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Prediction and interpretation of 
deleterious coding variants in terms 
of protein structural stability
François Ancien1,2, Fabrizio Pucci1,2, Maxime Godfroid1,3 & Marianne Rooman1,2

The classification of human genetic variants into deleterious and neutral is a challenging issue, 
whose complexity is rooted in the large variety of biophysical mechanisms that can be responsible for 
disease conditions. For non-synonymous mutations in structured proteins, one of these is the protein 
stability change, which can lead to loss of protein structure or function. We developed a stability-
driven knowledge-based classifier that uses protein structure, artificial neural networks and solvent 
accessibility-dependent combinations of statistical potentials to predict whether destabilizing or 
stabilizing mutations are disease-causing. Our predictor yields a balanced accuracy of 71% in cross 
validation. As expected, it has a very high positive predictive value of 89%: it predicts with high accuracy 
the subset of mutations that are deleterious because of stability issues, but is by construction unable 
of classifying variants that are deleterious for other reasons. Its combination with an evolutionary-
based predictor increases the balanced accuracy up to 75%, and allowed predicting more than 1/4 of 
the variants with 95% positive predictive value. Our method, called SNPMuSiC, can be used with both 
experimental and modeled structures and compares favorably with other prediction tools on several 
independent test sets. It constitutes a step towards interpreting variant effects at the molecular scale. 
SNPMuSiC is freely available at https://soft.dezyme.com/.

Despite the large amounts of genomic data collected in the last decade and the multiple efforts to elucidate their 
links with phenotypic traits, an accurate and interpretative classification of the effects of genetic variants on var-
ious disorders remains a difficult goal to achieve. The high complexity of the problem is mainly due to the heter-
ogeneity of the molecular mechanisms underlying the diseases, most of which have still to be deeper understood 
to be useful at the clinical level. For example, a change in a single DNA base pair that occurs in a coding region 
can be synonymous, i.e. change the codon but not the amino acid, and perturb the gene expression level or 
the efficiency of the translational mechanism. Non-synonymous mutations that change both the codon and the 
associated amino acid can modify the biophysical properties of the encoded protein, such as its thermodynamic 
stability or solubility, or its functional properties by affecting the active site or the binding affinity for ligands and 
proteins partners. Moreover, the impact of a given variant crucially depends on its context within the genome: its 
deleteriousness can depend on the presence of other variants in the same or in other genes. Its effect also varies 
according to the cellular context. Indeed, some variants occur in proteins that play an essential role for the cell or 
the organism, which cannot be performed by any other protein. In such case, even a slightly destabilizing variant 
can be strongly deleterious. In contrast, some proteins perform functions that can very well be performed by 
other proteins, so that inactivating mutations do not cause diseases.

Among all the possible types of variants, the non-synonymous single nucleotide variants in coding genes 
(SNV) play an important role since they constitute more than half of the mutations known to be associated in 
human inherited disorders1. They are directly related to a wide range of pathological conditions among which 
Parkinson’s and Alzheimer’s diseases, and are involved in complex diseases such as cancers, in which the accumu-
lation of different types of genetic variants determine the tumor initiation and progression2.
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It is thus of primary interest, especially in the context of personalized medicine, to have computational meth-
ods to classify SNVs and identify those that are disease causing. Classification methods developed in the litera-
ture usually integrate different kinds of biological data in view of gathering the complexity of the phenomenon, 
and require only the amino acid sequence as input. Some of them, such as Provean3,4, SIFT5 or the Evolutionary 
Action method6,7, use as sole ingredient the evolutionary conservation in homologous proteins at the mutated 
position and in the neighborhood along the sequence. Though this information is represented by a single score, 
it corresponds to a mixture of several molecular effects, among which protein stability, solubility, function, and 
interactions. Understanding why a residue is conserved is impossible on the basis of the evolutionary data only. 
Other methods add further layers of information on top of this data, by considering for example structural alter-
ations in the biophysical characteristics of proteins, which are usually predicted from the sequence and some-
times derived from the structure when available; these methods include Mutation Tasser8, Mutation Assessor9, 
CADD10, Polyphen-211, and VIPUR12. The addition of contextual information about the protein-protein interac-
tion networks, the protein essentiality index, and the pathway in which the protein is involved appear to signif-
icantly improve the performances, as shown in DEOGEN13,14 and SuSPect15. These various computational tools 
use machine learning techniques to predict from the considered features the effect of missense mutations.

Unfortunately, the accuracy of the prediction methods remain limited, with often a quite high false-positive 
rate with the detrimental consequence that many of the predicted deleterious variants observed in clinical 
whole-exome sequencing turn out to be neutral16. Frequently moreover, the computational methods only focus 
on reaching the highest variant classification accuracy on a given dataset rather than predicting and understand-
ing the modifications that occur at the molecular scale and are responsible for the altered phenotype; yet this 
information is a prerequisite for the rational design of drugs or treatments. As a matter of fact, although protein 
structure can help getting insight into in the molecular impact of mutations, it is rarely (fully) exploited by variant 
classification methods, except in a few cases12,17–19.

The present analysis aims at deepening the understanding of the relation between protein structural sta-
bility and variant deleteriousness. To evaluate the stability of a given protein structure and its change upon 
single-site mutations, we used knowledge-based statistical mean-force potentials derived from a dataset of 
three-dimensional (3D) protein structures. Combinations of these potentials, performed with the help of differ-
ent artificial and probabilistic neural network architectures that include the solvent accessibility of the mutated 
residue to modulate the importance of the energetic terms, were used to classify SNVs into neutral and delete-
rious. Note that the primary goal of this analysis is not to reach the highest prediction accuracy but rather to get 
insight into the functional and stability characteristics of protein variants and their relation with the phenotypic 
traits. Our objective also involves predicting with high accuracy the subset of mutations that are deleterious due 
to stability problems.

Methods
Non-synonymous SNV datasets for training and testing.  The training dataset was built by com-
bining the annotated, non-synonymous SNV data from three different databases: DbSNP20, SwissVar21 and 
HumSaVar22. In a first stage, we combined all SNVs while avoiding repeats. Note that variants occurring in more 
than one database with different neutral/deleterious annotation were discarded. The SNVs were characterized 
in these databases by the protein’s UniProt code22 and the variant’s residue number, without any reference to a 
possible 3D structure. We had thus, in a second stage, to identify the subset of variants introduced in proteins 
that have an experimental structure, using the SIFTS webserver23. We only considered the subset of mutations 
introduced in:

•	 globular proteins, or cytoplasmic or extracellular domains of membrane proteins;
•	 proteins with an X-ray structure available in the Protein DataBank24 (PDB) of resolution of 2.5 Å at most.

Some of the PDB protein structures have not exactly the same sequence as the corresponding entry in the 
UniProt database, but contain one or several mutations. We only retained the subset of SNVs of residues that 
are far from all these additional mutations by an inter-Cα distance of 10 Å at least, to avoid direct interactions 
between them. The final dataset is referred to as S and is reported in Table S1 of Supplementary Material. It con-
tains 5,302 variants inserted in 1,016 different proteins, 1,301 of which are annotated as polymorphic and 4,001 
as deleterious.

To test our predictors and compare their performances with commonly used classification tools, we applied 
them to four test sets used by VIPUR12: SH (variants in Human proteins), SNH (in Non-Human proteins), SCV (from 
the ClinVar dataset25) and SSSC (from the Simon Simplex Collection26). They are described in Supplementary 
Material (Tables S2–S5).

Statistical Potentials and other structural features.  We used the statistical potential formalism to 
evaluate the stability of a protein and its change caused by non-synonymous SNVs, and to understand the link 
with their polymorphic or pathogenic effect. These potentials are knowledge-driven mean force potentials that 
are extracted from a dataset of well-resolved X-ray protein structures27–31. The energetic contribution ΔW asso-
ciated to the sequence-structure association (s,c), where s and c are sequence and structure elements respectively, 
is obtained from the inverse Boltzmann law as:
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where kB is the Boltzmann constant, T the absolute temperature, and P(c,s), P(c) and P(s) are the probabilities of 
observing (c,s), (c) or (s) elements. These probabilities are approximated in terms of the number of occurrences of 
these elements in a reference dataset of protein structures. The sequence elements s are amino acid types and the 
structural motifs c can be interresidue distances, torsion angle domains or solvent accessibilities. Higher order 
potentials, in which different combinations of sequence and structure elements are considered, have also been 
utilized in this investigation. For example, a 3-term potential describing the association between one structure 
and two sequence elements is defined as:

Δ = −
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For sake of simplicity, such potentials are referred to as ΔWssc in what follows. Further generalizations and 
technical details can be found in our earlier papers31,32.

We used here 13 statistical potentials, listed in Table S6, which can be grouped in three classes according to 
the type structural descriptor c: (1) distance potentials describing tertiary interactions, in which c is the distance 
d between the average side chain geometric centers of two amino acids; (2) solvent accessibility potentials, in 
which c is the solvent accessibility a of a given residue; (3) torsion potentials describing local interactions along 
the sequence, in which c is the main chain torsion angle domain t of a residue. Several combinations of these 
basic descriptors were also used. Besides these potentials, we also considered two biophysical characteristics: the 
solvent accessibility A of the mutated residues and the difference in volume ΔV between the wild type and the 
mutated residues32.

These potentials and structural features were used to estimate, for each mutation of our SNV dataset S, the 
corresponding change in volume ΔV and in folding free energy ΔΔWi, with = ...i 1, 13. In a first step, the dis-
tributions of ΔΔWi, A and ΔV were compared between deleterious and neutral variants from S, in view of get-
ting insight into the relation between the structure and stability characteristics and the pathogenicity of the 
variants. In a second stage, all the potentials and features were combined to set up a predictor of variant 
deleteriousness.

Utilizing neural network architectures for variant classification.  Pathogenicity prediction from ther-
modynamic and thermal stability changes.  The first approach for predicting on a structural basis which variants 
are disease-causing and which are not consists in using our PoPMuSiC32 and HoTMuSiC33 algorithms, which 
predict changes in thermodynamic and thermal stabilities upon single-site mutations from protein 3D structures. 
More precisely, PoPMuSiC uses a combination of the 13 statistical potentials and the two structural features listed 
in Table S6 to estimate the values of the folding free energy changes upon mutation:

∑α α α αΔΔ = ΔΔ + Δ + Δ +
=

+ −G A W A V A V A( ) ( ) ( ) ( ),
(3)i

i i
1

13
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where ΔV+ and ΔV− are two volume terms defined as: θΔ = ±Δ ||Δ ||±V V V( ) , with θ being the Heaviside func-
tion, which take into account the potentially destabilizing effect due to the creation of holes or stress in the protein 
interior. The α A( )i  functions are sigmoids that depend on the solvent accessibility A of the mutated residues:
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with iω , νi, iξ  and φi parameters that were identified so as to minimize the mean square deviation between pre-
dicted and observed stability changes in a dataset of mutations with experimentally characterized ΔΔGs; note 
that this dataset has a negligible overlap with S (one mutation). For further technical details about the choice of 
parameters or the construction of the model, see the original PoPMuSiC papers32,34.

The classification of the variants of the S dataset into deleterious and neutral was performed on the basis of 
the computed ΔΔG values: SNVs with a predicted ΔΔG higher than a threshold value, which correspond to the 
most destabilizing mutations, were predicted as deleterious, whereas those with lower ΔΔG were predicted as 
neutral. The value of the threshold was identified so as to optimize the values of the balanced accuracy (BACC):

BACC TP
TP FN

TN
TN FP2( ) 2( )

,
(5)

=
+

+
+

where TP, TN, FP, FN are the true positive, true negative, false positive and false negative predictions, respectively. 
Positive is chosen to correspond to deleterious variants and negative to neutral ones.

Similarly, we also used the thermal stability predictor HoTMuSiC33 for deleterious/neutral classification. This 
algorithm predicts changes in melting temperature ΔTm upon mutations rather than changes in folding free 
energy ΔΔG. These two quantities are anti-correlated only in a first approximation, and yield two different infor-
mations about protein stability35. HoTMuSiC uses a distinct combination of the statistical potentials:
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+
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where the β A( )i  functions are sigmoids of the form specified in Eq. (4), and Nr  is the number of residues in the 
protein. The parameters in the A( )iβ  functions, as well as a and b, where identified using as cost function the mean 
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square deviation between experimental and predicted ΔTm s on a dataset of characterized mutants, that displays 
only a very small intersection with S (3 mutations only). Note that the number of energy terms has been restricted 
to nine because of the smaller size of the ΔTm learning dataset, to avoid overfitting.

Using a similar procedure as for the ΔΔG predictions, a given variant of the S dataset is considered as delete-
rious if its ΔTm value is smaller than a given threshold, which means that the variant provokes a strong thermal 
destabilization; otherwise it is predicted as neutral. Again, the threshold value was identified using the BACC 
score as cost function.

Stability-based pathogenicity index using an artificial neural network.  Using a different combination of the same 
potentials and two structural features listed in Table S6, we set up a specific predictor of the deleteriousness of a 
mutation based on stability criteria. It has the peculiarity to relax the hypothesis assumed in the previous section 
that only destabilizing mutations are likely to be deleterious. Indeed, although most deleterious mutations are 
destabilizing, some stabilizing mutations can also cause diseases, usually because they affect the protein function, 
as observed earlier36,37. To take this into account, we considered the stabilizing and destabilizing statistical poten-
tial contributions separately, and separated the potential terms into their positive and negative parts:

W W W( ) , (7)i i iθΔΔ = ±ΔΔ ||ΔΔ ||±

and used them to define the stability-based pathogenicity index I:
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The functions φ ± A( )i  are solvent accessible-dependent sigmoids of the form of Eq. (4). The number of param-
eters related to the potentials are here almost doubled compared to the PoPMuSiC model structure of Eq. (3).

The model’s parameters were optimized using the double layer artificial neural network (ANN) schematically 
depicted in Fig. 1a, using as learning set the annotated SNVs from the S dataset and as cost function the mean 
square deviation between I and the annotated variant effect, with deleterious defined as 1 and neutral as 0. The 
mutations were then considered as deleterious when the pathogenicity index is larger than a given threshold value 
ψ and neutral otherwise. The threshold value was optimized so as to maximize the BACC score (Eq. (5)) of the 
classification. To evaluate the performance of the method, we used a 5-fold cross-validation procedure. We also 
tested other validation strategies, among which 10-fold cross validation, with comparable results.

By construction, this new model allows predicting as deleterious both stabilizing and destabilizing mutations. 
It is a striking illustration that elucidating the biophysical mechanisms underlying the variant effects can be used 
to guide the model architecture and contribute to improve the classification performances and the understanding 
of the data.

Stability-based pathogenicity index using a probabilistic neural network.  Probabilistic neural networks (PNN)38 
have architectures that are very different from ANNs, and are utilized for classification purposes. The idea behind 
their construction consists in a Bayes classification strategy through the estimation of the probability density 
function (PDF) for each considered category, based on a number of characteristics of the elements to be classified. 
PNNs are composed of four layers, as shown in Fig. 1b. The input layer contains the features characterizing the 
considered variant, chosen here to be: → = ΔΔ Δ Δ+ −X W V V A( , , , )i , with i 1, , 6= ...  (see Supplementary 
Material for details). The second layer, called pattern layer, contains as many nodes as there are samples in the 
training set. Each node, labeled as j, contains a probability value computed from the comparison between the 
feature vectors of the input variant (X

→
) and of the jth sample (→Xj), and estimated via a multivariate Gaussian dis-

tribution centered on →Xj:
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Figure 1.  Schematic representation of: (a) the artificial neural network and (b) the probabilistic neural network 
used in the classification of the variants.
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where p is the number of features in the input layer and Σ the p × p-dimensional covariance matrix of the PDF, 
considered here to be diagonal. Usually, PNNs use equal covariances for all features, which we do not assume here, 
hence allowing every feature to contribute with a different weight to the pathogenicity of a mutation. The elements 
of this Σ-matrix are parameters to be optimized. In the summation layer, the PDFs of the samples that belong to the 
same category - here neutral or deleterious - are summed, thus defining the category PDFs PD and PN:

P X
n

P X P X
n

P X( ) ( ) ; ( ) ( ),
(10)D j deleterious N j neutral

D
1

{ }
j N
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{ }
j∑ ∑
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where nD and nN are the number of disease-causing and neutral variants in the training dataset, respectively, and 
η1 and 2η  two parameters to be optimized. The output layer contains the result of the classification according to the 
rule that a variant with feature vector X

→
 is deleterious if P X P X( ) ( )D N

→
>

→
 and neutral otherwise. The parameters 

of the model, i.e. η1, 2η  and the p diagonal elements of the covariance matrix Σ, are identified so as to minimize the 
BACC score on the variants of the S training set. Again, all performances are evaluated in 5-fold cross 
validation.

Combining stability-based pathogenicity index with evolutionary information.  Structural stability and evolution-
ary information are entangled but distinct notions. On the one hand, biophysical constraints, including stability 
but also solubility, aggregation propensity, interactions and function, act on natural selection, thus affecting the 
evolution of proteins, while on the other hand, natural selection guides mutations, which in turn have an impact 
on the biophysical properties of proteins.

In our last predictor, both types of information are joined to obtain a more complete picture of the variant 
effects. We would like to stress that, in contrast to the black-box machine learning approach usually employed 
in variant classification, we tested concretely whether the stability change due to a residue substitution impacts 
directly on the variant’s deleteriousness, taking also into account the role of the evolutionary pressure.

The model structure employed is a simple combination of the Provean3,4 score, noted PRO, with the patho-
genicity index I defined in Eq. (8). The new index, called  , is defined as:

 γ γ γ= + + .I PRO (11)i 2 3

The three coefficients γi as well as the classification threshold were identified by optimizing the BACC score on 
the S dataset. Again, all tests were performed in strict 5-fold cross-validation. We call this predictor SNPMuSiC.

Results and Discussion
Analysis of the statistical potentials and other structural features.  Let us start analyzing the sol-
vent accessibility A of the mutated residues, which is one of the structural attributes known to be related to variant 
deleteriousness18. Indeed, mutations in the core are usually more stabilizing or more destabilizing with respect to 
surface mutations, since buried residues play a special role both in the early folding stages and in the stability of 
the folded structure. As a consequence, core residue substitutions are more likely to cause structural rearrange-
ments and/or the loss of protein function, and have thus a higher probability to be deleterious for the organism. 
This is what we observe in Fig. 2a: variants have a higher probability to be disease-causing if the mutation is in a 
buried region, defined as A < 20%, while the neutral variant distribution shows only a mild dependence on A with 
a weak decrease of the probability for large A-values.

The second structural feature we considered is the change in volume ΔV upon residue substitution. We found 
that in the totally and partially buried regions, up to a solvent accessibility A ≤ 60%, the substitutions from smaller 
into larger amino acids (positive ΔV s) have a higher probability to be deleterious, and so are, albeit to a much 
smaller extent, the substitutions from larger into smaller amino acids (negative ΔV s), as shown in Fig. 2b. In 
other words, substitutions that create stress or holes in the protein interior are more likely to be deleterious; holes 
are, however, easier to manage through limited structural rearrangements than stress. On the protein surface, 
defined as A > 60%, mutations from smaller to larger residues still have a higher probability to be disease-causing, 
but less than in the core (Fig. 2c), whereas no difference is observed for substitutions from larger to smaller 
residues. Note that the differences between deleterious and neutral variant distributions, both for the solvent 

Figure 2.  Probability density distributions of deleterious mutations (red curve) and neutral mutations (blue 
curve) for: (a) the solvent accessibility A (0–100%) of the mutated residues; (b) the change in volume ΔV (in Å3) 
for residues with A ≤ 60%; (c) the change in volume ΔV for residues with A > 60%; in our conventions, 
mutations of smaller into larger residues have a positive ΔV value.
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accessibility and the volume change, are statistically significant, as measured by a very low Kolmogorov-Smirnov 
(KS) test P-value shown in Table S6.

Next we compared the probability density functions of deleterious and neutral mutations for the changes in 
folding free energy ΔΔW computed by each of the 13 statistical potentials listed in Table S6. We can classify the 
results into three classes, whose typical behavior is depicted in Fig. 3a–c. In the first class, disease-causing vari-
ants are associated with both highly stabilizing and highly destabilizing values. In class 2, the deleterious variants 
are more frequently associated with destabilizing mutations but not with stabilizing mutations. In the last class, 
the difference between deleterious and neutral distributions is not statistically significant, as shown by a KS-test 
P-value larger than 0.05. Note that the biophysical interpretation of the neutral and deleterious variant distribu-
tions is here less obvious than for solvent accessibility and volume changes, since statistical potentials describe 
complex interactions between sequence and structure factors.

Classification Performances in Cross Validation.  The structural and stability features analyzed in the 
previous section were used, alone or in combination, to classify single-site mutations into deleterious or neutral, 
as described in the Methods section. The performance of this classification was evaluated in 5-fold cross valida-
tion at the mutation level by training the model on 4/5 randomly chosen mutations that belong to the S dataset 
and applying it on the remaining entries. This procedure was repeated five times, considering each of the five sub-
sets in turn as test set. The average scores are reported in Table 1. Another 5-fold cross-validation was performed 
at the protein level, by dividing the proteins rather than the mutations into five subsets; the results are shown in 
Table S7. No statistically significant differences are observed between the two types of cross-validation scores, as 
estimated by the DeLong test39.

Strikingly, the variant classification based solely on solvent accessibility gives quite good results, with a BACC 
score of 0.68, as expected by the large dissimilarity between deleterious and neutral variant distributions shown 
in Fig. 2a. This result again demonstrates the important role of core residues in folding, structure and stability, 
and their sensitivity to mutations.

The classifications based on the prediction of thermodynamic and thermal stability changes upon mutations 
computed by PoPMuSiC (Eq. (3)) and HoTMuSiC (Eq. 6)), respectively, yield BACC scores of 0.62 and 0.63; the 
neutral and deleterious variant distributions for PoPMuSiC are shown in Fig. 4a. There is thus a significant, but 
limited, correlation between destabilization and deleteriousness. Two reasons can be invoked to explain why this 
correlation is not higher. The first is that deleteriousness can be caused by destabilization but also by other factors. 
The second explanation is that not only destabilizing but also stabilizing mutations can be deleterious, as seen 
in Fig. 3a. To illustrate this important point, we describe some disease-causing variants associated with a gain in 
structural stability in the next subsection.

Figure 3.  Probability density distributions of deleterious mutations (red curve) and neutral mutations (blue 
curve) for the changes in folding free energy ΔΔW (in kcal/mol) computed with the following statistical 
potentials: (a) the distance potential WsdΔ ; (b) the distance potential WsdsΔ ; (c) the torsion angle and solvent 
accessibility potential ΔWsta; in our conventions, positive WΔΔ  values correspond to destabilizing mutations.

Method Sensitivity Specificity PPV NPV BACC Threshold AUROC

PoPMuSiC 0.65 0.62 0.84 0.37 0.63 0.75 kcal/mol 0.68

HoTMuSiC 0.59 0.65 0.84 0.34 0.62 −1.8 °C 0.66

Solvent Accessibility 0.71 0.66 0.86 0.42 0.68 18.0% 0.72

PNN 0.69 0.72 0.88 0.43 0.71 — 0.76

ANN 0.70 0.72 0.89 0.44 0.71 0.74 0.77

Provean 0.85 0.58 0.86 0.56 0.72 −2.5 0.80

SNPMuSiC 0.79 0.71 0.89 0.52 0.75 0.66 0.83

Table 1.  Performance of the different prediction methods in mutation-based 5-fold cross validation on the 
learning set. Sensitivity is defined as TP TP FN/( )+ , specificity as +TN TN FP/( ), positive predictive value 
(PPV) as +TP TP FP/( ), and negative predictive value (NPV) as +TN TN FN/( ). The scores and threshold 
values correspond to averages on the 5-fold cross-validation experiments. The values in bold indicate the 
highest scores in each category; the AUROC score in bold is statistically different from the other AUROC 
scores, as estimated by DeLong’s test.
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To take into account that both stabilizing and destabilizing mutations can cause diseases, we set up two new 
classifiers that use the same structural features and statistical potentials as PoPMuSiC and HoTMuSiC but are 
based on two different neural network architectures, an ANN (Eq. (8)) and a PNN (Eq. (10)). These two classifiers 
both reach a BACC score of 0.71; the neutral and deleterious variant distributions of the ANN model are shown 
in Fig. 4c. As expected, these two models take more properly into account the weight of the different energy con-
tributions in the determination of the variant deleteriousness. The fact that the ANN and PNN model structures 
yield the same score suggests that it could correspond to the maximum performance that can be obtained from 
the features considered.

Quite interestingly, the Provean classifier3,4 reaches the same score as our ANN and PNN models (0.07 higher), 
though the former is based on evolutionary information that mixes stability with other biophysical characteris-
tics such as solubility and activity while the latter purely exploits stability information. The variant distributions 
obtained with this predictor are depicted in Fig. 4b. A closer analysis shows, however, some important differences. 
Our ANN and PNN prediction methods have a sensitivity of about 0.70 that is much lower than the Provean 
value of 0.85, and a specificity of 0.72 that is much higher than the Provean value of 0.58 (Table 1). The high 
specificity and low sensitivity of our ANN and PNN classifiers come from their number of false positives being 
reduced by nearly 50% compared to Provean, as well as a larger false negative rate. This result can be explained as 
follows: variants predicted as strongly stabilizing or destabilizing are usually well classified as disease-causing as 
they are very likely to have an impact on the phenotype; this accounts for the low false positive rate. Conversely, 
our ANN and PNN predictors are unable, by construction, to predict the deleterious effects due to biophysical 
characteristics other than stability; this rationalizes the high number of false negatives.

Our last and best predictor, that we call SNPMuSIC, combines the deleteriousness index I of the ANN model 
(Eq. (8)) with the Provean score, thus defining the   index (Eq. (11)). This model reaches the highest BACC 
score, i.e. 0.75, and the highest Area Under the Receiver Operating Characteristic curve (AUROC score), i.e. 0.83. 
The associated distributions of neutral and deleterious variants are quite well separated as shown in Fig. 5. This 
predictor has BACC and AUROC scores that are more than 3% higher than both Provean and ANN, which is 
statistically significant (P-value < 10−4 using a bootstrap test). It performs even better than more complete classi-
fication methods, based on a whole range of sequence and structural features, such as Polyphen-211. Strikingly, 
SNPMuSiC increases the sensitivity of the ANN and PNN models up to 0.79, and almost maintains their high 
specificity value (0.71) (Table 1).

Classification Performances on the Test Sets.  To analyze in more detail the performances of our pre-
dictors, we applied them to four different test sets SH, SNH, SCV and SSSC taken from12 and specified in Tables S2–
S5. In contrast to our learning set, these sets do not contain only well resolved X-ray structures but also structures 

Figure 4.  Probability density distributions of deleterious mutations (red curve) and neutral mutations (blue 
curve) for (a) the change in folding free energy ΔΔG computed by PoPMuSiC (Eq. (3)) (in kcal/mol), (b) the 
Provean score3,4, and (c) the pathogenicity index I computed by the ANN model (Eq. (8)).

Figure 5.  Probability density distribution of deleterious mutations (red curve) and neutral mutations (blue 
curve) for the pathological index   (Eq. (11)) computed by SNPMuSiC. The distribution curves in the high 
confidence intervals, which lie from either side of the two vertical lines, are depicted on a white background.
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obtained by comparative modeling. This test amounts thus to evaluating the performance of our predictors on 
low-resolution structures. They were compared with the commonly used deleteriousness predictors Polyphen-211, 
Provean3,4, CADD10, SIFT5 and VIPUR12, which use sequence and sometimes structural features but no contex-
tual (or systems biology) information. The results of these predictors were taken from VIPUR’s article12.

The first two test sets correspond to human variants from HumVar11 and to non-human variants, respectively. 
We excluded from the former set the variants present in the training sets of our method and of Polyphen-2, as 
well as the proteins whose 3D structure was modeled from templates that have less than 30% identity with respect 
to the target sequence to avoid incorrectly modeled structures. The results are shown in Table 2. SNPMuSiC has 
the highest specificity and PPV on both test sets, and the highest BACC on the non-human set SNH. In contrast, 
Polyphen-2, Provean and VIPUR have better sensitivity and NPV.

We also evaluated the performances on the two other sets SCV and SSSC, which contain neutral and 
disease-causing human variants from ClinVar25 and de novo missense mutations of the Simon Simplex Collection 
(SSC)26, respectively. The results are shown in Table S8. Here, we could not filter out incorrect 3D models, as we 
do not have access to the sequence identity between the target and template sequences. This could explain why 
sequence-based predictors sometimes perform better than structure-based ones on SCV. In spite of this, the spec-
ificity and PPV scores of SNPMuSiC are the highest on both sets.

This leads us to the conclusion that SNPMuSiC is also applicable to mutations in proteins with low-resolution 
(modeled) structures, which drastically increases its application possibilities. Its strength is rooted in its high PPV 
and specificity for all test sets analyzed, compared to other commonly used sequence- or structure-based classifi-
cation tools. Hence, the deleterious mutations predicted by SNPMuSiC have a large chance of being so. This is in 
accordance with its construction: it only predicts mutations that are deleterious because of stability reasons, and 
misses some other deleterious mutations that are instead caused by other biophysical mechanisms.

Link between protein stabilization and disease.  While destabilizing mutations can clearly be deleteri-
ous as they are likely to cause structural modification which can negatively impact on protein function, it is less 
obvious that variants with a stabilizing effect can also be disease causing. To clarify this point we analyzed the ten 
deleterious mutations of the variant dataset S that are predicted to be the most thermodynamically stabilizing by 
PoPMuSiC; they are reported in Table 3. All the mutated residues are located in the protein core, with an accessi-
bility lower than 15%. Note that the imperfect correlation of thermodynamic and thermal stabilities35 is reflected 
in the imperfect anticorrelation between PoPMuSiC’s ΔΔG and HoTMuSiC’s ΔTm prediction values.

Obviously, the PoPMuSiC and HoTMuSiC-based classifiers wrongly predict these ten mutations as neu-
tral, since only destabilizing mutations have a chance to be classified as deleterious by these two models. In 
contrast, both our ANN-based predictor and SNPMuSiC, which are designed to be able to predict stabilizing 
disease-causing mutations, correctly classify all ten mutations as deleterious.

It is instructive to briefly analyze the biophysical mechanisms that are involved in the pathogenic phenotype 
of these SNVs caused by protein stabilization. These are taken from the annotations of the variants reported in the 
Uniprot database22. As shown in Table 3, the protein stabilization leads to a decrease of the enzymatic activity in 
the majority of the cases, which can be explained by the mutation being close to the protein active site or inducing 
inhibiting allosteric effects. Other mutations cause the change in affinity for ligands or protein partners40,41 or 
affect post-translational modifications sites42.

In summary, this investigation shows that biophysical knowledge at the molecular level - in this case, the fact 
that both strongly stabilizing and destabilizing mutations are likely to cause diseases - can guide the design of 
the model structures, improve the classification performances and lead to a deeper understanding of the variant 
effects.

Method Sensitivity Specificity PPV NPV BACC AUROC

Human Variants

VIPUR 0.87 0.55 0.83 0.62 0.71 0.77

Polyphen-2 0.95 0.33 0.78 0.71 0.64 0.70

Provean 0.94 0.39 0.80 0.73 0.67 0.72

SNPMuSiC 0.76 0.60 0.83 0.49 0.68 0.74

Non-Human Variants

Polyphen-2 0.96 0.30 0.77 0.78 0.63 0.73

Provean 0.94 0.34 0.77 0.70 0.64 0.70

SNPMuSiC 0.78 0.54 0.80 0.51 0.66 0.70

Table 2.  Comparison of the performances of the different predictors on the test sets SH and SNH. These datasets 
have no overlap with the training sets of Polyphen-2 and SNPMuSiC. For VIPUR, the scores for SH are those 
labelled as being cross validated in12, while for the SNH set, no cross validated scores are available. For the 
sequence-based method Provean, the dataset overlap has not been considered, although it plays a role in the 
identification of the threshold values. See Table 1 for further details. The values in bold indicate the highest 
scores in each category; the AUROC scores that are not significantly different from the highest score (as 
estimated by a DeLong test P-value ≥ 0.05) are also in bold.
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Reliability of structural stability prediction.  Our SNPMuSiC method reaches the very high positive 
predicted value (PPV) of 89%, as shown in Table 1, which indicates that when a mutation is predicted as deleteri-
ous, it has a large probability of being so. The negative predictive value is much lower, 52%, indicating that when 
a mutation is predicted as neutral, it has still 50% chance of being disease-causing, albeit for a reason that is not 
related to stability.

The idea here is thus to identify a subset of mutations, whose pathogenicity index   falls above a certain con-
fidence threshold and whose prediction reaches an even higher level of accuracy. For these mutations, the protein 
stability is the main contributing factor to the variant’s deleteriousness. We also identified another subset of muta-
tions, with   below another confidence threshold, which are predicted as neutral with a good accuracy. This 
strategy is quite useful in the perspective of combining SNPMuSiC with other variant effect predictors that are 
based on different biophysical characteristics such as aggregation propensities or flexibility.

Setting the D confidence threshold equal to 0.9, we find that the PPV reaches 95% on the subset Shigh with 
≥ D. This subset contains about 1,500 mutations, which corresponds to 27% of the whole S set. Here we can 

be almost sure of the deleteriousness of the mutations and of its molecular cause. Indeed, combining the 
SNPMuSiC prediction with the outputs of PoPMuSiC and HoTMuSiC, we can determine if they are deleterious 
due to thermodynamic or thermal stabilization or destabilization.

With the N  threshold for neutral mutations equal to 0.5, we obtain an NPV of 72% on the subset Slow for 
which ≤ N . This subset contains about 700 mutations, thus about 13% of the total S set. For these mutations, 
we have a good indication of their neutral impact on the phenotype.

The BACC score computed on the subsets characterized by ≥ D   and  N≤ , representing 40% of the S 
set, is also significantly improved and reaches 0.87. The SNPMuSiC distribution for deleterious and neutral vari-
ants at both sides of the confidence thresholds are shown in Fig. 5.

Conclusion
Here we made a further step towards the prediction of the biophysical causes of the deleteriousness of 
non-synonymous SNVs. We focused on protein stability which guides a series of crucial biophysical mechanisms 
that encompass folding, interactions, and function. Our analysis can be extended and generalized to all other 
types of biophysical characteristics that play a role at the protein level and could be at the basis of deleteriousness, 
such as solubility, aggregation, allostery, flexibility, and catalytic activity. This will lead to a complete view of the 
relation between the effect of SNVs at the molecular level and disease, and pave the way towards personalized 
medecine.

Let us give a flavor of the next stages of our quest. We will include the changes caused by mutations on the 
protein aggregation properties, which are not directly related to protein stability43 even though they are frequently 
considered as correlated. Other factors that we will add to this analysis is the SNV effect on protein activity and on 
protein-protein interaction networks40,44, which are undoubtedly important factors in the initiation of diseases.

Finally we would like to underline the importance of using the 3D structures of the proteins in which SNV 
occur to predict and interpret their biophysical and disease-causing effects. This data is essentially overlooked in 
most commonly used deleteriousness classification methods, which drastically limits their interpretative power. 
Two reasons can be invoked to explain this shortcoming. On the one hand, protein sequences are much easier to 
handle than protein structures, and on the other hand, many proteins have no available experimental structure. 
This last issue has, however, to be relativized, as many protein structures can be obtained through comparative 
modeling. Given that our methods use coarse-grained representations of protein structure, they can be applied 
on protein models with only a small loss of accuracy45. We would like to end by stressing the broad applicability 
of structure-based predictors, as it has been estimated that almost half of all structured proteins have either an 
experimental or reliably modeled structure46.

Protein Chain Mutation Biophysical effect
GΔΔ  PoPMuSiC 

(kcal/mol)
ΔTm 
HoTMuSiC (°C)

I index 
ANN

  index 
SNPMuSiC

1m6i A E493V Increase of NADH affinity −2.24 1.7 1.00 4.8

2wzb A D163V Decrease of enzymatic activity −1.62 1.0 1.00 4.1

3hcn A T283I Decrease of enzymatic activity −1.46 1.1 0.92 1.9

2izz A G206W Loss of function −1.35 2.8 1.00 1.4

2nt0 A D399Y Decrease of enzymatic activity −1.31 0.8 1.00 4.4

3f9m A G385V Decrease of enzymatic activity −1.23 −0.2 0.84 1.3

4do4 A R329W Decrease of enzymatic activity −0.99 0.3 0.99 2.3

1aly A G227V Loss of ligand binding −0.96 1.8 0.99 1.7

4az3 A S23Y Loss of phosphorylation −0.95 1.8 1.00 0.7

2nt0 A D380H Decrease of enzymatic activity −0.86 0.3 1.00 3.1

Table 3.  List of the 10 mutations from the S dataset which are annotated as disease causing and are predicted as 
the most stabilizing (i.e. with the most negative GΔΔ  values) by PoPMuSiC. All variants are predicted as 
neutral by the PoPMuSiC- and HoTMuSiC-based classifiers while they are predicted as deleterious by ANN and 
SNPMuSiC.
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