
Use of a Network-Based Method to
Identify Latent Genes Associated with
Hearing Loss in Children
Feng Liang1†, Xin Fu1†, ShiJian Ding2 and Lin Li3*

1Anaesthesia Department, China-Japan Union Hospital, JiLin University, Changchun, China, 2School of Life Sciences, Shanghai
University, Shanghai, China, 3Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin
University, Changchun, China

Hearing loss is a total or partial inability to hear. Approximately 5% of people worldwide
experience this condition. Hearing capacity is closely related to language, social, and basic
emotional development; hearing loss is particularly serious in children. The pathogenesis of
childhood hearing loss remains poorly understood. Here, we sought to identify new genes
potentially associated with two types of hearing loss in children: congenital deafness and
otitis media. We used a network-based method incorporating a random walk with restart
algorithm, as well as a protein-protein interaction framework, to identify genes potentially
associated with either pathogenesis. A following screening procedure was performed and
18 and 87 genes were identified, which potentially involved in the development of
congenital deafness or otitis media, respectively. These findings provide novel
biomarkers for clinical screening of childhood deafness; they contribute to a genetic
understanding of the pathogenetic mechanisms involved.
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INTRODUCTION

Deafness refers to a total or partial inability to hear, also known as hearing impairment or hearing
loss (Olusanya et al., 2019). According to the World Health Organization, approximately 5% of
people worldwide exhibit deafness or various extents of hearing impairment (Murray et al., 2019;
Olusanya et al., 2019); approximately 10% of these people (34 million) are children (Murray et al.,
2019). Although this number does not fully reflect the non-negligible threat imposed by hearing loss
on human health, an independent report from the National Institute on Deafness and Other
Communication Disorders of the United States revealed that the fight against deafness was urgent
(Wass et al., 2019). In the USA, over 15% of all people currently exhibit hearing loss or have
previously exhibited hearing loss (Moeller, 2000). Hearing loss is often age-associated; individuals
over 60 years of age tend to have hearing impairments (Uchida et al., 2019). However, deafness or
hearing loss is even more serious in children, because hearing is closely related to language-learning,
social behavior, and basic emotional development (Trudeau et al., 2021). Therefore, an exploration of
the pathological factors associated with childhood deafness is critical for child health and of
considerable interest to researchers. The clinical pathogenesis of hearing loss in children is
either congenital (Korver et al., 2017) or acquired (Pichichero, 2018). Congenital causes have
been associated with genetic factors and family histories (Korver et al., 2017). X-linked hearing loss is
the most typical form of congenital hearing loss, passed from mothers to their sons (O’brien et al.,
2021). Genes PRPS1, POU3F4, SMPX, AIFM1, and COL4A6 have all been associated with X-linked
hearing loss (Song et al., 2012). However, otitis media and ototoxicity also trigger childhood hearing
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loss (Vanneste and Page, 2019). Otitis media is a complex process
that involves multiple infections and specific genetic
susceptibilities (Vanneste and Page, 2019). Acute otitis media
(the most common form of the condition) has been associated
with infections by various bacteria including Streptococcus
pneumoniae, Hemophilus influenzae, Moraxella catarrhalis,
and Staphylococcus aureus (Deniz et al., 2018). Additionally,
acute otitis media susceptibility and recurrence have been
associated with genetic factors. In 2011, researchers in
Helsinki University Central Hospital reported that genetic
factors contributed to childhood recurrent acute otitis media
in 38.5% of affected patients and chronic otitis media in 22.1% of
affected patients, highlighting the substantial contributions of
genetic traits to these conditions (Hafrén et al., 2012).
Furthermore, genome-wide association studies have shown
that particular genes, including FNDC1, are associated with
otitis media (Van Ingen et al., 2016), validating the essential
roles of genetics in otitis media-induced hearing loss. Notably,
drug ototoxicity was not significantly associated with the genetic
background (Lanvers-Kaminsky et al., 2017). In summary, both
congenital deafness and environmental otitis media (i.e., the two
major pathogeneses of childhood hearing loss) feature strong
genetic predispositions.

Although major efforts have been made to describe the
pathogenesis of childhood hearing loss, the underlying
mechanism remains unclear; only a few genes are known
or suspected to be associated with the disease. Here, we
focused on congenital hearing loss and otitis media-related
hearing loss; both are associated with clear genetic
predispositions. We used DisGeNet (https://www.disgenet.
org/) to generate a list of genes associated with hearing loss
(Piñero et al., 2017); we then employed a network-based
method to identify novel latent biomarkers and genetic
traits predisposing to congenital and otitis media-
associated hearing loss. We used a random walk with
restart (RWR) algorithm (Kohler et al., 2008; Macropol
et al., 2009) by setting genes associated with otitis media
or congenital deafness as the seed nodes to a STRING [19]
protein-protein interaction (PPI) network to discover new
candidate genes. A following screening procedure was
conducted to select essential candidates. Eighteen latent
congenital genes and 87 otitis media-associated genes were
identified; some were associated with either pathogenesis.
These may serve as novel biomarkers for clinical deafness
screening in children; they will help to identify the
pathogenetic mechanisms involved.

MATERIALS AND METHODS

Genes Associated with Hearing Loss in
Children
We focused on genes associated with hearing loss in children. The
American Speech-Language-Hearing Association (Alsarraf et al.,
1998; Dhooge, 2003) defines such hearing loss in children as
either acquired or associated with otitis media or congenital
deafness. We downloaded the relevant genes from DisGeNet

(Piñero et al., 2017) (https://www.disgenet.org/, version 7.0,
accessed in April 2021). In total, 175 genes were associated
with otitis media, while 72 were associated with congenital
deafness and 2 were associated with acquired hearing loss;
thus, we did not study acquired hearing loss. The genes
associated with congenital deafness and otitis media are listed
in Supplementary Tables S1, S2, respectively. We used a
network-based method to identify novel candidate genes
associated with either pathogenesis.

Network-Based Identification of Novel
Genes
PPIs are widely used to explore protein or gene-related problems.
Several studies have reported that compared with non-interacting
proteins, interacting proteins are more likely to have similar
functions (Ng et al., 2010; Hu et al., 2011; Chen et al., 2016a;
Cai et al., 2017; Zhao et al., 2019; Gao et al., 2021). Such
interactions can be used to identify novel genes that are
associated with known disease-related genes. We used the
STRING database (https://www.string-db.org/, version 10.0)
(Szklarczyk et al., 2015) to construct a PPI network; we then
applied the powerful, network RWR algorithm (Kohler et al.,
2008; Macropol et al., 2009) to discover novel candidate genes
associated with otitis media or congenital deafness. Human PPI
information collected in STRING is contained in “9606.protein.
links.v10.txt.gz”. Each PPI features two proteins identified by
their Ensembl IDs, as well as a confidence score indicating the PPI
strength. Each score ranges from 1 to 999 and is derived by
considering several types of PPIs. In fact, PPIs in STRING can not
only indicate the interactions between proteins but also reflect
functional associations of proteins. Thus, they can widely
measure protein associations. We used the PPIs to build a
network in which all 19,247 proteins served as nodes. Two
nodes were considered adjacent if and only if they formed a
PPI; thus, each edge was a PPI. We assigned a weight to each edge
for indicating the strengths of the PPI, which was defined as the
confidence score of the corresponding PPI. The network was
termed N.

The RWR algorithm is powerful. It simulates a walker that
commences at a node set and then randomly moves in the
network. The start nodes are termed seed nodes. The walker
delivers probabilities of seed nodes to all other nodes in the
network. Given a network and k seed nodes, each seed node is
assigned a probability of 1/k; the other nodes are assigned
probabilities of zero. These probabilities form a vector termed
P0. The vector is repeatedly updated as follows:

Pt+1 � (1 − r)ATPt + rP0, (1)

where A is the column-wise, normalized adjacency matrix of the
network and r is the restarting probability, which was set to 0.8 in
this study. Updating stops when Pt+1 and Pt are sufficiently close;
closeness is given by ‖Pt+1 − Pt‖L1 < 10−6. Pt+1 is the required
outcome of the algorithm. Based on this outcome, each node is
assigned a probability transmitted from the seed nodes. A higher
node probability is indicative of stronger associations with
seed nodes.
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We used the RWR program established by Li and Patra (Li and
Patra, 2010). Genes associated with congenital deafness or otitis
media were fed into the program, which ran on the PPI network
N. Nodes with probabilities higher than 10−5 served as raw
candidate genes for congenital deafness or otitis media.

Screening Procedure
Some raw candidate genes associated with congenital deafness or
otitis media can be identified using a network-based method.
However, several false-positives may be included in the results.
To eliminate such genes and select only valid candidates, we used
a screening procedure that featured three sequential tests.

Permutation Test
The RWR algorithm was executed on the PPI network N to
discover raw candidate genes. The structure of N may
influence the outcome. Some nodes are readily assigned
high probabilities because of their special locations in the
network. However, they may have low or no associations with
congenital deafness or otitis media. Thus, there is a need to
test the statistical significance of the probability that each raw
candidate gene is valid. Accordingly, we randomly generated
1,000 gene sets, each of which had the same number of genes
associated with congenital deafness or otitis media. For each
gene set, such genes were set as the seed nodes of the RWR
algorithm. Thus, each candidate gene was assigned a
probability in each random gene set. When all 1,000 sets
had been tested, each candidate gene had been assigned 1,000
probabilities. By comparing the probability on actual seed
nodes to the probabilities on randomly generated sets, the
statistical significance of each probability was revealed. We
used the Z-score to evaluate significance as follows:

Z − score(g) � P(g) − PM(g)
PSTD(g)

, (2)

where g is a raw candidate gene identified by the network-based
method, P(g) is the probability on actual seed nodes, and PM(g)
and PSTD(g) are the respective mean and standard deviation of
the probabilities on randomly produced sets. We set the selection
threshold for candidate genes to 1.96; this is a widely accepted
threshold when statistical significance is essential.

Association Test
The second test directly evaluated the associations between
candidate genes and congenital deafness or otitis media. For
each candidate gene, such associations can be measured by
associations between that gene and other genes associated with
either condition. Proteins that interact in STRING always exhibit
strong associations that can be quantified using confidence scores.
For proteins p and q, the confidence score is denoted as Q(p, q).
For each candidate gene g, we computed the maximum
association score (MAS) as follows:

MAS(g) � Max{Q(g, g′): g′
is a gene associated with congenital deafness or otitis media}

(3)

Genes with high MAS values are strongly associated with at
least one gene linked to congenital deafness or otitis media. Thus,
such genes may also be highly related to either condition. We set
the threshold for selection of essential candidate genes to 900; this
is the cutoff of the highest STRING confidence score.

Function Test
The last test further filtered candidate genes according to the
similarities between their functional terms and the functional
terms of genes associated with congenital deafness or otitis
media. If the functional terms of a candidate gene are similar to
the functional terms of a gene that is validly associated with either
condition, that gene may also be linked to one of the conditions. We
first used enrichment theory (Carmona-Saez et al., 2007; Huang
et al., 2011; Huang et al., 2012; Chen et al., 2016b; Chen et al., 2019)
to evaluate the associations between genes and functional terms (GO
terms and KEGG pathway terms). Given one gene and one
functional term, the gene set containing that gene and genes with
which it interacted (in the PPI network of STRING)was constructed;
another gene set containing genes annotated by the functional term
was built. The associations between the gene and the functional term
were calculated as the −log10 of the hypergeometric test p-value of
the gene sets constructed above. For any gene g, its associations with
all functional termswere computed and collected in a vector denoted
V(g). The similarity of two genesg andg’ (based on their functional
terms) can be evaluated by comparing their vectors as follows:

Λ(g, g′) � V(g) · V(g′)����V(g)
���� · ����V(g′)���� (4)

In a manner similar to MAS calculation, for each candidate
gene g, the maximum function score (MFS) was computed as
follows:

MFS(g) � Max{Λ(g, g′): g′
is a gene associated with congenital deafness or otitis media}

(5)

Essential genes can be selected by choosing an appropriate
MAS threshold.

Functional Enrichment Analyses on
Identified Genes
To explore biological functions associated with identified genes,
we applied gene ontology (GO) enrichment analyses using R
package topGO (https://bioconductor.org/packages/release/
bioc/html/topGO.html, v.2.42.0). The threshold of p-value
was set to 0.001 for selecting enriched GO terms in three
subclasses: biological processes (BP), cellular components
(CC) and molecular functions (MF).

RESULTS

We sought genes associated with pediatric congenital deafness or
otitis media. We used a network-based method to identify such
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genes. The entire procedure is illustrated in Figure 1. The
numbers of genes remaining after each filtration step are listed
in Table 1.

Congenital Deafness
Genes associated with congenital deafness were fed into the RWR
algorithm, which ran on PPI network N. Each node in the
network was assigned a probability. The selection threshold
for raw candidate genes was set to 10−5; this yielded 5,426
genes (Supplementary Table S3). We then engaged in
screening (i.e., filtration) to identify essential genes. First, we
used the permutation test to evaluate the statistical significance of
probability that each raw candidate gene was essential; the
Z-scores for all genes are listed in Supplementary Table S3.
In total, 367 candidate genes were assigned Z-scores greater than
1.96. These were fed into the association test, which assigned an
MAS to each gene (Supplementary Table S3). At a threshold of
900, 117 genes were selected; these were finally evaluated using
the function test. The MFS values are listed in Supplementary
Table S3. At an MFS threshold of 0.9, 18 genes were chosen.
These “putative genes” were considered to be closely associated
with congenital deafness; they are listed in Supplementary
Table S4.

For the obtained putative genes, their associations with
validated genes were investigated. We extracted all PPIs
between putative and validated genes. The confidence scores of

these PPIs are illustrated in a heat map, as shown in Figure 2. It
can be observed that each putative gene had some interacting
genes with confidence scores no less than 900, suggesting strong
associations with validated genes. This can be further inferred
that putative genes had special relationships with congenital
deafness.

Otitis Media
We used the method described above to identify putative otitis
media-associated genes. The RWR algorithm with genes
associated with otitis media as seed nodes was performed
on the PPI network N. The probabilities of all nodes were
obtained. We selected nodes with probabilities over 10−5; this
yielded 5,631 genes (Supplementary Table S5). These genes
were filtered as described above. The Z-scores, MAS values,
and MFS values are listed in Supplementary Table S5. Use of
thresholds of 1.96 for the Z-score, 900 for the MAS, and 0.96
for the MFS yielded 87 “putative genes” (Supplementary
Table S6).

Likewise, the PPIs between putative and validated genes
were investigated. A heat map was plotted to indicate the
strength of these PPIs, as shown in Figure 3. Also, each
putative genes had one or more interacting genes with
highest confidence (confidence score ≥900). It is suggested
that these putative genes may have special associations with
otitis media.

FIGURE 1 | Procedures used to identify new genes that might have roles in the development of childhood congenital deafness or otitis media-mediated hearing
loss. Genes associated with either pathogenesis were retrieved from DisGeNE and the STRING protein-protein interaction networks were explored. The genes and
networks were fed into a random walk with restart algorithm; we sought to discover new candidate genes. These genes were screened using three tests to select
putative genes.

TABLE 1 | Numbers of candidate genes remaining after each filtration step.

Cause
of childhood deafness

RWR Permutation test Association test Function test

Congenital 5,426 367 117 18
Otitis media 5,631 637 502 87
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GO Enrichment Analyses on Putative Genes
GO Enrichment Analyses on Congenital Deafness
Associated Putative Genes
For congenital deafness, 18 putative genes were obtained. These
genes were set as gene of interest and all available genes were set
as background for topGO. 18 enriched GO terms were obtained,
which are provided in Supplementary Table S7. These terms and
their p-values are also illustrated in Figure 4. Among these GO
terms, eight were BP GO terms, six were CC GO terms and four
were MF GO terms.

GO Enrichment Analyses on Otitis Media Associated
Putative Genes
For 87 putative genes associated with otitis media, we did the same
enrichment analysis. Results are available in Supplementary Table
S8. We obtained 65 enriched GO terms. These GO terms and their
p-values are shown in Figure 5. Of these 65 GO terms, fifty-two
belonged to BP, five belonged to CC and eight belonged to MF.

DISCUSSION

We used a network-based method to identify putative genes
associated with congenital deafness or otitis media. Below, we
discuss some genes.

Putative Genes Associated with Congenital
Deafness
We identified 18 putative genes, of which 5 were chosen for
detailed analysis (Table 2). The first is PRKACB

(ENSP00000359719), which encodes a catalytic subunit of
cAMP-dependent protein kinase. The enzyme is expressed in
hearing-associated organs in utero. In 2017, researchers from
Southeast University showed that mouse PRKACB regulated the
development of Lgr5+ hair cells (inner ear progenitor cells) (Cheng
et al., 2017). Therefore, PRKACB is functionally associated with
cochlear development; the cochlea is a sensorineural hearing organ.
Cochlear impairment and abnormalities are reportedly associated
with congenital hearing loss in children (O’malley et al., 1995;
Korver et al., 2017; Van Wieringen et al., 2019). It is thus
reasonable to expect that a regulator of cochlear development,
such as PRKACB, would be associated with congenial pediatric
deafness. We identified another putative gene with a similar
biological function. PRKACG (ENSP00000366488) encodes
another protein of the same complex. In 2016, researchers from
the University of Bristol confirmed that the gain-of-function
variant DIAPH1 caused macrothrombocytopenia and hearing
loss (Stritt et al., 2016). PRKACG acts downstream of DIAPH1,
thus participating in DIAPH1-related biological effects. PRKACG
may also be functionally connected to pediatric hearing loss.

The next putative gene is PAX2 (ENSP00000396259), which is
regarded as a key transcription factor that regulates the development
of multiple systems, including the central nervous system (Ziman

FIGURE 2 | Heat map to illustrate the associations between putative
genes and validated ones associated with congenital deafness. Row
represents putative genes and column indicates validated genes.

FIGURE 3 | Heat map to illustrate the associations between putative
genes and validated ones associated with otitis media. Row represents
putative genes and column indicates validated genes.
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et al., 2001) and the eyes (Adam et al., 1993). In 2006, researchers
from the McLaughlin Research Institute for Biomedical Sciences
reported that PAX2 interacted with EYA1 to regulate the
development of sensory regions in the inner ear (Zou et al., 2006).

Developmental abnormalities of these regions are directly associated
with congenital hearing loss (Kimura et al., 2018), implying that
PAX2 is a relevant putative gene involved in congenital pediatric
deafness.

FIGURE 4 | Gene ontology (GO) enrichment results for putative genes associated with congenital deafness. GO terms with p-value less than 0.001 are selected
and ranked by their p-values.

FIGURE 5 |Gene ontology (GO) enrichment results for putative genes associated with otitis media. GO terms with p-value less than 0.001 are selected and ranked
by their p-values.
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PRKX (ENSP00000262848) is also associated with congenital
pediatric hearing loss. A 2019 review concerning chromosomal
aberrations associated with endocrine abnormalities in children
confirmed that PRKX regulated the development of hearing
(Haltrich, 2019). PRKX is located on the X chromosome; it is
functionally connected to X-linked congenital hearing loss (Song
et al., 2012).

The next putative gene is MATK (ENSP00000378485); this
regulates signal transduction in hematopoietic cells (Grgurevich
et al., 1997; Lee et al., 2006). In 2017, a clinical case report in
JAMA Otolaryngology—Head and Neck Surgery stated that MATK
was associated with unilateral hearing loss and otorrhea (Costello
et al., 2017). Acute megakaryoblastic leukemia has been functionally
connected to unilateral, congenital hearing loss; the pathogenetic
backgrounds are related (Costello et al., 2017). MATK encodes
megakaryocyte-associated tyrosine kinase, which is structurally
similar to C-terminal Src kinase; notably, megakaryocyte-
associated tyrosine kinase is associated with acute
megakaryoblastic leukemia (Jhun et al., 1995). Therefore, MATK
might be involved in the development of ear tumors that cause
adaptive hearing loss.

Putative Genes Associated with Otitis
Media
We identified 87 genes putatively associated with otitis media
(Supplementary Table S6); we subjected 5 of these genes to
detailed analysis (Table 3). The first such gene is RAC3
(ENSP00000304283). Although there is insufficient direct
evidence that RAC3 is involved in otitis media, a clinical

genomic database (ClinVar Miner) (Henrie et al., 2018)
indicates that the Talkowski Laboratory of Massachusetts
General Hospital has demonstrated associations of RAC3
variants with otitis media. The next gene is HCK
(ENSP00000365012); this member of the Src tyrosine kinase
family regulates the innate immune response (Ernst et al.,
2002). HCK was previously reported to be specifically
associated with chronic otitis media and its major chronic
complications in children with hearing loss (Suri et al., 2016),
validating our findings. The next putative gene is ITK
(ENSP00000398655), which encodes an IL2-and T cell-
associated kinase. In 2008, the gene was reported to
potentially mediate the inflammation of otitis media (Juhn
et al., 2008). Furthermore, a report concerning early diagnosis
of PI3Kδ syndrome in a 2-year-old girl revealed an association
between ITK deficiency and recurrent otitis media (Saettini et al.,
2017).

FGR (ENSP00000363115; also known as SRC2), another
member of the Src tyrosine kinase family, is also associated
with otitis media. This gene has roles in immune responses
against pathogens in multiple organs, including ears (Kim
et al., 2008). Additionally, the gene has been widely reported
to participate in Epstein–Barr virus-associated malignancies
(Klein et al., 1988). In 2017, Epstein–Barr virus infection was
confirmed as a major etiological and pathological factor for
secretory otitis media in children (Vogelnik and Matos, 2017),
validating the link between FGR and otitis media.

CDC42 (ENSP00000314458) is an immune system-associated
gene; we found that it was closely associated with otitis media. In
2021, CDC42 deficiency was shown to be associated with

TABLE 2 | Five putative congenital deafness genes.

Ensembl ID Gene
symbol

Description Probability Z-score MAS MFS Supporting References

ENSP00000359719 PRKACB Protein Kinase CAMP-Activated
Catalytic Subunit Beta

1.036E-04 2.2076 999 0.9884 O’malley et al. (1995), Cheng et al. (2017), Korver
et al. (2017), Van Wieringen et al. (2019)

ENSP00000396259 PAX2 Paired Box 2 1.133E-04 5.0805 947 0.9877 Adam et al. (1993), Ziman et al. (2001), Zou et al.
(2006), Kimura et al. (2018)

ENSP00000262848 PRKX Protein Kinase X-Linked 1.018E-04 2.1608 987 0.9876 Song et al. (2012), Haltrich, (2019)
ENSP00000366488 PRKACG Protein Kinase CAMP-Activated

Catalytic Subunit Gamma
1.035E-04 2.1305 994 0.9862 Stritt et al. (2016)

ENSP00000378485 MATK Megakaryocyte-Associated
Tyrosine Kinase

6.746E-05 4.3589 986 0.9847 Jhun et al. (1995), Grgurevich et al. (1997), Lee
et al. (2006), Costello et al. (2017)

TABLE 3 | Five putative otitis media genes.

Ensembl ID Gene
symbol

Description Probability Z-score MAS MFS Supporting References

ENSP00000304283 RAC3 Rac Family Small GTPase 3 1.496E-04 5.0315 994 0.9984 Henrie et al. (2018)
ENSP00000365012 HCK HCK Proto-Oncogene, Src Family

Tyrosine Kinase
6.876E-05 3.8668 985 0.9959 Ernst et al. (2002)

Suri et al., 2016)
ENSP00000398655 ITK IL2 Inducible T Cell Kinase 6.657E-05 4.7676 925 0.9959 Juhn et al. (2008), Saettini et al. (2017)
ENSP00000363115 FGR FGR Proto-Oncogene, Src Family

Tyrosine Kinase
5.308E-05 2.3092 955 0.9947 Klein et al. (1988), Kim et al. (2008), Vogelnik

and Matos, (2017)
ENSP00000314458 CDC42 Cell Division Cycle 42 1.377E-04 2.2400 999 0.9946 Hoppe and Swanson, (2004), Kashani et al.

(2021)
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recurrent pneumonia, otitis media, and bacteremia (Kashani
et al., 2021). CDC42 interacts with another effector gene,
RAC1 (Hoppe and Swanson, 2004); a homolog of RAC1
(i.e., RAC3, discussed above) was shown to be associated with
hearing loss, confirming that CDC42 is linked to otitis media.

In summary, several putative genes are associated with the two
types of pediatric deafness. Their identification may provide
insights concerning the pathogeneses involved.

Functional Enrichment Analyses on Putative
Genes
For GO functional enrichment analyses on putative genes yielded
by our computational method, multiple significant GO terms
were identified. The detailed analyses on the top three enriched
GO terms ranking by p-values for congenital deafness and otitis
media were presented below.

For congenital deafness, the first enriched GO term is
cytoskeletal anchor activity (GO:0008093). According to
recent publications, mutations in cytoskeletal encoding
proteins have been shown to be associated with congenital
deafness (Riazuddin et al., 2006), reflecting the potential
associations between congenital deafness and cytoskeletal
anchor activity. The second enriched term is spectrin
binding (GO:0030507). In 2017, a recessive mutation on
spectrin associated gene has been shown to be associated
with congenital central deafness (Knierim et al., 2017),
validating this result. Furthermore, costamere (GO:0043034)
is the third enriched GO term (in CC) associated with
congenital deafness. According to recent next-generation
sequencing analyses (Schraders et al., 2011), costameres has
been shown to be associated with progressive hearing
impairment.

More GO terms were enriched by putative genes associated
with otitis media, including non−membrane spanning protein
tyrosine kinase activity (GO:0004715) and interleukin mediated
signaling pathway (GO:0038100, GO0035723). Non-membrane
spanning protein tyrosine kinase has been shown to be associated
with specific inflammatory effects and pathogen infections (Gu
et al., 2009; Rocha-Sanchez et al., 2013). Considering that otitis
media is associated with infection and inflammatory effects
around middle ears, it is reasonable for otitis media associated
genes to enrich in inflammatory effects. As for interleukin
mediated signaling pathways, middle ear inflammation has
been shown to be associated with interleukin related signaling
pathways, validating this result (Kerschner et al., 2006; Shi et al.,
2014).

Shared Putative Genes Associated with
Both Congenital Deafness and Otitis Media
By comparing the putative genes associated with congenital
deafness and otitis media, only one shared gene CDH1
(ENSG00000039068) was identified. The pathogenesis of
congenital deafness and otitis media are totally different
according to recent studies. Congenital deafness means the
hearing loss is present at birth linking the pathogenesis to

genetic factors or stimulations during pregnancy. However, as
for otitis media, generally, otitis media is caused by infections
and happens after birth. CDH1 has been widely reported to be
associated with hearing loss (Friedman and Avraham, 2009;
Kanavy et al., 2019). Specifically, CDH1 has been reported to be
associated with congenital deafness due to the pathogenic
alteration of inner ear but not middle ear (Friedman and
Avraham, 2009), which has totally different pathogenic
regions comparing with otitis media. As for otitis media,
CDH1 has been shown to participate in the pathogenesis of
otitis media via regulation on the inflammatory proliferative
responses against infections (Kurabi et al., 2013).Therefore,
although both subtypes of hearing loss have been shown to be
associated with gene CDH1, the contribution and regulatory
role of CDH1 on them are totally different, reflecting the
complex regulatory mechanisms for childhood hearing loss.

In summary, CHD1 is associated with two types of pediatric
deafness. Its dentification may provide insights concerning the
pathogeneses involved.

CONCLUSION

We used a network-based method to identify new candidate
genes involved in childhood hearing loss caused by congenital
deafness and otitis media. The genes included PRKACB, PAX2,
PRKX, PRKACG, MATK, RAC3, HCK, ITK, FGR, and CDC42.
They may be involved in the pathogenesis of childhood
hearing loss.
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