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Abstract: The development of magnetoactive microsystems for targeted drug delivery, magnetic
biodetection, and replacement therapy is an important task of present day biomedical research. In
this work, we experimentally studied the mechanical force acting in cylindrical ferrogel samples due
to the application of a non-uniform magnetic field. A commercial microsystem is not available for this
type of experimental study. Therefore, the original experimental setup for measuring the mechanical
force on ferrogel in a non-uniform magnetic field was designed, calibrated, and tested. An external
magnetic field was provided by an electromagnet. The maximum intensity at the surface of the
electromagnet was 39.8 kA/m and it linearly decreased within 10 mm distance from the magnet. The
Ferrogel samples were based on a double networking polymeric structure which included a chemical
network of polyacrylamide and a physical network of natural polysaccharide guar. Magnetite
particles, 0.25 micron in diameter, were embedded in the hydrogel structure, up to 24% by weight.
The forces of attraction between an electromagnet and cylindrical ferrogel samples, 9 mm in height
and 13 mm in diameter, increased with field intensity and the concentration of magnetic particles,
and varied within 0.1–30 mN. The model provided a fair evaluation of the mechanical forces that
emerged in ferrogel samples placed in a non-uniform magnetic field and proved to be useful for
predicting the deformation of ferrogels in practical bioengineering applications.

Keywords: magnetic particles; ferrogels; biomimetic materials; magnetic field; attractive force;
modeling; biomedical applications

1. Introduction

Ferrogels (FGs) are novel advanced responsive soft composites [1,2], which are exten-
sively studied for their promising applications in biomedicine and biotechnologies [3–7]. A
ferrogel is a composite polymeric material that chemically contains a loosely cross-linked
polymeric network evenly distributed in a liquid medium, usually water, and magnetic
particles embedded into this network [8,9]. The volume and the shape of the gel polymeric
network, in general, can change, to a large extent, due to the application of any external
mechanical force and likewise due to a variety of external non-mechanical stimuli such as
the molecular and/or ionic compositions of the liquid medium, temperature, pH, etc. [10].

In addition, in the case of FGs, there is a possibility to control their physical properties
and location by the remote action of an external magnetic field due to the presence of the
embedded magnetic particles employed as a filler [11]. Magnetic ferrogels are of special
interest as model magnetic materials that mimick the properties of natural tissues [4].
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Hydrogel represents a model tissue and ferrogel represents the tissue with embedded
magnetic particles. Magnetic particles in an external magnetic field create stray fields.
Their analysis can be used for the visualization of the geometry of a tumor or to simply
define the appropriate moment to start chemotherapy or mechanotherapy based on the
particle concentration [12,13]. Such an analysis can be performed using data from magnetic
field sensors combined with a scanning system. This means that in each device there are
at least two magnetic materials working together: the magnetic field sensitive element
and magnetic particles [14,15]. Each particular application requires careful analysis of the
work parameters of the magnetic sensitive element and particles working in one device.
Each material has its own field interval for which it has high sensitivity with respect to
the applied magnetic field (sensitive element) or high/detectable magnetic moment value;
both field intervals must have an overlap zone for the operation of the detection regime [4].

In bioengineering, FGs have been extensively studied as responsive working bodies in
various detectors and actuators that provide transfer of a mechanical force under remote
control of a magnetic field [16–20]. In addition, spherical FG microparticles can be used
for magnetic biosensing and for drug delivery purposes, in which the force associated
with each particle as compared with the forces associated with corresponding biochemical
bonds are also very important [4,21]. Furthermore, the general biocompatibility of FGs
provides versatile options of their prospective usage in medicine as magnetoactive matrixes
for targeted drug delivery and replacement therapy [22–24].

The desired functional properties of FGs are based on magneto-mechanical coupling,
which occurs if the magnetically active elastic material interacts with an applied mag-
netic field. Therefore, theoretical and experimental consideration of the mechanical force
that appears in ferrogel placed in a magnetic field is highly appropriate concerning the
development of bioengineering systems and devices.

Theoretical considerations have mostly been developed for the influence of a uniform
magnetic field on the shape and elasticity of a ferrogel. It has been shown [25–28] that
uniformly magnetized ferrogel usually exhibited positive field-induced magnetic strain
in the uniform magnetic field, i.e., the ferrogel elongated in the direction along the axis of
the field lines and simultaneously contracted in the transverse direction. At the same time,
in terms of a more realistic model of separate magnetic particles dispersed in an elastic
medium, it has been shown [29,30] that the induced deformation might also be negative,
exhibiting shortening in the direction along the field lines and swelling in the transverse
direction. The switch between these alternatives is governed by the way in which magnetic
particles are distributed in the elastic matrix.

Experimental studies of the magneto-deformation phenomenon in a uniform magnetic
field have shown a variety of scenarios for the mechanical response of a ferrogel to the
application of an external magnetic field. Examples of both positive and negative field-
induced magnetic deformation have been reported [31,32]. The typical feature has been a
substantial change in the volume of ferrogel in an applied magnetic field. Ferrogel in an
equilibrium with liquid medium is an open system and water molecules can freely cross its
free surfaces entering or leaving the network, resulting in net swelling or contraction of the
ferrogel sample in the applied magnetic field.

In the scientific literature, characterization of the behavior of ferrogels in non-uniform
magnetic fields is much less extensive. There are few experimental studies [33,34] which
present some particular examples of mechanical deformation of ferrogels under such a field.
Meanwhile, a non-uniform magnetic field is more easily maintained as compared with
a uniform field, and hence, the former is commonly more available in terms of practical
applicability. In this regard, an understanding of ferrogel deformation is important for
applications of magnetic field sensors in the detection of ensembles of magnetic particles
embedded in natural tissue. The abovementioned particles can be both the carriers of drugs
and the basis for thermal ablation or hyperthermia treatment. The procedures both include
the application of an external field [35,36]. However, the precise definition of the time to
start the therapy is related to the state in which magnetic particles form the “ferrogel-like”
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natural structure, and therefore, it is to understand its properties under application of an
external field.

The objective of the present study was to measure directly the mechanical force
which appeared by placing a ferrogel sample in a non-uniform magnetic field. Ferrogel
samples based on the chemically cross-linked polyacrylamide with embedded submicron-
sized magnetite particles were elaborated in this research and the experimental setup for
measuring the mechanical force on ferrogel samples in a non-uniform magnetic field was
designed, calibrated, and tested. The obtained experimental data were used to verify a
theoretical model for evaluating this force as a function of field intensity and the content of
magnetic particles in the ferrogel.

2. Materials and Methods
2.1. Magnetic Particles, Ferrogels, and Model Epoxy Composite Sample

Commercial magnetic microparticles (Alfa Aesar, Ward Hill, MA, USA) were used
in the present study as a magnetic filler. The crystalline structure of particles was char-
acterized by X-ray diffraction (XRD) using a Bruker D8 Discover (Bruker, Billerica, MA,
USA) diffractometer operated at CuKα radiation (wavelength λ = 1.5418 A) with a graphite
monochromator and a scintillation detector. The diffractogram was refined using the Ri-
etveld full-profile method (Figure 1a). The crystalline structure contained 94.6% magnetite
(Fe3O4) and 5.4% goethite (FeO(OH)) phases.

Transmission electron microscopy (TEM) (JEOL JEM2100, Tokyo, Japan, microscope
operating at 200 kV) and scanning electron microscopy (SEM) (JEOL JSM-7000 F, Tokyo,
Japan) images of magnetite microparticles were provided for the sets of the particles
(Figure 1b,c). The particles were close to spherical with caliper sizes from 50 to 400 nm.
The particle size distribution was obtained by graphical analysis of 632 particle images
using quasi-spherical approximation. For the analysis of TEM images (Figure 1), they were
fitted using the normal (Gaussian) distribution function Pn(d) with a median of 248 nm
and a dispersion of 57 nm. Typically, the PSDs in ensembles of particles obey the lognormal
pattern. However, there can be exceptions, for example, particles that are synthesized
using techniques such as precipitation and growth, or particles that are subjected to some
pretreatments; for a specific batch of such commercial magnetic particles, the normal
distribution function provides a much better fit than lognormal. Meanwhile, if using PSD,
it should be noted that its validity is limited to the 50–500 nm range of the caliper size.

The ferrogel samples were synthesized using free-radical polymerization in 0.8 M wa-
ter solution of monomer, i.e., acrylamide (AppliChem, Darmstadt, Germany). The network-
ing was provided by a cross-linker, i.e., N,N′-methylene-bis-acrylamide (Merck, Schuchardt,
Honenbrunn, Germany) in a 1:100 molar ratio to the monomer. Then, preweighted portions
of commercial powdered magnetite with micron-sized particles were added to the reaction
mixture. A polymeric thickener (natural polysaccharide guar, Sigma Aldrich, St. Louis, MO,
USA) was added to the reaction mixture at a 0.56% concentration to prevent sedimentation
of magnetite particles during the synthesis. The mixture was vigorously stirred, and then
the initiator (ammonium persulfate) was added to the mixture with a 3 mM concentration.
The polymerization occurred in polyethylene cylindrical tubes, 8 mm in diameter, and
it started almost immediately at room temperature due to the catalytic performance of
the traces of Fe(II) at the surface of magnetite particles. As the reaction mixtures lost
their fluidity, the tubes were placed in a thermostat at 80 ◦C for 60 min to accomplish
polymerization. After polymerization, the cylindrical ferrogel samples were taken out
and washed in distilled water for two weeks with daily water renewal to eliminate traces
of salts and monomers. The final contents of magnetite particles in the ferrogel samples
equilibrated in water were determined by thermogravimetry using a NETZCH STA403
thermal analyzer (NETZSCH Geratebau Gmbh, Selb, Germany) via temperature scan up
to 1000 ◦C at 10 K/min rate. The contents of magnetite in the series of ferrogel samples
were: 4.3, 6.5, 16.7, and 23.8% by weight. To perform the mechanical measurements, the
ferrogel samples were cut into cylindrical pieces, 9 mm in height and 13 mm in diameter.
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Note, the diameters of ferrogel samples were larger than that of the cylindrical tubes for
the synthesis due to the swelling of ferrogels during the washing cycles.

Figure 1. (a) XRD spectrum of magnetic particles with Miller indexes corresponding to each reflection;
(b) transmission electron microscopy images; (c) scanning electron microscopy images, of magnetite
particles used as a magnetic filler for ferrogels and model epoxy composite; (d) the average PSD for
632 particles, the line corresponds to the normal distribution probability function with a median of
248 nm and a dispersion of 57 nm.

The model composite sample (KDA epoxy resin (Chimex Ltd., St. Petersburg, Russia,
as a polymer matrix) was a sphere, 4 mm in diameter. The resin was mixed in a 6:1 weight
ratio with a tri(ethyl)-tetra(amine) hardener (Epital, Moscow, Russia). The particles of the
filler were from the same batch as the ferrogel samples. They were mixed with liquid resin
at 25 ◦C to obtain a homogeneous mixture, followed by curing. The composite sample was
prepared with a magnetic particle concentration of 30.1% by weight.

Magnetic characterization was conducted using a vibrating sample magnetometer
(VSM) (Cryogenics, Ltd., London, UK) at room temperature. The magnetic hysteresis
loops of the magnetic particles, gel, ferrogel and composite samples were measured in a
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polycarbonate capsule. For the gel and ferrogel sampels, we followed a specially developed
protocol [32] in order to control their mass. The primary magnetization curve of the
composite sample was measured for the low field interval of linear dependence of M(H),
where M is the magnetization and H is the applied external field.

2.2. Measurement of Magnetic Force on Ferrogel in a Magnetic Field

The experimental setup (Figure 2) for measuring the mechanical force on ferrogel in a
non-uniform magnetic field was built around a massive tripod with a force transducer fixed
on it. A thin-walled polystyrene cuvette filled with distilled water and containing a ferrogel
sample was mechanically connected to the force transducer using rigid copper braces. A
commercial electromagnet (EM) CL-34/18 (Cinlin, Guangzhou, China) was placed under
the cuvette coaxially with the sensitive lever of the force transducer and the cuvette at a
distance of 0.5 mm from the surface of the EM core (18 mm in diameter). To avoid the
impact of the EM on the metallic lever of the sensor, the distance between the EM and the
lever was set at 8 cm.

Figure 2. Schematic sketch of the experimental setup for measuring the mechanical force on ferrogel
in a non-uniform magnetic field. (1) Cuvette with a ferrogel sample; (2) electromagnet; (3) stabilized
power supply; (4) force transducer. See explanation in the text.

The force transducer was designed with a force sensor and operational amplifier. A
commercial C05 force sensor (VIP, Yekaterinburg, Russia) based on silicon strain gauges on
a sapphire membrane was used; according to the manufacturer specifications, the sensor
lever displacement at a maximum load of 5 N was 0.25 mm and the output signal at a
maximum load was 250 mV. After amplifying the signal, the dynamic range of the force
transducer was limited to 0.2 N, and the force measurement accuracy (output RMS value of
the noise) was 0.03 mN. The force transducer was calibrated with the use a set of weights
for analytical balance.

The magnetic field strength of the EM was provided by using a stabilized power
supply PS-1502D (Element, Shenzhen, China). The voltage to the EM coil (25.8 Ohm)
was set discretely in the range from 0 to 15 V with a step of 1 V. The characteristics of
the magnetic field produced in the electromagnet were determined experimentally using
a MPU gaussmeter (“Centre”, Moscow, Russia; State register number of approved type
measuring instruments 28134-04). The systematic error was evaluated in accordance with
gaussmeter metrology characteristics.

Control experiments with the cuvette filled with water were conducted to confirm the
effect of the EM on the force transducer. No interaction between the EM and the metallic
lever of the sensor was found in full range of the magnetic field strength. Thus, the voltage
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value recorded at the output of the force transducer served as a measure of the forces of
attraction of ferrogel samples to a magnetic field source.

3. Results and Discussion

The magnetic hysteresis loops M(H) of all the used samples are shown in Figure 3a.
As expected, the highest value of the saturation magnetization corresponds to the magnetic
particles of the filler, shown in Figure 3 as “Particles 100%”. According to it, the saturation
magnetization (Ms) was found to be as high as Ms = 390 ± 10 kA/m, the remnant magneti-
zation was Mr = 30 ± 1 kA/m, and the coercivity was HC = 6.2 ± 0.1 kA/m. These values
are close to the typical values of the corresponding parameters for magnetite particles of
the size under consideration. This means that the particles were reasonably magnetically
soft in the typical range for this type of material [37]. For simplicity, we assigned the value
of saturation magnetization (Ms) for the magnetization measured in the external field of
1450 kA/m. Figure 3a shows that such an assumption is reasonable. The Ms values of the
ferrogel samples show a linear dependence on the magnetic filler concentration.

Figure 3. Magnetic hysteresis loops of magnetite particles in the VSM: (a) Magnetite particles (Parti-
cles 100%), ferrogels with different concentration of the magnetite particles used as a filler (FG 23.8%,
FG 16.7%, FG 6.5%, FG 4.3%, Gel 0.0%—the numbers correspond to the weight percent of the parti-
cles), and epoxy composite with 30.1 wt.% of the particles. Inset shows the concentration dependence
of the magnetic moment of the samples of different types mentioned above for the magnetization
measured in the external field of 1450 kA/m, being close to saturation magnetization. Points are
experimental data, a line is the linear fit, the arrow indicates the point corresponding to model epoxy
composite; (b) the low-field dependence of the initial magnetization (primary magnetization curve)
of the model epoxy sample (sphere) with 30% (wt.) of magnetite particles, measurement performed
starting with the demagnetized state. The solid lines are guides for observations.

Although it is expected for materials with a low concentration of MPs [12,32], in the
case under study, both the Ms of the particles themselves and the epoxy composite are
reasonably fit by the same linear dependence. This is further described in the discussion of
the theoretical model. The last observation is very important when considering substituting
the measurements of the initial magnetic permeability using ferrogels which do not allow
precise control of the shape and the weight. Figure 3b shows the primary magnetization
curve of the magnetic particles forming part of the epoxy composite, with the features
also confirming the approximation of the spherical shape. The conclusion can be made
in accordance with the standard procedure of a simple evaluation of the shape of the
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magnetic particles, as previously shown (the effective susceptibility is controlled by the
demagnetizing factor) [38].

A general sketch of the system for the FG force measurements in a non-uniform
magnetic field is shown in Figure 4. It was specially designed, calibrated, and tested in
the present study. Figure 5a shows the experimental results for calibration of the values of
the intensity of a magnetic field in the center of the surface of the magnet, fed the electric
current from the current supply. The plot is linear and it provides control over the constant
magnetic field strength.

Figure 4. General sketch of the geometry of the considered measuring system: 1—ferrogel sample;
2—electromagnet. Small blue arrows illustrate the distribution of the magnetic field lines and the big
magenta arrow shows the direction of the force F orientation.

Figure 5. Characteristic plots of the field strength of the electromagnet: (a) Dependence of the field in
the center of the surface of the magnet on the electric current value. H(I) dependence can be fitted by
the equation y = 76.6X + 1.5; (b) dependences of the field strength on the distance from the surface.
Dependences can be fitted by the following equations: 1 − y = 0.6X + 10.0, 2 − y = 0.3X + 5.8, 3 − y =
1.2X + 18.9, 4 − y = 0.5X + 11.0, 5 − y = 1.6X + 24.8, and −y = 0.7X + 14.9.
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Figure 5b presents the dependence of the field strength with respect to the distance
between the surface of the magnet and the point under consideration over the central point
of the magnet. The field strength decays rapidly as the distance increases. Within 10 mm
from the surface of the magnet, the dependence is close to linear. Although the slopes
are different for different levels of electric current, their simple transformation yields a
universal dependence on field strength (H) within 10 mm distance from the magnet:

H = H0(1 − 0.073z) (1)

where H0 is the field intensity at the surface of the magnet, and z is the distance from the
surface of the magnet in mm.

Table 1 shows the values of the force of attraction measured in FG samples with differ-
ent concentrations of magnetic particles at different levels of voltage on the electromagnet
coil, which provided the different intensities of a magnetic field as shown in Figure 5a. Se-
lected data are given, more detailed data is presented below. One can see that the emerged
mechanical forces were in the milli-Newton range and varied from the lowest value of
approximately 0.1 mN to approximately 30 mN. At a given concentration of magnetic
particles in the FG, the higher the intensity of the magnetic field, the stronger the force of
attraction. In addition, at any value of the applied field, the fkorce of attraction increased
with increased concentration of magnetic particles in the FG samples.

Table 1. Measurements of force of attraction in FG samples under study at different strengths of
magnetic field. Mean values (n = 3) and SD are displayed.

Field Intensity
H (kA/m)

MPs—4.3%
F (mN)

MPs—6.5%
F (mN)

MPs—16.7%
F (mN)

MPs—23.8%
F (mN)

8.0 0.14 ± 0.08 0.34 ± 0.07 0.8 ± 0.2 1.6 ± 0.9
15.9 0.5 ± 0.1 1.1 ± 0.1 2.7 ± 0.7 5 ± 1
23.9 1.1 ± 0.2 2.6 ± 0.5 6 ± 2 11 ± 2
31.8 2.1 ± 0.6 4.5 ± 0.8 10 ± 2 19 ± 3
39.8 3.3 ± 0.4 7.4 ± 0.7 18 ± 2 28 ± 4

3.1. Theoretical Model

A rigorous theoretical evaluation of the force of attraction of a magnetizable sample to
a magnet presents a very cumbersome mathematical problem. In addition, this problem
is difficult due to the uncertainness in the spatial distribution of particles inside a gel
and also due to the effect of their magnetic interaction on the macroscopic magnetic
characteristics of a composite. The known microscopic theories of magnetic properties of
magnetic composites deal either with the spatial homogeneous distribution of particles
or with composites with internal heterogeneous structures (for example, with chain-like
aggregates). Therefore, in this study, we consider the susceptibility of a ferrogel sample as
an empirical parameter.

The layout of the model is presented in Figure 4. A cylindrical ferrogel sample (1) is
placed on the flat surface of the electromagnet (2) so that the axis of the sample and the
field lines of the magnet are parallel. We introduce the coordinate axis z aligned along
their mutual symmetry axis. The diameter of the sample is assumed to be less than the
diameter of the solenoid. Therefore, the tangential dependence of the field in the direction
perpendicular to the axis z was systematically neglected.

The absolute value of the force acting on the ferrogel can be calculated as follows [35]:

F = µ0

∣∣∣∣∫ M
dH
dz

dV
∣∣∣∣ (2)

where µ0 is the magnetic permeability of vacuum; M is the sample magnetization; and H is
the magnetic field, created by the electromagnet in the space where the ferrogel is placed.
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The integration was done over the sample volume V. The problem of determining the
magnetization M inside a magnetizable particle is solved analytically only for an ellipsoid
placed in a homogeneous external field (see, for example, [39]). For cylindrical samples,
even in a uniform field, any results are unknown, needless to say, for the problem of a
cylinder in inhomogeneous field, which can be solved only numerically and requires large
computer resources and time-consuming calculations. Therefore, analytical theoretical
modeling can only be done based on certain simplifications. Here, we present a simplified
approach, which neglects the details of the interior distribution of magnetic particles and
considers ferrogel as a uniform magnetizable material.

Here, to obtain the results for the force (2) in a visible mathematical form, with
reasonable estimates, we assume that M is uniform across the ferrogel cylinder and equals
the magnetization of the ferrogel in a uniform field averaged over the cylindrical sample
(see Figure 5). Next, we neglect magnetic field-induced deformation, since, as observations
show, these deformations of the sample are very small. In these approximations, the
average field can be calculated according to the following equation:

H =
1
h

∫ z1

z2

Hdz (3)

where z1 and z2 are the coordinates of the top and the bottom of the cylinder, and h is
its height.

Taking the linear diminishing of the field along the height of the ferrogel (see Figure 4
and Equation (1)), the average field reads are rather simple as:

H =
H1 + H2

2
(4)

where H1 and H2 stand for the field intensity at the upper and bottom faces of the ferrogel
cylinder (Figure 4).

Then, the magnetization of the ferrogel is as follows:

M =
χ

1 + Nχ

H1 + H2

2
(5)

where χ is the magnetic susceptibility and N stands for the demagnetization factor. This
factor was evaluated and tabulated in [40], where it was found to be approximately 0.43 for
the cylindrical sample with 9/13 height-to-diameter ratio similar to that elaborated in the
present study.

Introducing Equation (5) into Equation (2), after integration we, finally, obtain the
following equation for the dependence of the mechanical force on the field intensity:

F = µ0
χ

1 + Nχ

V
h

H2
2 − H2

1
2

(6)

Note that Equation (6) relates to a non-uniform magnetic field, although it is char-
acterized by an average field intensity along the height of the cylinder according to
Equation (4). The difference in the numerator in Equation (6) originates from the gra-
dient of a non-uniform field at normal direction to the magnet.

3.2. Verification of the Model

To apply Equation (6) to the experimental values of the mechanical force, the estimation
of the magnetic susceptibility (χ) must to be provided. It is, however, not straightforward
and meets experimental difficulties mostly due to the fact that the ferrogel samples are
open systems in an equilibrium with a supernatant water phase. Conventional instruments
such as vibrating sample or SQUID magnetometers are not well suited for this purpose
because of the rapid change in the mass of the sample. In our previous works we developed
some protocols for measurements with ferrogel samples, including the definition of the
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change in the mass as a function of time [41]. However, in each particular case, the rate of
the change in mass depends on a number of parameters such as the type of the gel matrix,
and size/shape of the FG sample. There are other examples of laboratory equipment
designed specifically for such measurements [42], but they address the susceptibility in
oscillating fields rather than the quasi-static values. Therefore, in this study, we evaluated
the susceptibility of ferrogel samples using a model epoxy composite filled with the same
magnetite particles in 30% weight fraction. The mixing of the composite was performed
using the same method as the preparation of the reaction mixtures for the ferrogel sampes
and it was assumed that the distribution of magnetic particles in the epoxy composite was
close to that in the ferrogel samples.

Figure 3b shows the plot for the initial magnetization of the model composite in
low-field range provided by the electromagnet of the laboratory setup in Figure 4. The plot
M–H is linear and its slope can be obtained as follows:

M =
χ

1 + Nχ
H (7)

Here, the demagnetization factor N equals 1/3, since the sample is a sphere.
Equation (7) was used to calculate the volume susceptibility for the model sample.

Based on the assumption that the distribution of the particles in the model epoxy composite
is the same as in the ferrogel sampes, we calculated the susceptibility of the ferrogel sampes
proportional to the volume fraction of particles:

χFG = χEC
ϕFG
ϕEC

(8)

where χFG is the susceptibility of the ferrogel; χEC is the susceptibility of the epoxy compos-
ite; ϕFG and ϕEC are the volume fractions of magnetite particles in ferrogel and the epoxy
composite, respectively. Table 2 shows the obtained numerical values.

Table 2. Parameters related to the calculation of the susceptibility of the ferrogel samples.

Sample Magnetite Weight
Fraction (%)

Magnetite Volume
Fraction (%)

Demagnetization Factor,
N

Susceptibility,
χ

M–H Slope
χ

1+Nχ

Epoxy composite 30.0 9.57 1/3 0.408 0.359
Ferrogel 23.8 6.36 0.43 0.254 0.229
Ferrogel 16.7 4.18 0.43 0.162 0.151
Ferrogel 6.5 1.49 0.43 0.056 0.054
Ferrogel 4.3 0.97 0.43 0.036 0.035

It is noticeable that the susceptibility values are close to the slope for M–H dependence,
as expected for spherical particles [43,44]. At the highest volume fraction of particles, i.e.,
9.57% in the case of the epoxy composite, the slope of M–H dependence is lower than the
susceptibility by approximately 10% of the value. At low content of magnetite particles,
susceptibility is almost equal to the M–H slope.

The values presented in Table 1 were used for the evaluation of the mechanical force
acting in ferrogel sampes at different field intensities (H0). It is noteworthy to emphasize
that the field is non-uniform, and the field intensity H0 corresponds to the surface of the
electromagnet and diminishes with the distance from the surface, according to Equation (1).

The comparison of the actual forces measured using the experimental setup with
the results of modeling are displayed in Figure 6. The dependence of the acting force
on field intensity is parabolic, in accordance with Equation (6). The force systematically
enhanced with the magnetite content in ferrogel. It is a presumable effect of an increase in
magnetic load.
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Figure 6. Mechanical forces emerged in ferrogel samples in a non-uniform magnetic field as a function
of the field intensity at the surface of the electromagnet. Symbols correspond to the experimental
values measured for the ferrogel sampes with different weight fraction of magnetite particles given
in the legend. Lines are plots calculated using Equation (6).

The calculated values of the acting mechanical force fit the experimental data within
the limits of the experimental accuracy. The concurrence is very good in the case of ferrogel
sampes with 4.3% and 16.7% weight fraction of magnetite particles, and not as such in
the case of ferrogel samapes with 6.5% and 23.8% of magnetite. The deviation seems to
be rather stochastic and might stem from the difference in the particle distribution in the
interior of ferrogel samples, the uniformity of which it is difficult to maintain. It is also
difficult to establish identical particle distribution in all the ferrogel sampes and in the
model epoxy composite. The nature of these materials is different. It might certainly
question the estimation of the susceptibility for ferrogel samples. However, our recent
studies of the concentration dependence of saturation magnetization of epoxy composites
for the same type of Fe3O4 magnetic particles indicated that the saturation magnetization
linearly depended on their weight fraction in the composite in the concentration range
from 1 to 30%. It happens despite the structural differences observed by the microscopy
evaluation [45]. This means that our previous studies indicate that concentration is the
most important parameter for this type of epoxy composite and their selection for the initial
susceptibility evaluation is justified. Concerning all this, we consider the simplified model
presented by Equation (6) to be in fair agreement with the experimental results.

The possible influence of the deformation of ferrogel on the emerged mechanical force
should also be considered. Ferrogels are soft materials in the sense of their deformation
ability. Their degree of deformation in an external magnetic field might be noticeable [6].
The influence of sample height on mechanical force within the applicability of the model
can easily be obtained by combining Equations (1) and (6), which shows as a linear increase
in mechanical force with diminishing height of the ferrogel cylinder, assuming its volume
is constant. Meanwhile, the observed deformation for the ferrogel samples under study
did not exceed 6% [6]. According to the linear dependence between height and force,
the increase in the latter should also be the same. Such gain is much lower than the
experimental error of the measurement for force which was about 10%. Thus, the influence
of sample deformation under force can safely be neglected.

Figure 7 shows a comparative result between the experimental and theoretical models
for the dependence of force on the weight fraction of magnetite for selected levels of mag-
netic field intensity at the surface of the electromagnet. It is noticeable that the dependence
of force on the weight fraction is linear within the range of particle content covered in the
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present study, both for the experimental values and for the theoretical prediction. In terms
of the applied model, it is the consequence of Equation (8) which implies the proportion-
ality of susceptibility on the volume fraction of magnetic particles in ferrogel. The linear
dependence of the volume fraction stays very close to linear in the weight fraction as well
in the range of low content of solid particles. Substantial deviation occurs at loads higher
than 40–50% by weight.

Figure 7. (a) Acting force as a function of magnetite weight fraction in ferrogel at selected levels
(23.9, 31.8, and 39.8 kA/m) of magnetic field intensity at the surface of the electromagnet. Symbols
correspond to the experimental values. Lines give the model evaluation for the dependence according
to Equation (6); (b) parts of the magnetic hysteresis loops measured by VSM for ferrogel samples
with 23.8, 16.7, 6.5, and 4.3 wt.% of magnetic filler. Dashed vertical lines indicate the same fields
as used for part (a): 1—23.9 kA/m, 2—31.8 kA/m, and 3—39.8 kA/m. It is important to mention
that the field strengths at the part (a) correspond to the gradient field intensity at the magnet surface.
However, the field strengths at the part (b) correspond to the uniform external magnetic field used
for VSM measurements.

Although we provided VSM results for all types of samples used in the present
study, the measurements of the acting force were made in different conditions. The first
difference is the type of magnetic field, which is a gradient in the force measurements and
a constant in the case of VSM. The second difference is the value of the field strength. The
analyzed saturation magnetizations are very important parameters for understanding the
basic properties of magnetic materials and their effectiveness in biomedicine. However,
usually, magnetic materials are not used in saturated states in applications, since a high
magnetic field is costly, difficult to apply in microdevices, and it is controlled by special
regulations [46].

Nevertheless, presentation of the results of VSM measurements for the scale corre-
sponding to the typical magnetic field values used in acting force measurements seems to
be useful for understanding the mechanical force results. Figure 7b shows that parts of the
M(H) magnetic hysteresis loops correspond to a positive external magnetic field (both in
decreasing and increasing magnetic fields) for all types of the ferrogels. In order to make
such a comparison easier, we added vertical dashed lines corresponding to the field values
selected (see Figure 7a) for experimental measurements and model calculations.

In the present work, we did not consider the possibility of increasing the magnetic
moments of the ferrogel samples with zero applied field by previous application of the
high constant external field. Such an action could result in an increase in the remnant
magnetization and the magnetic moment of the sample by the application of a small
magnetic field afterwards. At the same time, in previously magnetized samples, the
initial magnetic susceptibility behavior can be quite different, and therefore, additional
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experimental and theoretical studies are needed in order to understand the mechanical
force acting on the ferrogel in a non-uniform external magnetic field.

The successful use of FGs for biomedical applications critically depends on under-
standing the interaction mechanisms between the magnetic composites and a magnetic
field, in particular, an understanding of how the driving force of the magnetic field de-
pends on the physicochemical properties of the FGs. Therefore, we designed an original
experimental setup to obtain direct measurements of the force of attraction of FG samples
to a non-uniform magnetic field source.

Composite FGs with interpenetrating chemical (polyacrylamide) and physical (natural
polysaccharide—guar) polymer networks with magnetic sub-microparticles of magnetite
embedded in their structure were used as objects in this study. The choice of FG was based
on the knowledge that gels with interpenetrating networks are biocompatible materials with
mechanical properties close to those of biological soft tissues [47–50]. It is also known, that
magnetite magnetic particles have low toxicity and are widely introduced for biomedical
applications [51,52].

The obtained results could be useful for predicting the deformation of ferrogels in
practical bioengineering applications. Given the modulus of a ferrogel, its deformation
can be readily evaluated based on the model prediction for the force emerged. Owing to
its simplicity, the consideration might be readily extended for more complicated setups of
FG applications in biomedicine, for instance, controlled delivery of drugs and bioactive
agents to tissues and organs, including the location and concentration of magnetic particles
in natural tissues [53].

4. Conclusions

The experimental setup for measuring mechanical force on ferrogel samples in a non-
uniform magnetic field was designed, calibrated, and tested. This methodological approach
made it possible, for the first time, to perform direct measurements of the force of attraction
of ferrogels (FGs) to the source of the non-uniform magnetic field. The values of the force
of attraction of cylindrical ferrogels placed on an electromagnet at different intensities of
magnetic field were obtained experimentally depending on the concentration of magnetic
particles in the samples. The experimental results showed that the attractive force increased
with the intensity of the magnetic field, and with an increase in the concentration of
magnetic particles in the FGs.

The experimental results were used to introduce a theoretical model based on the
principal laws of magnetism to quantify the obtained relations. The model considered
FG as a continuous medium with a magnetic susceptibility proportional to the volume
fraction of the load of the magnetic particles irrespective of their distribution in the FG,
which typically is quite uncertain in actual applications. Magnetic interactions between
particles inside the FG were neglected. The intensity of a non-uniform magnetic field was
taken as an average value along the distance from the magnet.

It was shown, that the developed model adequately predicted the mechanical force that
emerged in ferrogel samples placed in a non-uniform magnetic field of an electromagnet.
Despite the simplifications implied and the uncertainties neglected, the evaluation of
the force occurred surprisingly fair—within the limits of the experimental error for the
force measurements.

The external magnetic field can provide both the transportation force of an agent to the
tissues of hollow organs and the controlled release of a drug from the macroporous ferrogel
structure due to its mechanical deformation. The modeling of the mechanical force emerged
in a ferrogel via an external field might be useful in platforms for cell proliferation and as
implants for tissue replacement therapy [22–24]. In these cases, the external magnetic field
can provide the controlled deformation of a ferrogel matrix which may trigger adhesion,
proliferation, and differentiation of cells on a magnetically active platform [52]. Wound
healing using ferrogel implants under the control of an external magnetic field is the most
obvious biomedical application for the results of this study.
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