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The heart is a metabolic omnivore and the adult heart selects the substrate best suited

for each circumstance, with fatty acid oxidation preferred in order to fulfill the high energy

demand of the contracting myocardium. The fetal heart exists in an hypoxic environment

and obtains the bulk of its energy via glycolysis. After birth, the “fetal switch” to oxidative

metabolism of glucose and fatty acids has been linked to the loss of the regenerative

phenotype. Various stem cell types have been used in differentiation studies, but most

are cultured in high glucose media. This does not change in the majority of cardiac

differentiation protocols. Despite the fact that metabolic state affects marker expression

and cellular function and activity, the substrate composition is currently being overlooked.

In this review we discuss changes in cardiac metabolism during development, the various

protocols used to differentiate progenitor cells to cardiomyocytes, what is known about

stem cell metabolism and how consideration of metabolism can contribute toward

maturation of stem cell-derived cardiomyocytes.
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STEM CELL THERAPY FOR THE HEART

Myocardial infarction (MI) is the primary cause of disease-related death in the world with no
reliable therapy (1). Acute coronary syndromes, like MI, account for half of all cardiovascular
deaths in the industrialized world, with around 20% of patients developing heart failure (HF)
and having a 1-year mortality rate (2, 3). Current therapeutic strategies focus on reperfusion,
thrombolysis and reducing the workload of the heart using pharmacological agents or surgical
procedures (4–6). Recent advances in treatment have improved time to reperfusion, but progress
in identifying efficient therapies to offer more than symptom alleviation and support the surviving
myocardium is yet to result in substantial clinical benefit (7, 8). The only current long-term
solution is heart transplantation but with the limited numbers of donors, and the need for chronic
immunosuppressants (9), the search to find an alternative solution to the problem of end stage
HF is becoming increasingly urgent. MI can lead to a loss of up to 1 billion cardiomyocytes,
which cannot be replaced due to the insufficient degree of regeneration in the adult heart (10).
Although the heart is no longer considered a post-mitotic organ, the turnover of cardiomyocytes
in the adult heart is around 1% per year (11) which is insufficient to counter the loss caused by
MI. Stem cell therapy (SCT) has the potential to regenerate the damaged tissue and restore its
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contractility, harnessing the self-renewal and differentiation
potential of stem cells (SCs) (12). In vivo, the transplanted cells
can act via a combination of the following mechanisms;
(a) replicate themselves and/or differentiate to mature
cardiomyocytes; (b) stimulate the endogenous cardiac cells to
regenerate; (c) exert a beneficial effect via paracrine mechanisms
of action (13) (Figure 1).

TYPES OF STEM CELLS FOR THERAPY

A wide range of cells have been tested both in animal models or
early-stage human clinical trials in order to find the appropriate
source for SCT (14, 15). These include bone-marrow derived
cells (16–18), cardiac stem or progenitor cells (19–25), human
embryonic stem cell-derived cardiomyocytes (26–29) and human
inducible-pluripotent stem cell-derived cardiomyocytes (30, 31).

Bone marrow-derived stem cells were claimed to differentiate
into cardiomyocytes that spontaneously beat after 2 weeks
in culture (17) or into myotubules that, when injected into
infarcted hearts, stimulated angiogenesis and generated cardiac-
like cells (16). In addition, it was reported that when bone
marrow-derived stem cell growth factor receptor-positive/linage
negative (c-kit+/lin-) cells were injected into infarcted tissue,
they generated new cardiac cells and blood vessels and re-
muscularised the damaged region (18). However, later studies
showed that bone marrow-derived cells do not trans-differentiate
into cardiomyocytes and that retained transplanted cells adopted
a mature haematopoetic fate (32, 33). Bone-marrow derived
mesenchymal cells have also been shown to improve cardiac
function following MI, although repair is now thought to
result from the delivery of a cocktail of beneficial cytokines
which induce angiogenesis, limit scar fibrosis and may activate
endogenous cardiac progenitors (34–36). Other key types of
mesenchymal stem cells (MSCs) such as umbilical cord MSCs
(37, 38), adipose-derivedMSCs (39–41) and amniotic fluidMSCs
(42), chosen for their ease of isolation and differentiation, have
also been tested for therapeutic potential after infarction. As
with bone marrow cells, any beneficial effect was deemed to be
paracrine.

In 2003, a population of cardiac progenitor cells called stem
cell growth factor receptor-positive (c-kit+) cells were identified
(19). In vitro, these proliferative cells can self-renew and
differentiate into myocytes. When injected into infarcted hearts,
c-kit+ cells were shown to differentiate into cardiomyocytes
resulting in myocardium regeneration and improved heart
function (19). Subsequent studies supported the beneficial effect
after cardiac injury, but suggested that the c-kit+ cells were of
bone marrow origin (43) or were mast cells (44), endothelial
cells (45) or maybe a mixed population of both (46). Studies
looking at the issue from a developmental perspective suggested
that c-kit+ cells contribute to new cardiomyocytes after injury
in the neonate, but they were unable to do so in the adult heart
(47), in line with previous observations regarding the role of
c-kit+ cells in the neonatal heart (48). In 2011, the Anversa
group used c-kit+ cardiac progenitor cells (CPCs) in a phase-I
Stem Cell Infusion in Patients with Ischemic cardiomyopathy

(SCIPIO) clinical trial showing encouraging results for post-MI
treatment (49). However, in 2014 the results were questioned
for their integrity (50). In 2013, Ellison et al. showed that c-
kit+ CPCs were necessary and sufficient for cardiac recovery in
rodent models of diffuse myocardial damage causing acute heart
failure (51). This was subsequently challenged by studies using c-
kit+ lineage tracing mouse models, and reporter lines, where it
was shown that cardiac c-kit+ cells contribute to cardiomyocytes
only minimally, but mainly and substantially generate cardiac
endothelial cells (52–54). The debate continues, with recent
publications showing that selected c-kit+ cardiac cells contain
a low level (about 1%) of clonal cells that can be expanded and
differentiated into spontaneously beating cardiomyocytes (55)
and that c-kit expression can be identified on both CPCs and a
subpopulation of cardiomyocytes and is upregulated in response
to pathological stress (56).

Also in 2003, another population of cardiac progenitor cells
was identified, the stem cell antigen 1 (sca-1+) cells, in the
mouse heart, having stem-like self-renewal characteristics and
the ability to home to the injured myocardium (20). Later it
was shown that this cell population led to increased ejection
fraction and neoangiogenesis, after injection into the acutely
infarcted mouse heart (57). It was also shown that sca-1+
CPCs contribute to the generation of cardiomyocytes during
normal aging and after injury sca-1+ cells were induced to
differentiate to three cardiac cell types (44). In line with these
observations, a genetic deletion of sca-1 caused primary cardiac
defects in heart contractility, an impaired damage response and
reduced CPC proliferation (58). Although the human sca-1
isoform does not exist, a sca-1-like cell population has been
isolated from the human heart using the murine antibody
and has been extensively studied by the Goumans group
(59). In a similar manner to the isolation of a clonal c-kit+
population, clonal cells have been identified within selected sca-
1+, PDGRFα+ mouse cells and have been shown to improve
cardiac function after MI, but again by a largely paracrine
mechanism (60).

In addition, a population of progenitor cells were derived,
via the formation of cardiospheres, from cells migrating from
adult human and murine heart explants, called cardiosphere-
derived cells (CDCs) (21). It was reported that human CDCs
have the ability to self-renew in culture and express the
endothelial kinase insert domain receptor (KDR) and other
known stem cell markers (CD-31, CD-34, c-kit, and sca-1)
(21). This heterogeneous cell population has also been shown
to have beneficial effects, both in animal models (22, 61) and
in a clinical trial (62), but again via the release of paracrine
factors.

CPCs have been also identified by markers of embryonic
origin, like Insulin gene enhancer protein 1 (Isl1) and NK2
homeobox 5 (Nkx2.5). Isl1 is a cardiac transcription factor
expressed in second heart field progenitors and cardiac neural
crest cells, involved in cardiovascular development, and leading
to severely deformed hearts in rodents after genetic deletion
(24, 63). Nkx2.5, a homeobox-containing transcription factor, has
been identified via its involvement in cardiac looping (64, 65).
Isl1+ and Nkx2.5+ CPCs have been shown to differentiate into
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FIGURE 1 | Schematic of SCT. The mechanisms of action of the transplanted cardiac stem cells (CSCs) can be by differentiation of the donor cells or via paracrine

mechanisms.

major cardiac lineages, mainly contributing to proepicardium
during development (25).

Human embryonic stem cells (hESCs) are derived from the
inner cell mass (ICM) of blastocysts from donated fertilized eggs
(66). Human ESCs have the ability to continuously proliferate in
an undifferentiated state and, when given the appropriate signals,
will differentiate into any cell type. An interesting tool for cell
therapy that originated from this field, are the in vitro–generated,
stem cell–derived cardiomyocytes (SC-CMs). These have been
shown to integrate structurally and functionally with healthy host
cardiac tissue in vivo in various studies (26, 67, 68). These cells
show great promise, but there are ethical concerns using hESCs
in the clinic and the risk of teratoma formation (69). In 2007,
Yamanaka’s group were the first to report the reprogramming of
human somatic cells into induced pluripotent stem cells (iPSCs),
by overexpression of the transcription factors: Oct4, Sox2,
KLF4, and c-myc (70). The reprogrammed hiPSCs resembled
hESCs and had the ability to self-renew while maintaining
pluripotency (70). Human iPSCs can be produced from patient-
specific somatic cells, therefore overcoming the problem of
immune rejection and the ethical concerns of using hESCs (69).
hiPSCs have been shown to improve cardiac function, albeit
with limited donor cell retention (30, 31) and used extensively
as in vitro human-cell-based models to study basic biology and
development (71), to model diseases (72) and to screen for
drugs (73, 74). This is particularly important for the heart, since

adult cardiomyocytes do not survive in vitro, as morphological
and functional changes occur in long-term culture and so there
has been no easy way to determine whether the effect of
genetic mutations or of drug compounds that were observed in
animal models would also be seen in a human cardiomyocyte.
However, despite the promising in vivo results, the initiation
of beating in SC-derived cardiomyocytes does not mean that
these cells have the maturity or metabolic characteristics of
mature cardiomyocytes found in the healthy heart (75). Studies
have shown that SC-derived cardiomyocytes have immature
calcium handling (76) and a response to drugs more akin to
cardiomyocytes from the failing heart (77).

The effect of the transplantation environment on enhancing
thematuration of human pluripotent SC-derived cardiomyocytes
has been studied in rats. Despite their capacity to survive and
form grafts, they failed to improve adverse remodeling or overall
cardiac function after chronic MI (28). Approaches to enhance
their efficacy, via preconditioning the cells and host environment,
are currently being investigated [reviewed here (78)].

CARDIAC METABOLISM

The heart is a fascinating organ that beats 100,000 times a day
and pumps 7,200 L of blood through the body, in the same
period using 35 L of O2 for energy production. It requires
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about 6 kg of adenosine triphosphate (ATP), which it utilizes at
a rate of 30mg per second to sustain myocardial contraction
and maintain ion homeostasis (79, 80). Since the heart has
a low capacity for energy storage (81), an array of metabolic
networks guides ATP production rates, based on demand. The
heart has been characterized as a metabolic omnivore, being
able to use a variety of substrates for energy production [see
reviews (82, 83)]. Glucose, pyruvate, triglycerides, glycogen,
lactate, ketone bodies, fatty acids (FAs) of different chain-
lengths and certain amino acids are among the energy-providing
substrates of the heart. It is responsible for almost 10% of
the whole body fuel consumption; with FAs accounting for
70% of ATP production and carbohydrates for the remaining
30%.

Energy, in the form of ATP, can be produced in the
cytosol via glycolysis (Figure 2); catabolism of glucose derived
from carbohydrates. The end-product of glycolysis is pyruvate,
which can be further reduced to produce lactate. In case
of carbohydrate shortage, gluconeogenesis of pyruvate, re-
oxygenation of lactate or glycerol metabolism, can be used as
sources of glucose synthesis (82, 84). Alternatively, pyruvate can
enter themitochondria in the form of acetyl-coenzymeA (Acetyl-
CoA) and be oxidized in the TCA cycle (also known as the Krebs
cycle), in a process called oxidative phosphorylation (85). The
reducing equivalents of this chained reaction act as hydrogen

carriers (Nicotinamide Adenine Dinucleotide Hydrogen; NADH
and Flavin Adenine Dinucleotide Hydrogen; FADH2) and enter
the electron transport chain (ETC). There the coupled-transfer of
electrons and H+ creates an electrochemical proton gradient that
leads to the production of ATP.

ATP can also be generated by the degradation of lipids
(including triglycerides) into FAs, which are metabolized in the
mitochondria via beta-oxidation (Figure 2), which converts Fatty
Acyl-CoA to Acetyl-CoA for flux into the TCA cycle and ATP
synthesis as above (86). Under aerobic conditions, more than
95% of ATP production comes from oxidative phosphorylation
(86) and in the healthy heart 50–80% of the energy is generated
via beta-oxidation (87). Oxidative phosphorylation yields 36
ATP/glucose molecule, being more efficient than glycolysis
(2 ATP/glucose). Lipids, due to their reduced state are more
oxygen-demanding than glucose (producing 2.8 ATP/O2, vs. 3.7
ATP/O2), but they are more energy-dense with a much higher
yield of ATP/carbon (depending on the chain length of the parent
FA) (79, 88).

The heart has a remarkable ability to adapt to changes in
its physiological state by selecting the most efficient substrate,
depending on the conditions of its environment (82). For
example, as FAs require more oxygen than glucose, to generate
the same amount of ATP (82, 89), upregulation of the hypoxia-
inducible factor (HIF) under hypoxia has been shown to increase

FIGURE 2 | Schematic overview of basic cell metabolic pathways for energy production.
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glycolysis and suppress mitochondrial oxidative metabolism (83,
90), shifting toward the more oxygen-efficient fuel: glucose. A
network of interrelated signaling pathways control the flux of
glucose and fatty acid metabolism to enable the heart to switch
substrates rapidly. This was first described as the glucose-fatty
acid cycle by Randle in 1963 (91), but the complexity of this
network is yet to be fully explored (92). Under conditions of
starvation, acetyl-CoA in the liver can form ketone bodies, that
are water-soluble forms of this metabolite, and can be efficiently
used by the brain and other oxidative organs (82) (Figure 2).

Cardiac Metabolism During
Development—Metabolic Switch (1)
The fetal heart is adapted to an environment of low oxygen
and low fatty acid content, so fetal cardiomyocytes are highly
dependent on glycolysis for ATP production (93). In addition,
lactate availability allows for energy production via lactate
oxidation. During development, the heart undergoes a major
metabolic alteration; the main physiological changes during the
transition to the post-natal stage are the increased workload,
and the demand for growth, that cannot be met by glucose and
lactate consumption alone (94, 95). Interestingly, immediately
after birth some studies suggest that the main energy biogenesis
mechanism is still glycolysis (96). The post-natal increase in
both circulating levels of free FAs (due to dietary alteration
and lipid content in maternal milk) and in O2 levels mediates
a switch from glycolysis-dependence, to predominantly relying
on oxidative metabolism as mature cardiomyocytes (93, 97)
(Figure 3). After birth, the “fetal switch” to oxidative metabolism

of glucose and fatty acids has been linked to the loss of
the regenerative phenotype (98). Neonatal mouse hearts can
regenerate in the first postnatal week but this is lost after day
7 (99). Puente et al. investigated exposure of neonatal mice to
hyperoxia (100% oxygen) or mild hypoxia (15% oxygen) and
found that hyperoxia induced cardiomyocyte cell cycle arrest
after birth whereas hypoxia prolonged the regenerative window
(98). They hypothesized that this effect resulted from increased
oxidative stress that accompanied the induction of oxidative
metabolism and showed that treatment with an antioxidant
resulted in a significant increase in cardiomyocyte mitosis in
the first weeks after birth. During the early postnatal period, as
cardiac energy demands increase, the number of mitochondria
in cardiomyocytes increases dramatically (100, 101). A recent
study has shown that the HIF1 signaling localisation pattern
controls the embryonic switch toward oxidative metabolism,
disruption of which affects cardiac maturation. The cardiac
compartment where HIF was absent, the trabeculae, has
increased oxidative metabolism, as well as higher mitochondrial
content (102). Several studies demonstrated an increase in PPAR
coactivator 1α (PGC-1), as well as Peroxisome Proliferator-
Activated Receptor α (PPARα), mRNA levels in mice or rats
during development (103, 104). The regulatory mechanism
involves genes encoding several key mitochondrial ETC proteins,
specifically the transcription factors nuclear respiratory factors-
1 and−2 (NRF-1 and−2) (103, 105). Disruption of the
ETC function, during cardiac development, leads to disrupted
mitochondrial organization in the cardiomyocytes, resulting in
perturbed sarcomere formation and contraction (106). Various

FIGURE 3 | Schematic of metabolic switches during cardiac development (left) and cell differentiation (right).
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mouse models have revealed that disruption in mtDNA processes
leads to embryonic lethality (107). In addition, signaling
pathways involving the Nuclear factor of activated T-cell (NFAT)
family of transcription factors play a role in mitochondrial
biogenesis and cardiac function. Mice with nfatc3 and nfatc4
deletion had abnormal mitochondrial structure and reduced
oxidative capacity, eventually dying after E10.5 (108). The
ERRα/ERRγ axis plays a crucial role in mitochondrial energy
production, as well, and their deletion leads to premature lethality
in mice (109). Disruption of the ERRγ gene leads to impaired
mitochondrial function, eventually blocking the switch from
glycolysis to oxidative phosphorylation and leading to early
prenatal death in mice (110).

Cardiac Metabolism in MI and
HF—Metabolic Switch (2)
Following MI, tissue ischaemia leads to hypoxia, which in turn
activates long-term HIF signaling in the myocardium (111).
During MI, the ischemic region relies solely on glycogen, as
an anaerobic fuel for energy production (112). The absence
of oxygen for OXPHOS means that NADH and FADH2 are
accumulated, affecting fatty acid enzyme reactions and leading
to a build-up of fatty acid intermediates and resulting in
disruption of mitochondrial cristae and function (87). Reduction
in fatty acid oxidation upregulates anaerobic glycolysis and
lactate production leading to intracellular acidosis (87). HIF1α
activation upregulates the transcription of Bcl-2 adenovirus E1B
19 kDa-interacting protein 3 (BNIP3), which triggers selective
mitochondrial autophagy (113, 114). Under normal conditions,
BNIP3 expression is suppressed by the nuclear factor kappa
beta (NF-κB) pathway (114). In addition, HIF1α upregulates the
transcription of pyruvate dehydrogenase kinase 1 (PDK1), which
inactivates pyruvate dehydrogenase, thereby blocking the entry
of pyruvate into the mitochondria for oxidative phosphorylation
(113). These HIF-1 mediated changes play key roles in reducing
mitochondrial oxidative metabolism and thereby in reducing the
generation of reactive oxygen species (ROS) (115). Following
reperfusion, oxidative metabolism is restored but the resulting
induction of ROS can lead to mitochondrial damage (116). As the
heart progresses to failure, flux from pyruvate into the TCA cycle
decreases (117). Mitochondria can be found with membrane and
ETC defects (118, 119), as well as reduced respiratory capacity
(119, 120) and reduced oxidative phosphorylation (121–123).
These findings are consistent with the concept that, during
HF, the metabolic state of the heart resembles that of the fetal
stage, switching to glycolysis rather than mitochondrial oxidative
metabolism (124); with increased glucose uptake (125) and
glycolysis (86) and either no change or a decrease in glucose
oxidation (125, 126).

The aforementioned perturbations in cardiac metabolism
lead to a dangerous environment, due to the excess of lactate
and oxidative metabolic intermediates. Progressive heart failure
induces, at a cellular level, increased conversion to lactate,
increasing cell acidosis (127). However, amino acids such as
aspartate play a role in reducing damage that occurs as a result of
lactate accumulation via upregulating the conversion of pyruvate

to alanine. Glutamate and aspartate improve the production of
ATP as they produce intermediates that feed the TCA cycle
for further oxidation (128). Studies have reported the reduced
availability of amino acids in heart failure patients, leading to
the depletion of some valuable amino acid derivatives that are
important for normal cardiac function (l-carnitine and creatine)
(129). However, there is also evidence of their accumulation
during HF, as seen in a study on failing mouse hearts where
genes associated with amino acid catabolism were downregulated
during compensated hypertrophy and overt failure (130).
Transcriptomic analyses reflected downregulation of genes
involved in amino acid degradation pathways [proline, alanine,
tryptophan, and mainly branched-chain amino acids (BCAAs)]
(131–133). Using a genetic mouse model, Sun et al. demonstrated
that a deficiency in BCAA catabolism induced heart failure under
mechanical overload, resulting from increased oxidative stress
(132). Similarly, Li et al. found that whilst chronic accumulation
of BCAAs did not affect cardiac energetics and function in the
healthy mouse heart, glucose oxidation was decreased which
increased ischaemic injury after myocardial infarction (134).

The importance of mitochondrial integrity for maintenance
of cardiac function has been also highlighted through several
conditions which are characterized by mitochondrial mutations
or abnormalities, causing among others: cardiomyopathy,
neuromuscular dysfunction, diabetes mellitus and even sudden
death (122, 135). In addition, the efficiency of the ETC is found
to decline with age, which in turn decreases ATP generation
(135, 136).

Cardiac Metabolism From Stem Cells to
Adult Cells and Vice Versa—Metabolic
Switch (3)
Metabolic changes during embryonic development have been
reviewed in detail by Johnson et al. (137). Mammalian oocytes
contain low levels of glycogen and fat but have substantial
stores of amino acids and protein which have been estimated
to be sufficient for the energetic needs of the first few days
of development (137). The preimplantation embryo relies on
the mitochondria inherited from the oocyte and on pyruvate
oxidation for ATP production (138, 139). There is a gradual
switch in metabolism during the preimplantation stage (morula,
blastocyte) from aerobic oxidation to anaerobic glycolysis in
preparation of the low-oxygen environment in the uterine wall
(137). As the preimplantation embryo undergoes cell division
there is a reduction in mitochondrial DNA copy number
(mtDNA) and mitochondrial density (138) and an upregulation
of glucose transporter 3 and hexokinase gene expression until
anaerobic glycolysis increases to maximal rates as the blastocyst
implants into the uterus (137). ESCs originate from the inner
cell mass of preimplantation blastocyst, therefore, these cells
show high rates of glycolysis and low oxidative phosphorylation
to support the rapid cell proliferation (138, 140). Similarly,
ESCs derived from in vitro cultured ICMs (141) or ESCs
cultured in vitro (142) show high rates of glycolysis and low
oxidative phosphorylation. A comparison of the metabolomics
and energetics of iPSCs with those of ESCs showed many
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similarities and confirmed that, during reprogramming, somatic
cells convert from an oxidative state to a glycolytic state in
pluripotency (143).

The reprogramming factors, c-Myc and Lin28, have been
shown to enhance glycolysis and nuclear reprogramming (140)
and reprogrammed pluripotent stem cells show upregulation
of glycolytic enzymes such as the glucose transporter GLUT1,
hexokinase (HK), phosphofructokinase (PFK) and LDH (144). In
addition, hiPSCs have increased levels of intracellular glucose-
6-phosphate, which feeds into the pentose phosphate pathway
(PPP) to generate the reducing factor NADPH, which is used
for biosynthesis of FAs and nucleotides necessary for rapid
proliferation (144). Stimulation of glycolysis with D-fructose-6-
phosphate or by PDK1 activation has been shown to enhance
the efficiency of iPSC reprogramming (145). Mitochondrial
morphology changes from being elongated and tubular-shaped
with well-developed electron-dense cristae in somatic cells, to
being spherical with small-undeveloped cristae in hiPSCs, with
a transition from an extensive cytoplasmic networks in somatic
cells, to a predominantly peri-nuclear location in hiPSCs (146).
Prieto et al. found that this fragmentation was not associated with
mitophagy but was induced by activation of dynamin-related
protein 1 (Drp1), which fragments mitochondria in a GTPase-
dependent manner (147). They showed that Erk activation in
early reprogramming induced Drp1 phosphorylation which was
critical to the reprogramming pathway. Studies in human and
mouse ESCs have also found a small number of rounded and
immature mitochondria with under-developed cristae (106, 148).
Moreover, multipotent stem/progenitor cells show the same
characteristics; for example, mitochondria in HSCs are relatively
inactive and ATP content increases in lineage-committed
progenitors compared with HSCs (149).

Due to the ongoing controversy as to whether the heart
contains resident progenitor cells (150), little is known about
the metabolism of cardiac stem cells in the adult heart. However
most adult endogenous progenitor/stem cells reside in hypoxic
niches (151), in a quiescent state, and therefore the metabolic
rate is presumed to be low. CPCs isolated from the heart,
by marker selection, tissue digestion or from explants, and
expanded in vitro, are proliferative and grown in culture medium
containing high levels of glucose and little or no FAs. Basal
cellular homeostasis involves processes like protein turnover,
DNA repair, and vesicle trafficking and therefore proliferating
cells, in addition to homeostasis maintenance, need energy for
anabolic processes such as cell division and growth. Proliferative
cells, such as cancer cells, have been suggested to predominantly
rely on glycolysis for ATP production, irrespective of oxygen
presence; this metabolic paradox, first observed by Warburg
in 1956 (152) has been termed “aerobic glycolysis.” Apart
from Warburg’s observations on cancer cells, mouse fibroblasts
(153) and human (154) and mouse (155) lymphocytes have
been shown to utilize “aerobic glycolysis,” when stimulated to
proliferate. Various studies have supported the conclusion that
the major function of aerobic glycolysis is to supply glycolytic
intermediates for anabolic reactions in cells, thus being the
metabolic pathway of choice during cell proliferation [for Review
see (156)]. Although cells in high glucosemedium predominantly

metabolise glucose, they can use other substrates if provided.
Human bone marrowMSCs have an active oxidative metabolism
with a range of substrates and can produce more ATP from
substrate oxidation than glycolysis with certain substrates (157).
For example, the ketone body, acetoacetate, can be oxidized at up
to 35 times the rate of glucose. Many proliferating mammalian
cells, such as human MSCs, also consume glutamine to provide
material for biosynthesis (158). Glutamine, as a carbon source,
can supply the TCA cycle with intermediates that can be used for
the production of newmacromolecules in cells. A recent study by
Hosios et al., in 2016, argued that glutamine contributes most to
protein synthesis, suggesting that anaplerosis of glutamine in the
TCA cycle is serving mainly amino acid biosynthesis (159).

When stem/progenitor cells differentiate to cardiomyocytes
they need to increase the number of their mitochondria and
upregulate FA metabolism (Figure 3). A study comparing
hiPSC-derived cardiomyocytes (hiPSC-CM) to hiPSCs, showed
an increase in mitochondrial relative abundance and activity
(mitochondria membrane potential) as a result of cardiac
differentiation (160) and that additional mitochondrial
maturation in hiPSC-CMs could be achieved by long-term
culture (3 months). Comparison of substrate metabolism in
ESCs with that in ESC-derived cardiomyocytes has shown
increased oxidative metabolism after differentiation (161) and
that the respiratory capacity of cardiomyocytes was higher
than in ESCs, resulting in an increased ADP:ATP ratio in the
cardiomyocytes (106). The mitochondria become elongated with
abundant and organized cristae in cardiomyocytes and formed
into networks which filled the cytoplasm (106).

WHY STUDY STEM CELL METABOLISM

The metabolism of any cell type in vitro depends on energy
requirements and substrate availability. Cardiac progenitor
cells, when expanded in vitro, reside in a high glucose
environment and rely on aerobic glycolysis for energy generation.
CPCs will experience a shift in substrate availability following
transplantation in vivo (Figure 3), being transferred from
the culture medium, which contains about 5–25mM glucose
(depending on the culture protocol) and no FFA, to substrates
in plasma that vary substantially. Glucose levels in mice have
beenmeasured at between∼3.4 and 9.6mM (2.8–7.5mM in rats)
(162, 163) and ∼0.18–0.6mM FFA (164). In humans, healthy
plasma glucose levels are around 5mM and FFA 0.5mM (165).
This alteration is bound to cause changes in the metabolic
machinery of the cells which might be one of the stimuli that
induce differentiation following transplantation, but may also
result in increased release of ROS and cellular damage.

The various protocols used for CPC differentiation focus
on pharmacological reagents and cytokines, and do not refer
to or take into account the substrate composition. This is a
striking fact especially knowing how metabolic changes affect the
function of the cells (166) and how transition from glycolysis
to FA oxidation affects cell maturation (93), and vice-versa
(144). iPSC-CM have been shown to integrate structurally
and functionally with healthy host cardiac tissue in vivo in
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various studies (26, 67, 68). Despite the promising in vivo
results, the initiation of beating in iPSC-CM does not mean
that these cells have the metabolic characteristics of mature
cardiomyocytes found in the heart. Studies have shown that
SC-CMs have immature calcium handling (76, 167) and a
response to drugs more akin to cardiomyocytes from the failing
heart (77). Despite the observed mitochondrial remodeling
and upregulation of oxidative metabolism previously discussed,
newly differentiated iPSC-CM in culture have been shown to
retain a predominantly glycolytic metabolism (168). One of the
major roles of iPSC-CM is that of a drug-testing platform and
this requires the differentiated cells to acquire a fully mature
phenotype (74). For example, a recent iPSC-CM study showed
that the electrophysiological responsiveness of iPSC-CM was
dependent on their maturation state (169).

ASSESSING CELL METABOLISM

The main approaches for the investigation of substrate
metabolism include the measurement of metabolic fluxes using
radio-labeled substrates and of oxygen consumption.

Radio-Labeled Substrates Assays
Glucose oxidation rates are commonly measured using the
method of the Collins et al. (163) with cell culture media
containing D-U-14C-glucose. Glucose oxidation results in the
production of 14CO2 which is trapped for analysis using a
scintillation counter. For 3H-FA oxidation the cells are incubated
in media supplemented with the radioactive FA tracer of interest.
FA oxidation rates are determined by the production of 3H2O
from the mitochondria (170, 171). Media aliquots contain
both 3H2O and 3H-FA, so the 3H2O is separated via a Folch
extraction (170). Glycolytic rates are determined through the
conversion of 3H-glucose to 3H2O via enolase which converts 2-
phosphoglycerate to phosphoenolpyruvate and releases 3H2O as
a by-product that is collected using a Dowex mesh (Sigma, UK)
anion exchange column, allowing for the 3H-glucose to bind to
the column and 3H2O to be eluted (171).

Oxygen Consumption
The rate of mitochondrial oxygen consumption (OCR) can be
measured using the XF Extracellular Flux Analyzer (Seahorse
Bioscience), the Oroboros O2K or the Clark-type oxygen
electrode (172, 173). Seahorse XF Analyzers measure the
concentration of dissolved oxygen and pH to quantify the oxygen
consumption and extracellular acidification rate in the media
in multi-well plates. Four injection ports in each well allow for
addition of reagents. However, the Seahorse requires cells to be
adhered to the wells, multiple additions of substrates are not
possible and the individual wells are not self-contained and thus
cells can be affected by gases from adjacent wells (172). The
Clark-type oxygen electrode is embedded in individual reaction
chambers and cells are added in suspension in the respiration
media (173). Unlimited reagents and substrates can be added by
manual addition. This system is more automated in the Oroboros
O2K which also includes optical sensors to allow for detection of
fluorescent dyes so that parameters such as ATP production or
mitochondrial membrane potential may be measured (172).

The OCR can be measured under baseline un-stimulated
conditions in media containing the substrate of interest (such
as pyruvate; palmitate; malate; or oleic acid). Addition of
the ATP synthase inhibitor oligomycin provides a measure
of contaminating ATP synthase activity from damaged
mitochondria and of proton leak, whilst the metabolic uncoupler,
carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP)
permits measurement of fully uncoupled or maximal respiration
(173). Finally, mitochondrial inhibitors such as rotenone
(complex I) and antimycin (complex III) will completely inhibit
mitochondrial respiration. More exquisite interrogation of the
function of mitochondrial metabolism can be performed using
substrates such as glutamate which assesses the second span of
the Krebs cycle, succinate which enters the electron transport
chain at complex II, or β-hydroxybutyrate, a fatty acid-derived
substrate which bypasses β-oxidation and enters the Krebs cycle
as acetyl CoA (116, 174).

Extracellular Measurement of Glucose
Consumption and Lactate Production
Lactate production can be measured using the Seahorse Flux
Analyzer from the extracellular acidification rate (ECAR) of the
media. Glucose and lactate levels can also be determined using
enzymatic assays or the ABX Pentra 400 Chemistry Analyser
(Horiba Ltd. USA). Glycolysis yields two molecules of pyruvate,
which can be converted to either lactate or acetyl CoA. Therefore,
the ratio of glucose consumption to lactate production can be
used as an indicator of the level of utilization of pyruvate in
oxidative metabolism (175).

CARDIAC DIFFERENTIATION IN VITRO

Various methods and strategies have been applied to develop
the optimal protocol for directing in vitro cardiac differentiation
of stem cells. In vitro differentiation of adult endogenous CPCs
is very challenging, due to their limited plasticity. Despite a
variety of differentiation studies, the ability of adult progenitors
for differentiation, is still under debate (176, 177). Different
approaches, utilizing various differentiation factors have been
used on both pluripotent SCs and CPCs, with the main ones
being; DMSO, 5-Azacytidine, Ascorbic Acid, members of the
TGF-β superfamily, oxytocin, dexamethasone and retinoic acid
(see Table 1).

More specifically, 5-azacytidine (5-Aza) is a demethylating
agent that allows for the exposure of genes that are normally
silenced, due to hypermethylation, by inhibiting DNA
methyltransferase (191, 192). Several in vitro studies suggested
that 5-Aza can induce cardiac differentiation, on different
MSC types, such as human umbilical cord-derived MSCs
(186) and adult human bone marrow-derived MSCs (17, 187).
Other studies have demonstrated the inefficiency of 5-Aza as
a cardiac differentiation agent, showing transdifferentiation
to skeletal muscle cells, rather than cardiac cells (193) as well
as unsuccessful differentiation of adipose-derived stem cells
(ASCs) (194) and adult mouse Sca-1+ CPCs (182). Ascorbic
Acid (A.A.), is an antioxidant compound which has been shown
to increase the expression of cardiac genes and their proteins
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TABLE 1 | Factors and media used to differentiate adult stem cells to cardiomyocytes.

Differentiation

approaches

References Differentiated cell type Cell culture medium and differentiation factors Glucose concentration

TGF-β1 family (178) Human atria Sca-1+; clonally isolated &

magnetic-sorting

5µM 5-Aza, TGF-β1 1 ng/ml, 10−4 M AA, IMDM/Ham’s

F12 GlutaMAX, 2% serum, 1% MEM amino acids, 1%

insulin–transferrin–selenium

(179) Human fetal and adult atrial biopsies,

Sca-1+ magnetic-sorting

12.5mM

(180) Whole mouse heart Sca-1+/ CD45−

magnetic-sorting CDCs (Isl1+)

Oxytocin (181) Mouse or rat whole hearts,

c-kit+/CD45−/Tryp− magnetic-sorting

DMEM 100nM oxytocin acetate, 50µg/ml AA, 2%

serum, 1µM dexamethasone, beta-glycerol phosphate

10mM, TGF-β1, 5 ng/ml, BMP2 10 ng/ml, BMP4

10 ng/ml, Dkk1 150 ng/ml

5.5. mM

(182) Mouse whole heart Sca-1+

magnetic-sorting

IMDM, 10% serum,

100 nm oxytocin

22.5mM

(183) Rat, mouse ventricles side population cells

5-Azacytidine (184) Mouse bone marrow stroma MSCs IMDM, 20% serum,

3 µmol/L 5-Aza

20mM

(185) Human adipose MSCs RPMI + 15% FCS,

1–9 µmol/L 5-Aza

9.4mM

(20) Mouse whole heart Sca-1+

magnetic-sorting

Medium 199, 2% FBS,

3µM 5-Aza

5.5. mM

(186) Human umbilical cord MSCs LG-DMEM, 10% FBS, 10µM 5-Aza 5.0. mM

(187) Human bone marrow MSCs LG-DMEM, 20% serum,

3µM 5-Aza

4.4mM

(188) Rat bone marrowMSCs DMEM, 10% FBS, 10µM 5-Aza 5.0. mM

Dexamethasone (189) Human atrial or ventricular c-kit+ -sorted F12 medium 10% serum,

10 nM dexamethasone

9mM

(19) Rats c-kit+/ Lin− magnetic-sorting F12 medium 10% serum,

10 nM dexamethasone

9mM

(190) Dog left ventricle c-kit+/ Lin− and

Sca-1+/ Lin− magnetic-sorting

F12 medium 10% serum,

10 nM dexamethasone

9mM

(53) mouse whole heart c-kit+ DMEM, 10% serum, 10 nM dexamethasone 9mM

5-Aza, 5-azacytidine; AA, Ascorbic acid; BMP, Bone morphogenic protein; Dkk1, Dickkopf-related protein 1; DMEM, Dubecco Modified Eagle Medium; MDMD, Iscove’s Modified

Dulbecco’s Medium; LG-DMEM: low glucose DMEM; MEM, Minimum Essential Medium; RPMI, Roswell Park Memorial Institute medium; TGFβ, transforming growth factor β.

and to lead to beating cardiomyocytes in mouse ES cells (195).
Cao et al. in 2012 demonstrated that A.A. was able to induce
cardiac differentiation and maturation in several human and
mouse iPSC lines (196). In contrast, treatment of BM-derived
MSCs with A.A. triggered their proliferation and differentiation
into osteoblasts and adipocytes (197). Another key player in
cardiac differentiation is transforming growth factor-beta 1
(TGF-β1) which is thought to drive cardiac differentiation
by inducing the cardiac transcription factor Nkx2.5 (198).
Goumans et al. used TGF-β1 to induce differentiation of
adult atrial Sca-1+ CPCs, in combination with 5-Aza and A.A
(178, 179). The mechanism of action involves phosphorylation
of Smad2, that leads to the expression of cardiac-specific
proteins (179). Dexamethasone is a glucocorticoid compound
with immunomodulatory properties. Initial studies showed
that it stimulates differentiation and maturation of osteogenic
progenitor cells (199). The osteogenic effect of dexamethasone
has since been demonstrated on MSCs (200–202). Interestingly,

various groups have used it as the main agent of differentiation of
adult selected c-kit+ CPCs to cardiomyocytes (19, 181, 189, 190).
One of the most successful in vitro differentiation protocols for
adult cardiac progenitors uses staged treatment with oxytocin,
BMP2/4, TGF-β, and DKK1 which has been shown to induce
cloned c-kit+ progenitor cells to form beating cardiomyocytes
(181)

Cardiac directed differentiation protocols used for pluripotent
SCs can be divided into two main groups, the Embryoid Body
(EB)-based method (203, 204) and the monolayer-based method
(30, 205–208). These protocols are discussed briefly here but
a more comprehensive review has been given by Mummery
et al. (209). Although cardiac differentiation protocols vary, most
monolayer-based methods involve stage-specific activation and
inhibition of signaling pathways that control heart development,
replicating the early cardiac developmental stages in the early
embryo (mesoderm induction, mesoderm cardiac specification,
and generation of cardiomyocytes). The signaling pathways that
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are involved in most directed cardiac differentiation protocols
are Activin/Nodal and bone morphogenetic protein (BMP)
signaling (203), which are members of the (TGFβ) signaling
pathway and the fibroblast growth factor (FGF) (30, 203), and
the Wnt signaling pathways (205–208). Activin A, BMP4, and
Wnt3 induce the mesoderm, and upregulate the expression of
Brachyury T, whereas inhibition of Wnt signaling at later stages
of differentiation has been shown to induce mesoderm cardiac
specification (209). Following these steps, cells are generally
cultured with media in the absence of growth factors, to allow
cardiomyocyte maturation to give spontaneous beating. The
distinct effects of Wnt signaling during various stages of cardiac
development has been thoroughly investigated, both in vitro
and in vivo (210). More specifically, it was shown with in vivo
gene function studies in the mouse that Wnt initially enhances
mesoderm commitment, while it later hinders the induction of
cardiogenesis, and that it stimulates the proliferation of Isl1+
cardiac progenitors (211, 212). In addition, a study in zebrafish
embryos demonstrated the switch from the inductive to the
inhibitory role, of Wnt on cardiac formation, during a short
1-hour window prior to gastrulation (213). In chick embryos,
treatment with Wnt antagonists in vivo enhanced expression of
cardiac muscle differentiation markers and increased expression
of Isl1 and Nkx2.5 in splanchnic mesoderm (214). In vitro,
Murry’s lab in 2010 showed that supplementation with exogenous
Wnt at the point of initiation of cardiogenic differentiation of
hESC enhanced the cardiac marker expression, while the same
effect was induced by antagonism of endogenous Wnts at a later
stage (208).

Differentiation protocols were first developed using hESCs
and then were translated to iPSCs. Table 2 summarizes and
compares some of the published differentiation protocols and
shows a shift from the EB-based model using hESCs to the
monolayer-based model using hiPSCs, which is the commonly
model used currently. Table 2 also takes note of the fact that
all these protocols are differentiated in variable concentrations
of glucose (4.5–25mM) and insignificantly low amounts to no
fatty acids (at most 2µM). In general, spontaneously beating
EBs are generated from cells in suspension using a serum-
based media to induce spontaneous cardiac differentiation (27,
204, 216). The beating areas are then hand-picked from the
rest of the EB or flow-sorted. Laflamme et al., played a key
role in the enhancement of cardiac differentiation protocols
by shifting from the serum-induced EB-based differentiation
protocol that generated 10–15% spontaneously beating EBs (218)
to the serum-free monolayer-based differentiation generating
>30% cardiomyocytes using Activin A and BMP4 (27). In
2011, Burridge et al. systematically compared 45 variables
added to EBs formed by forced aggregation which they
tested on four hESC and seven hiPSC lines (222). Their
optimized method included addition of BMP4 and FGF2, with
polyvinyl alcohol to aid EB formation, serum and insulin
to induce oxidative metabolism and with staged exposure
to physiological (5%) oxygen. The growth factor-directed
differentiation enabled cells to be differentiated as monolayers,
thereby introducing more straightforward, and hopefully more
reproducible, methods of differentiation (209). Lian et al. also

optimized the Wnt-based protocol by removing insulin during
early stages of differentiation (205). They had found that when
iPS cells were differentiated using a Gsk3β inhibitor, Activin
A, and BMP4, the presence of insulin in the early stages had
a strong inhibitory effect but that this was not seen when
cells were differentiated by manipulation of Wnt signaling.
They identified an interplay between insulin signaling and
Wnt signaling which coordinates to influence differentiation
to cardiomyocytes and therefore introduced staged removal
and re-addition of insulin to their differentiation protocol
(205).

MEDIA COMPOSITION DURING/AFTER
DIFFERENTIATION

As shown in Tables 1, 2, the majority of differentiation protocols
for CPCs to cardiomyocytes had a no lipids in the media
composition whilst the glucose concentration in culture media
ranged from 4.5mM to 25mM (Here it should be mentioned
that the addition of serum at percentages ranging from 2 to
20% does not allow for an absolutely clear image of the media
composition). The variability of glucose concentration is striking,
especially bearing in mind that a glucose level of 25mM in vivo
is considered hyperglycemic and leads to loss of mitochondrial
networks (224, 225).

The Role of Hypoxia and of Reactive
Oxygen Species in Differentiation
Stem cells in vivo occupy an hypoxic niche and their energy
yielding metabolism is likely to be hypoxic with a high reliance
on glycolysis for ATP generation (226, 227). There are conflicting
reports on the relationship between hypoxia and differentiation
of stem cells. Hypoxia alone can revert hESC- or iPSC-
derived differentiated cells back to a stem cell-like state, by
re-activation of an Oct4-promoter reporter (228). In contrast,
exogenous expression of HIF has been shown to promote cardiac
differentiation of ESC (229). Transient hypoxia during in vitro
cardiac differentiation upregulated the Wnt signaling pathway
with increased expression of the endogenous Wnt proteins
(wnt3, wnt3a, wnt9a, and wnt11), which was lost when the cells
were transferred back to normoxia. This resulted in increased
expression of cardiac markers such as Isl-1 and Troponin C
but decreased expression of βMHC and a failure to develop the
contractile phenotype (230). To further complicate the picture,
Gaber et al. found a dose-dependent increase in expression of
the DNA damage marker γH2AX and of senescence in ESCs
differentiated under increasing exposure to hypoxia (231). These
differential reports may result from the different cell types (ESC
or iPSC) and species studied. Fynes et al. found that hypoxic
culture of mESCs primed the cells for differentiation and resulted
in increased differentiation along the mesoderm and endodermal
lineages whereas hiPSCs were pushed toward a more naïve
pluripotent state by hypoxia and were then primed for ectoderm
differentiation (232).

As previously discussed, the loss of regenerative potential
of the heart in the first weeks of life has been attributed
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TABLE 2 | Factors and media used to differentiate pluripotent stem cells to cardiomyocytes.

Different-iation

method cell type

Growth factor or small

molecules

Culture media Glucose

concent-ration

% of Cardiac markers References

EB-Method

hESCs

iPSc

Cells in suspension

-optionally differentiated

with serum-based media,

DMSO, all-trans retinoic

acid or 5-Aza

80% KO-DMEM,

1 mMol L-glutamine,

1.1-1.2mMol

B-ME,1% NEAA, 20% FBS

4.5mM 8.1% spontaneously beating EBs.

In beating EBs, 29.4% cTnI+ cells.

25% spontaneously beating EBs by day 8 and

70% by day 16 of differentiation

5-Aza enhanced levels of cardiac α-MHC

10 to 15% positive for sarcomeric MHC

(204)

(215)

(216)

(217)

(218)

Monolayer

hESCs

hiPSC

Guided differentiation:

h-Activin A, h-BMP4

+/- staged addition of

h-Wnt3a & h-DKK1

RPMI+B27 11.1mM

Note: 2uM of oleic

acid

> 30% CMs Differentiated cells underwent

Percoll gradient centrifuge for CM enrichment

(69 ± 10% CMs)

Increase in sarcomeric MHC+ cells from 4 to

27%

(27)

(70)

(208)

EB-Method

hESCs

hiPSC

END-2 method

(Insulin depletion, PGI2, p38

inhibition)

80% KO-DMEM, 2 mMol

L-glutamine,10ng/ml bFGF,

1.2 mMol B-ME, 7.5% FCS

4.5mM 50% beating CM (219)

(220)

EB-Method

hESCs

Guided differentiation:

h-Activin A, h-BMP4,

h-bFGF, h-VEGF, h-DKK1

StemPro-34 (Base) +

[L-glutamine, AA, optional

MTG, P/S]

>25mM KDR+ selected cells 35 ± 6% cTNT+,

enriched to 57±4% by monolayer culture.

DKK1 on day 4 gave 2-fold enrichment of

CTNT+ cells

(221)

KDR+/PDGFRA+ cells, 50–70% cTNT+ cells

in beating EBs.

80% cTNT+ cells by monolayer culture

(203)

EB-method

iPSCs

Forced aggregation EBs

with guided

differentiation:BMP4, FGF2,

Staged O2 levels

RPMI (L-glutamine)

20% FBS on day 3

Insulin on days 0-2 and day

4

9–11mM

Note: 2uM FA

Contracting EBs contained 64–89% of cardiac

troponin I+cells

(222)

Monolayer

hiPSCs

Guided differentiation:

h-Activin A, h-BMP4,

h-bFGF

StemPro-34 +

[L-glutamine,MTG, AA, P/S]

>25mM Spontaneously beating sheets of CMs 40 ±

15% CMs

(30)

Monolayer

hESCs

hiPSCs

Guided differentiation

method:

h-Activin A, h-BMP4,

h-bFGF, + Matrigel

or CHIR99021, IWP4/IWP2

RPMI+B27(-insulin) [d0-6 of

differentiation]; RPMI+B27

[from d7 of

differentiation]

11.1mM

Note: 2uM oleic

acid

Matrigel addition on day−2 and day 0

generated 80% cTnT+ CMs

(223)

Spontaneously beating sheets of CMs, 87%

cTNT+ CMs

(207)

(206)

(205)

B-ME, beta-mercaptoethanol; CM, cardiomyocytes; MTG, monothioglycerol; P/S, penicillin/streptomycin; AA, ascorbic acid; NEAA, non-essential amino acids.

to DNA damage resulting from the increase in ROS that
accompanies upregulation of mitochondrial metabolism (98).
However, ROS have also been shown to signal differentiation
to several cell types, including cardiomyocytes. Transient
expression of an NADPH oxidase-like enzyme with induction
of ROS during embryoid body development of ESCs enhanced
cardiomyogenesis, which was shown to occur via PI-3-kinase
regulation and to be inhibited by the addition of radical
scavengers (233). Similarly, NADPH oxidase (NOX)-derived
ROS induced cardiac differentiation via a p38 mitogen-activated
protein kinase (MAPK)-dependent pathway (234). Inhibition of
mitochondrial biogenesis using shRNA targeting of PGC-1α, in
hESC differentiation to cardiomyoytes, repressed mitochondrial

respiration, and beating frequency (161). Levels of ROS increased
during differentiation but were repressed by knockdown of PGC-
1α. However, decreasing ROS levels by differentiating cells under
hypoxia decreased the rate of mitochondrial biogenesis, which
was stimulated by induction of ROS (161). Interestingly, in
addition to reducing the beating frequency, decreasing ROS levels
increased the action potential and calcium transient amplitude,
but made the cells vulnerable to metabolic stress. ES cells
cultured in physiological levels of glucose (5 mmol) maintained
their stemness and showed reduced levels of ROS, but failed
to differentiate to fully-formed cardiomyocytes (235). This was
associated with reduced levels of NOX4 and MAPK which were
rescued by addition of the pro-oxidant ascorbic acid.
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STRATEGIES TO MATURE CELLS

A range of strategies have been used to mature iPS- and
ESC-CMs, including time in culture (236), mechanical and
electrical stimulation (237, 238), addition of small molecules
(239), substrate stiffness (240), genetic approaches (241–243) and
growth in 3D tissues (244–246). These are reviewed in detail
elsewhere (74, 247) but very few consider the medium in which
the cells are cultured.

CHANGING MEDIA COMPOSITION TO BE
MORE PHYSIOLOGICALLY RELEVANT

There is a change in energy substrate availability and metabolism
during heart development from the embryo into the adult stage.
However, this change in metabolism is not mimicked in most
published differentiation protocols. Maturation of ESC-CMs was
induced by treatment with the thyroid hormone, tri-iodo-L-
thyronine, which induced an enhancement in contractile kinetics,
in rates of calcium release and reuptake and in sarcoendoplasmic
reticulum ATPase expression, and a significant increase in
maximal mitochondrial respiratory capacity and respiratory
reserve capability (239). However, in that study the newly formed
cardiomyocytes were cultured in serum-free medium with no
fatty acids. Similarly, where maturation of ESC-CMs was induced
using members of the Let-7 family of microRNAs, increasing
cell size, sarcomere length, force of contraction, and respiratory
capacity, no fatty acids were added to the serum-free culture
medium (243).

A few recent studies have begun to change media composition
to induce a particular disease phenotype. Kim et al. used a
lipogenic medium comprising insulin, dexamethasone and 3-
isobutyl-1-methylxanthine to induce fatty acid metabolism in
iPSC-CM derived from patients with arrhythmogenic right
ventricular dysplasia. They saw a mild increase in lipogenesis
with minimal apoptosis after 4–5 weeks of treatment and
increased expression of PPARα. Cell maturation revealed
that metabolic derangement was implicated in the onset of
arrhythmia (168). Drawnell et al. induced a diabetic phenotype
by treating differentiated iPSC-CM with a maturation medium
containing insulin and fatty acids, but no glucose for three days,
followed by treatment with a diabetic milieu of glucose (10mM),
endothelin-1 (10 nM), and cortisol (1µM) (248). This induced
an increase in sarcomere length, and in velocity and duration of
action potential, in addition to increases in themyosin light chain
genes, MYL2, MYL3 and MYL4; of genes involved in regulation
of sarcoplasmic reticulum calcium content and an associated
repression of fetally enriched genes. Correia et al. reported
that shifting hPSC-CMs from glucose-containing to galactose-
and fatty acid-containing medium induced fast maturation into
adult-like cardiomyocytes with higher oxidative metabolism,
enhanced contractility and more physiological action potential
kinetics (249). Perhaps the most comprehensive investigation
into the effects of changing media is that of Rana et al., who
modified a basal medium with combinations of high or low
glucose with galactose or fatty acids (250). They found that

exclusion of glucose from the medium was needed to induce
iPSC-CM to switch from glycolysis to OXPHOS for their ATP
production.

TISSUE ENGINEERING APPROACHES

It is hypothesized that culturing cells in 3D would better
mimic conditions in vivo, such that differentiated cells would
adopt a more mature phenotype. There are four main types
of tissue engineering strategies that have been developed
to construct contractile heart muscle equivalents: stacking
monolayer cell sheets to form multi-layered heart muscle (251),
cells seeded onto decellularized native tissue, cells seeded onto
synthetic or biologic scaffolds (252–257) and entrapment of
cells in naturally occurring biogels or hydrogels (258–260).
Bian et al. cultured neonatal rat cardiomyocytes in a 3D
environment and after 3 weeks saw aligned, electromechanically
coupled cardiomyocytes with capillary-like structures, improved
calcium handling properties. The cells had action potentials
which showed enhanced conduction velocities and directional
dependence on the local cardiomyocytes orientation (261).
Cardiac muscle strips which were fabricated from hESC-CMs
and stromal cells in collagen-based biomaterials, showed higher
passive and active twitch force, aligned sarcomeres, regularly
dispersed connexin-43 and N-cadherin and increased expression
of maturation markers (262).

Scaffolds can be formed from synthetic polymers or from
natural materials such as the cardiac extracellular matrix (ECM).
Besides its structural role of giving support to surrounding
cells, the ECM also has important signaling roles in cardiac
development and remodeling. In recent years, it has been
shown to help regulate cell survival, proliferation, migration
and differentiation, for example by modulating the activity,
bioavailabilty or presentation of growth factors to cell surface
receptors (263, 264). ECM macromolecular proteins such as
collagen (259, 265, 266), elastin (267), fibrin (268, 269) and
glycoaminoglycans (270, 271) can be extracted from tissue and
integrated in 3D scaffolds (267, 271) or hydrogels (268) to explore
further the retention and maturation of SCs seeded. Material
properties are more controllable in synthetic polymers which can
bemodified to incorporate adhesion peptides or release biological
molecules (272).

In the hydrogel approach, cells are encapsulated in the scaffold
during synthesis of the gel which allows homogenous seeding.
Hydrogels have also been shown to induce cell maturation and
differentiation which makes them an attractive system for basic
studies of cardiac development and potential for the delivery
of therapeutics to the heart (273, 274). Suspension of CDCs
in a hydrogel formed from serum and the glycosoaminoglycan
hyaluronic acid, increased the oxygen consumption rate from
that of cells in suspension and increased cell retention after
transplantation in vivo (275). Porous scaffolds can be generated
by freeze-drying suspensions poured in molds (267, 276).
This type of manufacturing gives flexibility in shape and
composition, but limits cell seeding efficacy as most seeded
cells remain attached to the scaffold surface (267). Fibrous
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scaffolds can bemanufactured from a large variety of materials by
electrospinning which gives control over the nano-scale structure
and mechanical properties of the scaffold, but again limits the
seeding efficiency (277). Zhang et al. found that, compared to
2D hESC monolayers, hESC-CM in a 3D fibrin-based cardiac
patch exhibited significantly higher conduction velocities, longer
sarcomeres and enhanced expression of genes involved in cardiac
contractile function (244). Potentially the “ultimate scaffold
material” is that of decellularized heart tissue since it has the
potential to give rise to appropriately structured scaffolds for
organ replacement (278).

One noteworthy 3D construct is the engineered heart
tissue (EHT) which is a three-dimensional, hydrogel-based
muscle construct that is restrained between posts, thereby
allowing the cells to contract against a force. EHTs can be
generated from isolated heart cells from adult hearts, such
as chicken (259) and rat (258) as well as from hESC (279)
and hiPSC (280). iPSC-CM EHTs have showed to increase
mitochondrial mass, DNA content, and protein abundance
(proteome) compared to their 2D counterparts. Moreover
they were found to generate more energy via oxidation of
glucose, lactate, and fatty acid with a decreased reliance on
anaerobic glycolysis, generating 2.3-fold more ATP by oxidation
than 2D hiPSC-CMs (245). Mills et al. have developed a
technique for growing 3D cardiac organoids in 96 well plates
(281). The cells form dense muscle bundles in serum-free
conditions developed to promote metabolic and proliferative
maturation. They found that addition of palmitate increased
the force of contraction and expression of ventricular myosin
light chain 2. Interestingly, addition of insulin promoted cell
cycling and so was not included in the maturation medium
comprising 1mM glucose and 0.1mM palmitate. By comparing
contractile properties of organoids grown in maturation medium
with those in control medium, they found that maturation
medium reduced activation time and relaxation time, thereby
recapitulating changes seen during human cardiomyocytes
development.

Thus, three-dimensional culture conditions have induced
binucleation, rod-like cell shape, increased sarcomere alignment,
more mature electrophysiology, and calcium handling properties
(247). Complex, multi-cellular cell sheets are now being
developed from mixtures of iPSC-CMs with fibroblasts and

endothelial cells (282) or with mesenchymal cells (283) which
exhibit more mature physiology or drug responses but these are
still grown in non-physiologic culture media (282, 283). What
is needed now, is routine modulation of the culture medium,
as discussed above, to cells in 3D constructs to fully induce
metabolic maturation.

CONCLUSIONS

The field of CPC biology has come a long way over the last 20
years. Beating sheets of cardiomyocytes can now be generated
routinely from ESCs and iPSCs in large numbers. However, the
maturity of the cardiomyocytes remains a cause for concern if
they are to be used to validate new drug compounds, detect
cardiotoxicity or recapitulate the cardiac physiology of patients
with genetic disorders. Long term culture can aid maturation, as
can culture in 3D constructs, but a fully mature cardiomyocytes
should express the appropriate level of substrate transporters and
mitochondrial proteins. Further work is required to determine
appropriate cell culture conditions to enable pluripotent stem
cell-derived cardiomyocytes to achieve the metabolic flexibility
of the adult heart.
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