brain regions.
The data from the AD and the non-AD groups were analyzed
to obtain the local topological features of the brain structural
network. Meanwhile, the authors designed an algorithm called
2hopRWR to get the local feature index 2hop-connectivity, and
then a new index global feature score (GFS) was proposed by
combing four classical local features and 2hop-connectivity. As
a result, the authors predicted and analyzed the top 10 brain
regions based on the difference of the GFS scores between the
AD and the non-AD groups. Then, the authors analyzed the
correlation between the GFS and the cognitive scale scores by
performing canonical correlation analysis (CCA). Finally, the
strengths and limitations of the work presented in this paper and
its prospects are discussed.

MATERIALS AND METHODS

Data Collection and Pre-Processing
Research Participants
A case–control study design was adopted in this study. Patients
with AD who were admitted to the neurology outpatient
department or the neurology ward of Peking University First

Hospital from September 2017 to March 2019 were recruited
in the study. Normal controls were recruited at the same time.
The inclusion criteria for the AD group were as follows: (1) Han
nationality, over 18 years old, who were right-handed and agreed
to participate in this study; (2) patients diagnosed as probable
AD clinically according to the 2011 National Institute on Aging
and the Alzheimer’s Disease Society (NIA-AA) diagnostic criteria
(McKhann et al., 2011); (3) no serious white matter lesions
found by MRI examination, which meant that the Fazekas scale
score was no more than 2. The inclusion criteria for the normal
control group were as follows: (1) Han nationality, over 18
years old, who were right-handed and agreed to participate
in this study, so as to match their ages with the ages of
subjects of the AD group; (2) normal cognitive function and
not meeting the diagnostic criteria of dementia; (3) no serious
white matter lesions found on MRI examination, which meant
that the Fazekas scale score was no more than 2. The exclusion
criteria were as follows: (1) patients or their family members
refusing to participate in the study; (2) unable to complete
3.0Tesla MRI examination due to various reasons; (3) with
a history of cerebrovascular diseases, or cognitive impairment
caused by toxication, metabolic disease, infection, autoimmune
disease, or drug and with a history of demyelination of the
central nervous system, white matter lesions, or other diseases
that may affect the white matter structure of the brain; (4) with a
history of serious mental illness, such as depression, mania, and
schizophrenia; (5) having a long-term history of alcoholism or
vegetarianism; (6) Patients with other types of dementia other
than AD.

This study was approved by the Clinical Research Ethics
Committee of Peking University First Hospital. All participants
or their family members signed the informed consent.

Clinic Data Collection
In this research, 20 patients with AD and 13 healthy controls
(non-AD) were recruited. Demographic information and the
medical history of the participants were collected. Blood tests
were conducted to exclude cognition impairment caused by
other reasons. All the patients were assessed on a set of
neuropsychological scales by the same trained neurologist to
assess overall cognitive function including memory, executive
function, language, and visuospatial and structural abilities of
all the participants. The ability of daily living and mental
and behavioral symptoms of the subjects were also evaluated
(Supplementary Table 1).

Brain Imaging Examination
Brain imaging examinations were performed by the Department
of Imaging, Peking University First Hospital. The participants
received imaging examination within 1 week before or after the
completion of the scales. The images were collected by using
a GE Discovery MR750 3.0Tesla MRI scanner. The acquisition
sequence included the following: axial T1-weighted imaging,
axial T2-weighted imaging, and high-resolution DTI sequences.
Some of the sequence parameters were as follows:
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Axial T1-weighted imaging: Repetition time (TR)= 2,500ms.
Echo time (TE) = 24.0ms. Field of vision (FOV) = 24.0 cm ×

24.0 cm. Layer thickness (ST)= 5 mm.
Axial T2-weighted imaging: TR = 8,400ms. TE = 140.0ms.

FOV= 20.0 cm× 20.0 cm. ST= 3 mm.
DTI: TR= 4,600ms. TE= 90.0ms. FOV= 24.0 cm× 24.0 cm.

ST = 4mm. The dispersion sensitive gradient was applied in
25 directions, and 36 layers of images were scanned in each
direction, b= 1,000 s/mm2. Besides, there was a group of images
without dispersion weighting, b= 0.

DTI Data Processing and Brain Network Construction
In this study, PANDA (Pipeline for Analyzing braiN Diffusion
imAges) (Cui et al., 2013), a toolkit based on MATLAB (R2009b;
MathWorks) and FSL that integrates several processing steps,
was used to process the data and construct the network.
After preprocessing, which included the import of the DICOM
format file, scalp and skull removing, brain tissue cutting,
eddy current effect correction and head movement correction,
multiple diffusion-weighted image acquisition, and processing
could be finished.

The images of all individuals were placed in the standardized
template and the eigenvalues of each dispersion were
measured. The FA (fractional anisotropy) image of each
individual was non-linearly loaded into the FA template
(FMRIB58_FA_TEMPLATE) of the Montreal Neurological
Institute (MNI) space. Through the results of transformation,
the diffuse eigenvalues of each individual in the MNI space were
resampled and the space was partitioned (the resolutions were
1mm× 1mm× 1mm and 2mm× 2mm× 2 mm).

The deterministic fiber-tracking method, FACT [fiber
assignment by continuous tracking [Mori and van Zijl, 2002]],
was then used to construct the brain structural network. The FA
threshold was set to be 0.2–1 and the angle threshold was set
to be 45◦, that is, when the FA was <0.2 or the tracking angle
was >45◦, the fiber tracking would end. The ICBM152 AAL−90
[Automated Anatomical Labeling, AAL [Tzourio-Mazoyer et al.,
2002)] brain atlas was used to divide the brain of each subject
into 45 left and right symmetrical brain regions, with 90 brain
regions in total. Each node represented a brain region in the
brain structural network. The fiber connection between any
two brain regions was represented by an edge, and the edge
weight represented the fiber number (FN). The FN matrix of
90 brain regions was obtained by using PANDA (Cui et al.,
2013).

Mathematically, the authors regarded 90 brain regions and
their fiber connection as a weighted graph G (V ,E,W), and V =

{v1, v2, . . . , v90}, E =
{

evivj , vi 6= vj
}

, W =
{

wvivj

}

, where vi
denotes the i-th brain region, evivj is the edge if there were fiber
connection between brain region vi andvj, and wvivj is the edge
weight that is the fiber number between the brain region vi and
vj. The average value of the FN matrix of AD was calculated by
adding the FN matrix of each patient with AD and dividing it by
the number of patients with AD. Similarly, the authors took the
average value of the FN matrix of all normal controls to the FN
matrix of the non-AD group.

Local Features
Degree Centrality
Let d (vi) denote the degree of a node vi, which is the number of
nodes associated with vi. And the degree centrality of a node vi is
defined as follows:

CD(vi) =
d(vi)

n− 1
(1)

Betweenness Centrality
Betweenness centrality cB of a node vi is the sum of the fraction
of the shortest paths of all pairs that pass through vi:

cB(vi) =
∑

vs ,vt∈V

σ (vs, vt|vi)

σ (vs, vt)
, (2)

where σ (vs, vt) is the number of the shortest paths between vs and
vt , and σ (vs, vt|vi) is the number of the shortest paths passing
through the node vi. If s = t, σ (vs, vt) = 1, and if i = s or
i = t, σ (vs, vt|vi) = 0.

In short, if the shortest path between many nodes in the
network passes through a point v, then v has a high degree of
betweenness centrality. This node is on the shortcut between
other node pairs.

Closeness Centrality
Closeness centrality Cc of a node vi is the reciprocal of the sum
of the shortest path distances from vi to all n − 1 other nodes.
Since the sum of distances depends on the number of nodes in
the graph, closeness is normalized by n− 1.

Cc(vi) = (n− 1)/

n
∑

j = 1
j 6= i

d(vj, vi), (3)

where d(vj, vi) is the shortest path distance between vj and vi, and
n is the number of nodes in the graph.

Closeness centrality is the sum of the distance from a node
to all other nodes. The smaller the sum, the shorter the path
from this node to all other nodes is, and the closer the node is
to all other nodes. It reflects the proximity between a node and
other nodes.

Number of Maximal Cliques
In graph theory, the clique of graph G is a complete subgraph
H of G. H is a maximal clique of graph G if it is not included
by any other clique. The number of maximal cliques of a node
can reflect the closeness between the node and other nodes. Only
when multiple nodes are all connected can they be considered
as maximal cliques. In this paper, the authors use NMC(vi) to
represent the number of maximal cliques for node vi.

2hop-Connectivity
When examining the correlation between any two nodes in the
network, most network analysis methods only consider whether
there is an edge connection between two nodes, i.e., if there is
an edge, the correlation is high, and if there is no connection,
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the correlation is weak. In this case, if the edges of the graph are
missing due to the disturbance, the results may be highly biased.
For example, for the general random walk (RW) algorithm,
the state transition probability is determined by the adjacency
matrix of the network. If the adjacency matrix is disturbed, its
steady-state probability will change. Generally, when analyzing
the correlation between network nodes, the correlation between
unconnected nodes in the network will be very low, which makes
it difficult to discover the potential characteristics of the network.
For any two different nodes in the network, in order to describe
the correlation more accurately, this work considers not only
the first-order neighbors between the nodes but also the second-
order neighbors between the nodes, and an algorithm called
2hopRWR is proposed. Finally, each node can get a novel local
feature index 2hop-connectivity, whose numerical magnitude is
represented by the local feature score S2−hop. The importance of
a node can be judged based on S2−hop; the larger the S2−hop, the
more important the node is.

2-Hop RandomWalk With Restart Algorithm
The general random walk on the graph is a transition process
that involves moving from a given node to a randomly selected
neighboring node at each step. Therefore, the set of nodes
{v1, v2, . . . , vn} is considered as a set of states {s1, s2, . . . , sn}

in a finite Markov chain M. The transition probability
of M is a conditional probability defined as P

(

vj, vi
)

=

Prob
(

st+1 = vi|st = vj
)

, which implies that the M will be at vi
at time t + 1 given that it was at vj at time t.M is homogeneous
because the transition probability from one state to another
is independent of time t. Moreover, for any vj of V , there is
∑

vi∈V
P(vj, vi) = 1. Note that M is memoryless, so the transition

matrix P ∈ R
|V|×|V| ofM can be defined.

In general, the transition probability P
(

vj, vi
)

is defined
as follows:

P
(

vj, vi
)

=
1

d(vj)
. (4)

Denote DG = diag{d1, d2, . . . , dn} as the diagonal matrix, where

di =
n
∑

j=1
wvivj . Thus, P can be rewritten in amatrix notation, given

as follows:

P = D−1
G W. (5)

Define rt ∈ R
|V|×1 as a vector in which the i-th element

represents the probability of discovering the randomwalk at node
vi at step t, so the probability rt+1 can be calculated iteratively by:

rt+1 = PTrt . (6)

For the random walk with restart (RWR) algorithm (Tong et al.,
2006–2006), there is an additional restart item compared to the
above algorithm. The probability rt+1 can be calculated iteratively
by using the following expression:

rt+1 = cPTrt + (1− c) r0. (7)

FIGURE 1 | A schematic diagram of 1-hop and 2-hop neighbors.

Define initial probability r0 ∈ R
|V|×1 as a vector in which the i-th

element is equal to 1, while other elements are 0s. And 1− c is the
restart probability (0 ≤ c ≤ 1).

However, the RW and RWR algorithms are based on the 1-
hop neighbor relations, which means that the random walk is
based on the existing edges of the graph. Figure 1 is the schematic
diagram of 1-hop and 2-hop. If some edges of the graph are
missing, the corresponding nodes cannot be directly transferred,
which will lead to a large deviation in the steady-state probability.
Therefore, the effectiveness of these algorithms is too dependent
on the integrity of the graph structure. So in this work, in
addition to the 1-hop neighbor relations, the 2-hop neighbors
are also considered and a novel RW algorithm called 2hopRWR
is proposed.

The probability rt+1 can be calculated iteratively by:

rt+1 = c(α1P
T + α2

(

P2
)T
)rt + (1− c) r0, (8)

where α1 and α2 are the percentages of choosing 1-hop and 2-
hop neighbors, respectively. Specifically, for each point vi ∈ V ,
α1 is the ratio of the number of 1-hop neighbors to the total
number of 1-hop and 2-hop neighbors, α2 is the ratio of the
number of 2-hop neighbors to the total number of 1-hop and
2-hop neighbors. Therefore, α1 + α2 = 1.

At the beginning of the 2hopRWR, a starting node vi is chosen;
then, it would have a probability of c to walk to other nodes and
have a probability of 1 − c to stay in place. Specifically, when
the process of walk reaches the node vj, it has a probability of
α1c to walk based on existing edges to 1-hop neighbors and has
a probability of α2c to walk to 2-hop neighbors, and it also has
a probability of 1 − c to restart the walk, i.e., to go back to the
node vi.

After some steps, the 2hopRWR will be stable, i.e., when
t tends to infinity, rt+1 = rt . The proof is given in Section
Proof of Convergence.When the 2hopRWR is stable, steady-state
probability between node vi and node vj is defined as the j-th
element of rt corresponding to the starting node is vi. Figure 2
is the flowchart of 2hopRWR algorithm.
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Proof of Convergence
Here, the authors will prove that the RWR algorithm
is convergent, i.e., for Equation (8) when t tends to
infinity, rt+1 = rt .

Define:

M = c
(

α1P
T + α2

(

P2
)T

)

, (9)

N = (1− c)
(

I − c(α1P
T + α2

(

P2
)T
)
)−1

. (10)

Thus, using (9) and (10) we get:

rt+1 − Nr0 = M(rt − Nr0). (11)

Define,

Bt = rt − Nr0. (12)

FIGURE 2 | 2hopRWR algorithm framework.

Then,

Bt+1 = MBt . (13)

By (13), when t = 0, we have B0 = (I − N)r0, thus:

Bt = Mt(I − N)r0, (14)

rt = [N +Mt (I − N)]r0. (15)

Since lim
t→∞

Mt = 0, we have:

lim
t→∞

rt = Nr0 = (1− c)
(

I − c(α1P
T + α2

(

P2
)T
)
)−1

r0. (16)

Hence,

lim
t→∞

rt+1 − rt = 0, (17)

which implies that the convergence of the algorithm is proved.

Comparison With Other Second-Order Methods
Considering higher-order structural properties of a network is
not a new idea. Certain works in the literature (Salnikov et al.,
2016; Benson et al., 2017) present the spacey random walk, a
non-Markovian stochastic process whose stationary distribution
is given by the tensor eigenvector. The higher-order structural
properties of a network of Salnikov et al. (2016) and Benson et al.
(2017) mean the transitions depend on the past few states, rather
than just the last one. The process is called a higher-orderMarkov
chain which is not a Markov chain. For example, for a directed
graph network (Figure 3), the two definitions of higher-order
information are compared.

Therefore, it is clear that the higher-order information on the
network defined in the literature (Salnikov et al., 2016; Benson
et al., 2017) is obtained by a random walk of the non-Markovian
process, while the 2hopRWR is obtained by a random walk
of the Markovian process. For the case of missing data, i.e.,

FIGURE 3 | Schematic—different stochastic processes on the network. (A) In a first-order Markov model, the state space is isomorphic to the physical network: every

node corresponds to one state; every link indicates a transition between those states. It is a Markov stochastic process. (B) In the second-order Markovian model, the

state space is different from (A). In this case, the probability of moving from one node to another will appear non-Markovian. It is a non-Markovian stochastic process.

(C) 2hopRWR is a first-order Markov model. A solid line indicates that the state is reachable in one step between states. The dashed lines indicate states that are

reachable in one step to the second-order states with some probability. It is a Markov stochastic process.
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FIGURE 4 | Workflow of the approach presented in this paper.

when the links between the nodes are missing, the second-order
states [e.g., (13)] in Figure 3B constructed by the method of
literature (Salnikov et al., 2016; Benson et al., 2017) will have
a large error impact, while 2hopRWR can reduce this part of
the impact because 2hopRWR attenuates the weight of the first-
order connections.

2Hop-Connectivity Feature Score
Any two nodes can be ranked twice according to 2hopRWR.
Define 5 = {πij}|V|×|V|

as the steady-state probability matrix,

where πij indicates the steady-state probability between node vi
and node vj, i.e., the probability of 2hopRWR starts from node vi
and reaches node vj when the process is stable. In short, the value
of πij is the j-th element of steady-state probability lim

t→∞
rt when

the i-th element of r0 is 1. Therefore, the local feature score S2−hop

for node vi is defined as follows:

S2−hop(vi) =

|V|
∑

j=1

πij. (18)

The 2hop-connectivity exploits the higher-order information
of the graph structure relative to the traditional graph theory

metrics. Since there is a certain amount of noise in DTI data, a
certain threshold is chosen for denoising when converting DTI
data into brain networks, i.e., when the number of fibers between
two brain regions is low (lower than the threshold), no fiber
tracts (edges) are considered between two brain regions (nodes).
However, since there are inherently fewer fiber tract connections
between brain regions in patients with AD, the brain network
constructed after denoising may differ significantly from the true
situation. The 2hop-connectivity is insensitive to 1-hop order
relations and more robust to changes in the network structure, so
2hop-connectivity is instead more effective for sparse networks
(e.g., structural brain networks in patients with AD).

Global Feature
In this paper, the authors consider the integration of local features
to obtain a new network index: global feature.

The authors normalized the component of different feature
scores to [0, 1]. The normalized features are recorded as NCD,
NCB, NCC, NNMC, and NS2−hop.

Then, define global feature score GFS for node vi as follows:

GFS(vi) = α1NCD (vi) + α2NCB (vi) + α3NCC(vi)

+ α4NNMC(vi)+ α5NS2−hop(vi) (19)

In general, let the weight αi = 1/5 (i = 1, 2, 3, 4, 5), and
it also can be addressed by regression over AD-group’s Mini
Mental State Examination (MMSE) data. For example, using the
MMSE scale or Montreal Cognitive Assessment (MoCA) scale
data in Supplementary Table 1, the correlation between the five
characteristic scores of the AD group with the MMSE or MoCA
scale was analyzed. If theGFS of a node is relatively high, it means
that the node plays a key role in the network. Figure 4 is the
flowchart of our method.

RESULTS

Top Ten Brain Regions for Literature
Verification
By comparing the GFS of the non-AD group with that of the AD
group, the authors got the top ten brain regions in GFS scoring
difference (i.e., GFSnon−AD (vi) − GFSAD (vi)). Then, literature
verification was carried out to find out whether these brain
regions were related to AD, and the results are shown in Table 1.

For the brain structure network of the AD and non-AD
groups, visualization results (Manning et al., 2014) showed a
relative concentration of the top ten brain regions, as shown in
Figures 5, 6.

Compare GFS With Local Features
More importantly, the authors compared the respective
predictive effects of all local features. As can be learned
from Table 2, whether it is the top 10, 20, 30, or 40% brain
regions with the largest differences, the predictive effect
(Table 2) of GFS is always better than the other local features
from the results validated in the literature, as detailed in the
Supplementary Data Sheet 1.
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TABLE 1 | Top 10 brain regions in GFS scoring difference between AD and

non-AD groups.

Rank Region ID AAL regions Evidence

1 40 ParaHippocampal_R van Hoesen et al., 2000

2 3 Frontal_Sup_L Perri et al., 2005

3 37 Hippocampus_L Du et al., 2001

4 42 Amygdala_R Tsuchiya and Kosaka,

1990

5 22 Olfactory_R Wilson et al., 2009

6 78 Thalamus_R Ryan et al., 2013

7 15 Frontal_Inf_Orb_L Liu et al., 2020

8 9 Frontal_Mid_Orb_L Li et al., 2019

9 68 Precuneus_R Karas et al., 2007

10 38 Hippocampus_R Du et al., 2001

FIGURE 5 | Brain structural network of the AD group.

Canonical Correlation Analysis
In this section, the authors analyze whether GFS in the top ten
brain regions correlates with the results of MMSE and MoCA. It
allows for the analysis of whether there is a correlation between
two sets of variables. Since some people were illiterate, so they
could not complete theMoCA test; the authors took all the people
who completed two scales, which were 29 in total (19 AD and
10 non-AD). At this point, canonical correlation analysis can be
used. The basic principle is that to grasp the correlation between
the two groups of variables as a whole, two composite variables
U and V (linear combination of the two groups of variables) are
extracted from the two groups of variables, respectively, and the
correlation between the two composite variables is used to reflect
the overall correlation between the two groups of variables.

The results of the canonical correlation analysis showed that
the correlation coefficient between the typical variable pair 1
is 0.7136, which means that there is a very strong correlation
between GFS and MMSE/MoCA scale information.

FIGURE 6 | Brain structural network of the non-AD group.

DISCUSSION

In this paper, a new local feature index 2hop-connectivity was
set up to measure the correlation between different regions.
2hop-connectivity is a node importance metric, just like graph-
theoretic metrics such as degree centrality. Since most biological
networks are relatively sparse, 2hop-connectivity may work
better for node importance metrics of sparse networks. And
for this purpose, a novel random walk algorithm 2hopRWR
is proposed, which can calculate the local feature index 2hop-
connectivity. Also, the proof of convergence is given. Next, the
idea of combining five local features to obtain the GFSwas used in
this paper, which is more convincing than using a single network
parameter to describe the importance of network nodes. Then,
the results of literature verification and canonical correlation
analysis also verify the rationality and the validity of the proposed
method. Thus, GFS can be used to distinguish DTI images
of the AD and the non-AD groups. Finally, the top 10 brain
regions in the GFS scoring difference predicted in this paper
have been validated in the literature. Literature validation results
comparing GFS with local features showed that GFS outperforms
individual local features. However, the brain network constructed
in this paper is a structural network, and the structure and
function should be combined in the future. For example, more
results may be obtained upon combining the available fMRI
data and analyzing the differences of different brain regions in
different tasks. For the importance evaluation of network nodes,
there is no perfect standard measurement at present, and it is
difficult to evaluate the advantages and disadvantages of the node
importance algorithm. Another important problem is the need to
design evaluation indicators to measure the importance of nodes.

In brief, GFS is expected to be an important and useful
index for identifying the difference between network nodes and
detecting the changes in information transmission between brain
regions in patients with AD. Moreover, it may provide useful
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TABLE 2 | Comparison of the proportion of verified AD-related brain regions for top 10, 20, 30, and 40% ranked by different measures.

(%) NC_D (%) NC_B (%) NC_C (%) NN_MC (%) NS_2-hop (%) GFS (%)

Top 10 100.00 100.00 100.00 100.00 100.00 100.00

Top 20 88.89 94.44 94.44 83.33 83.33 100.00

Top 30 85.19 92.59 88.89 85.19 70.37 96.30

Top 40 80.56 80.56 86.11 80.56 75.00 86.11

The bold values indicate the best results.

insights into the underlying mechanisms of AD. Many elder test
subjects are illiterate and are not able to perform the MMSE and
MoCA scales properly, so the GFS can be used as a diagnostic
aid to infer whether a subject may be a patient with AD from
DTI imaging data alone, which can greatly reduce the workload
of medical practitioners. Finally, GFS can be used as a differential
network analysis method (Lichtblau et al., 2017) in other areas of
network analysis. The authors also expect the application of the
2hopRWR algorithm in traditional network analysis tasks, such
as node classification, link prediction, and graph classification.
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