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Abstract: In order to investigate the relationship between phase/microstructure and various 

properties of Ti–xAg alloys, a series of Ti–xAg alloys with Ag contents ranging from 5 to 

20 wt% were prepared. The microstructures were characterized using X-ray diffractometry 

(XRD), optical microscopy (OM), scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM). All of the Ti–xAg alloys showed a massive transformation 

from the β-Ti to αm phase, which has a different crystal structure from that of the  

matrix phase, but it has the same composition as the matrix α-Ti phase. As a result of  

solid-solution strengthening of α-Ti and massive transformation phase, the Ti–xAg showed 

better mechanical properties than the commercially pure titanium (cp-Ti). Electrochemical 

results showed that the Ti–xAg alloys exhibited improved corrosion resistance and 

oxidation resistance than cp-Ti. 
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1. Introduction 

Ti–based alloys have been widely used in fabrication of dental and orthopedic implants due to their 

favorable mechanical properties, including high strength-to-density ratio, good corrosion stability and 

high biocompatibility [1,2]. However, it is necessary to improve the mechanical properties of Ti for 

practical application in dentistry. 

Recently, binary Ti–Ag alloys have been developed for use in dental applications, due to their 

excellent corrosion resistance, improved mechanical properties and biocompatibility compared to  

commercially pure titanium (cp-Ti) [3–7]. In addition, the Ti–Ag alloys have a low ion-dissolution rate 

in NaCl solution [8]. Another study found that Ag-coated Ti has an improved antibacterial effect, as 

well as good cell compatibility [9,10]. Due to the fact that intermetallic compounds, such as Ti2Ag and 

TiAg, deteriorate the corrosion resistance of Ti, the amount of Ag added to the Ti should be less than 

25 wt% for use as dental materials [8]. The cytotoxicity tests performed by Zhang et al. show that  

Ti–Ag alloys exhibited similar cell viability to that of cp-Ti [11]. Other than this, there has been little 

experimental investigation about the relationship between phases/microstructure and the mechanical 

properties of Ti–Ag alloys. Therefore, it is important to pursue a comprehensive structural analysis of 

Ti–Ag alloys, which is necessary for developing new Ti–based alloys with desired properties. 

Under certain conditions, several metallic alloys exhibit a composition-invariant transformation, 

which is termed massive transformation. Massive β → αm transformation has been observed in Ti–xAg 

alloys containing Ag ≤ 26 wt% [12]. In the present study, Ti–Ag binary alloys with the addition of 5, 

10, 15 and 20 wt% Ag were fabricated by arc melting. Massive transformation in the Ti–Ag alloys was 

observed using X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM). In order to investigate the effects of massive 

transformation in Ti–Ag alloys, the following analyses were carried out. Microhardness and elastic 

modulus were measured using a Vickers microhardness tester and a nanoindenter. Phase 

transformation and oxidation behavior were investigated by simultaneous differential scanning 

calometer (DSC) analysis and thermogravimetric analysis (TGA). Corrosion stability was evaluated 

through potentiodynamic polarization and galvanic corrosion tests in 0.9% NaCl solution at 37 ± 1 °C. 

In this work, “Ti–xAg” will henceforth stand for “Ti–x wt% Ag” in the text. 

2. Results and Discussion 

2.1. Phase and Microstructure 

The X-ray diffraction patterns as a function of x for the Ti–xAg (x = 5, 10, 15 and 20 wt%) samples 

are shown in Figure 1 and compared with the XRD pattern of cp-Ti. The patterns of Ti–xAg alloys 

could be indexed in the hexagonal α-Ti type structure, the space group of P63/mmc, with no indication 

of the existence of a secondary phase. This result was consistent with the previous analysis of phases 

in the Ti–Ag system [13,14]. With the exception of dilute Ti–5Ag and Ti–10Ag alloys, binary Ti–Ag 

alloys commonly tend to precipitate intermetallic compounds Ti2Ag and TiAg when equilibrium 

solidification is considered. In light of this, at the eutectoid temperature, microstructure arrays 

constituted of the “α-Ti + intermetallic Ti2Ag” phase form from the beta phase. In this study, however, 
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owing to non-equilibrium solidification, no such intermetallic compounds were detected, in agreement 

with the results previously reported by Takahashi et al. [15]. 

Figure 1. X-ray diffractometry (XRD) patterns of the cast commercially pure titanium (cp-Ti) 

and the series of binary Ti–xAg (Ti–x wt% Ag) alloys. (a) cp-Ti; (b) Ti–5Ag; (c) Ti–10Ag; 

(d) Ti–15Ag; and (e) Ti–20Ag. 

 

Rietveld refinements were performed in the present work to investigate the effect of Ag on the 

lattice parameters. The lattice parameter variations of Ti–xAg alloys as a function of Ag content are 

presented in Figure 2. Due to the similar atomic radius of Ag (~1.44 Å) and Ti (~1.47 Å), the alloying 

between Ti and Ag occurred as a solid solution. The addition of Ag atoms caused an increase in the 

lattice parameter c, whereas the lattice parameter a remained constant. As a result, the c/a ratio 

increased slightly as the content of Ag increased. Unit cell constants of cp-Ti were a = 2.951(1) Å and 

c = 4.683(1) Å (c/a ratio = 1.581), and they corresponded well with those in the literature (JCPDS card 

No. 44-1294), whereas the unit cell parameters of Ti–20Ag were a = 2.950(1) Å and c = 4.721(1) Å 

(c/a ratio = 1.600). The trends of lattice parameters based on the Ag content were in agreement with 

the result obtained in a previous study [16]. 

Figure 2. (a,b) Lattice parameters (a and c) of cp-Ti and as-cast Ti-xAg alloys and (c) the 

variation in the ratio (c/a) of lattice parameters. 
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Massive β → αm transformation is known to occur in the Ti–xAg alloys containing Ag ≤ 26 wt% [12]. 

The product phase has a different crystal structure from that of the matrix phase, but it has the same 

composition as the matrix phase. Therefore, massive transformation is composition invariant, but it 

shows an incoherent interface. Figures 3 and 4 show the OM and TEM images of Ti–xAg alloys with 

different Ag contents (5, 10, 15 and 20 wt%). In Ti–10Ag, the grains of Ti–5Ag changed to an 

equiaxed structure with irregular grain boundaries, as shown in Figure 3a,b. Acicular structures were 

observed in Ti–Ag alloys having Ag contents above 10 wt%, and these structures became smaller with 

increasing Ag content, as shown in Figure 3c,d. The matrix was composed of the α-Ti phase, as 

indicated by the selected area energy diffraction (SAED) pattern (inset in Figure 4). 

Figure 3. Optical micrographs of Ti–xAg alloys; (a) Ti–5Ag; (b) Ti–10Ag; (c) Ti–15Ag; 

and (d) Ti–20Ag. 

 

Figure 4. TEM micrographs of Ti–xAg alloys; (a) Ti–5Ag; (b) Ti–10Ag; (c) Ti–15Ag;  

and (d) Ti–20Ag. 
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Confirmation of this massive transformation was provided by qualitative energy dispersive X-ray 

(EDX) analysis of Ti–10Ag alloys. SEM analysis of polished surfaces showed two different morphologies, 

which are marked as A and B in Figure 5a. The EDX analysis revealed that, within experimental 

limits, the composition of both morphologies was identical. Therefore, the observed transformation 

was composition invariant. Massive transformation was reconfirmed through observation of the 

microstructure using high-resolution transmission electron microscopy (HR-TEM). Figure 5b shows the 

representative TEM image for the Ti–10Ag alloy. HR-TEM showed that the phase interface was 

incoherent. The SAED patterns of the Ti–10Ag alloy consisted of the characteristic hexagonal close 

packed (hcp) Ti phase of the matrix, showing perfect atomic arrangement and the sub-microstructure of 

the face centered cubic (fcc) Ti phase. The corresponding SAED patterns of the sub-microstructure 

could be indexed in terms of the [110] zone axis of the cubic structure of Ti. 

Figure 5. (a) SEM micrograph with quantitative EDX analysis of Ti–10Ag alloy;  

and (b) HR-TEM micrograph with the SAED pattern of the Ti–10Ag alloy. 

 

Differential scanning calorimetry (DSC) analysis was performed to detect any abnormal thermal effects 

from room temperature to 1000 °C, which could be indicative of the presence of a free segregation of 

Ag or intermetallic precipitates. As shown in Figure 6, very smooth temperature-dependent traces were 

found at about 150 °C for all of the Ti–xAg alloys with Ag content up to 20 wt%. This peak resulted 

from the stabilization of the thermally unstable structure, such as grain boundary relaxation or grain 

boundary reordering. The second endothermic peak at about 900 °C resulted from the martensitic 

transformation of α-Ti to β-Ti. Other than these two peaks, no extraneous exothermic or endothermic 

peaks were detected. Thus, based on the XRD, SEM, TEM and DSC results, we could conclude that the 

nominal 20 wt% content of Ag used in this work did not exceed the solubility limit of Ag in the Ti alloys. 
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Figure 6. Differential scanning calorimetry (DSC) curves of the cast cp-Ti and series of 

binary Ti–xAg alloys. 

 

The oxidation behavior of Ti–xAg alloys was assessed using thermogravimetric analysis (TGA). 

Figure 7 shows the result of the TGA experiment when the cp-Ti and Ti–xAg alloys were heated up to 

795 °C and 1000 °C at a heating rate of 10 °C/min in air. Each sample was oxidized, and the weight 

gain in the oxidized samples was compared with the weight of the non-oxidized samples. All of the 

samples showed a single parabolic increment in mass during oxidation. The change in mass was not 

observed between room temperature to 600 °C in all of the Ti–xAg alloys, which was indicative of the 

oxidation resistance. At temperatures higher than 600 °C, the mass of the Ti–xAg alloys increased 

exponentially. The weight change was increased with an increase in the oxidation temperature. The 

final mass change in the Ti–xAg alloys was significantly less than that in the cp-Ti, indicating that the 

addition of Ag to cp-Ti could restrain the oxidation rate of the alloy, and Ti–xAg alloys had a high 

oxidation protection ability. The weight gain was decreased by increasing the Ag content up to  

15 wt%, and then, it was increased by increasing the Ag content further. Therefore, Ti–xAg alloys had 

a higher oxidation protection ability, and the addition of Ag to cp-Ti could restrain the oxidation  

rate of the alloy. 

Figure 7. Thermogravimetric analysis (TGA) of cp-Ti and Ti–xAg alloys showing various 

degrees of weight gain (%) by heating in air up to 795 °C and 1000 °C. 
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2.2. Mechanical Properties 

The Vickers hardness means and elastic modulus of each Ti–xAg alloy are shown in Table 1, and 

these values are compared to those of cp-Ti. The Ag element could effectively increase the microhardness 

values of cp-Ti (165 Vickers Hardness (VHN)), which could be explained by solid-solution 

strengthening of the α-phase, as suggested in a previous study [17,18]. Among the Ti–xAg alloys,  

Ti–10Ag exhibited the highest hardness value of 501 VHN. This increase in hardness was probably 

caused by the massive transformation of the α phases along with solid-solution strengthening. The 

elastic modulus of cp-Ti was 132 GPa. The elastic modulus of Ti–5Ag was slightly higher than that of 

cp-Ti, whereas the elastic moduli of the other Ti–xAg alloys (x = 10, 15 and 20) were lower (p < 0.05) 

than that of the cp-Ti. The lowering of the elastic modulus by alloying Ti with Ag atoms was attributed 

to the imperfect α phases during massive transformation [13]. The elastic modulus values for the  

Ti–xAg (x = 10, 15 and 20 wt%) alloys were in the range of 122–130 GPa, which is comparable to the 

previously reported values [19]. 

Table 1. Vickers hardness and elastic modulus values of Ti–xAg alloys compared to cp-Ti (n = 5). 

Alloy Code Vickers Hardness (VHN) Elastic Modulus (GPa) 

cp-Ti 165.0 (2.6) a,* 132.4 (12.2) b,c,* 
Ti–5Ag 251.7 (1.2) b 140.4 (4.9) c 

Ti–10 Ag 501.0 (17.3) c 126.4 (8.5) a,b 
Ti–15Ag 275.3 (11.0) b 129.6 (7.0) a,b 
Ti–20 Ag 485.0 (68.4) c 122.7 (4.6) a 

* Within the same column, mean values with the same superscript letter were not statistically different at 5% 

(p > 0.05) by the Duncan’s multiple range test. 

2.3. Corrosion Behavior 

Potentiodynamic polarization and the galvanic couple technique were used to investigate the effect of 

Ag content on corrosion resistance. The potentiodynamic polarization curves of the cp-Ti and Ti–xAg 

alloys were recorded at a sweep rate of 5 mV/s in the potential range of −1.5 to 1.5 V in deaerated  

0.9% NaCl solution (pH = 7.02), and the results are shown in Figure 8a. The initial passive potential of 

Ti–xAg alloys showed a shift in the positive direction as compared to that of cp-Ti, which indicated a 

remarkable enhancement in the corrosion resistance by Ag addition. The initial passive current 

densities (~12.8 μA/cm2) of Ti–10Ag and Ti–15Ag were observed to be smaller than that (21.70 μA/cm2) 

of cp-Ti. The increase in the initial passive current density was observed for Ti–5Ag (21.28 μA/cm2) 

and Ti–20Ag (25.83 μA/cm2). Figures 8b–f show the Tafel plots obtained from the representative 

potentiodynamic polarization curves of the cp-Ti and Ti–xAg alloys (Figure 8a). 
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Figure 8. Representative potentiodynamic polarization curves for the cp-Ti and Ti–xAg 

alloys. SCE, saturated calomel electrode. 

 

Using the Tafel extrapolation method, we calculated the corrosion potential (Ecorr) and corrosion 

current density (icorr) of cp-Ti and Ti–xAg alloys using both anodic and cathodic branches of the 

potentiodynamic polarization curves, and they are listed in Table 2. The average corrosion potential 

and current density values of all of the investigated Ti–xAg alloys were respectively higher and lower 

than those of cp-Ti. Although no statistically significant difference was observed in the icorr values 

among the tested cp-Ti and Ti–xAg alloy samples, Ti–10Ag showed a slightly higher icorr value. It is 

presumed that the decreased Ecorr and increased icorr values of Ti–10Ag can be attributed to the 

irregular boundaries of its equiaxed grains. With the exception of Ti–10Ag, the Ecorr values for all 

alloys increased with increasing silver content, with microstructural changes to acicular forms and 

smaller phases. These results demonstrated that alloying Ti with Ag increased the corrosion resistance, 

which was probably caused by the accumulation of noble Ag atoms on the surface of Ti–Ag alloys due 
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to the loss of Ti during the corrosion process [4,20]. Zhang et al. [11] reported that Ti–10Ag has a 

corrosion resistance expressed as a function of electrochemical impedance behavior lower than those 

of both Ti–5Ag and Ti–20Ag alloys. It seems that the eutectoid reaction is intimately associated with 

the decrease in the corrosion resistance of Ti–10Ag compared with the other two examined Ti–Ag 

alloys. It is well-known that the microstructure array resulting from the eutectoid reaction plays an 

important role in determining the electrochemical behavior, as previously reported for a number of  

as-cast Ti–based alloys [21,22] and various other non-ferrous alloys [23,24]. 

Table 2. Corrosion potential (Ecorr) and corrosion current density (icorr) of cp-Ti and Ti–xAg 

alloys (n = 3). 

Alloy Code Ecorr (mV) icorr (μA/cm2) 

cp-Ti −550.33 (43.94) a,* 0.287 (0.046) a,* 
Ti–5Ag −471.07 (101.37) a,b 0.209 (0.072) a 

Ti–10Ag −500.20 (31.82) a,b 0.231 (0.057) a 
Ti–15Ag −461.33 (19.98) a,b 0.181 (0.120) a 
Ti–20Ag −416.98 (58.72) b 0.221 (0.078) a 

* Within the same column, mean values with the same superscript letter were not statistically different at 5% 

(p > 0.05) by the Duncan’s multiple range test. 

Mean values of galvanic currents versus time of the couplings of cp-Ti/Ti–xAg alloys are shown in 

Figure 9. All of the Ti–xAg alloys apparently behaved in a similar manner. Current values initially 

exhibited a rapid increase and then leveled off. This general behavior might be explained by the 

reduction in the active area due to the growth of a passive film on the surface of cp-Ti. A steady-state 

current value was attained more rapidly for Ti–5Ag and Ti–10Ag compared to cp-Ti, indicating that 

the passive film grew more rapidly on cp-Ti. The time required for the Ti–xAg alloys to attain a 

constant current was increased as the amount of Ag increased. 

Figure 9. Mean values of galvanic currents vs. time of the couplings of cp-Ti/Ti–xAg alloys. 
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arc-melting the stoichiometric quantities of the elements on a water-cooled copper hearth using a 

tungsten electrode under a high-purity argon atmosphere. The starting materials (Ti sponge, Alfa Aesar, 

Ward Hill, MA, USA, 99.9%; Ag ingot, LS-Nikko, Seoul, Korea, 99.95%) were used without 

purification. During the arc-melting procedure, a titanium getter was heated prior to melting the 

reactant mixture to further purify the argon atmosphere. The samples were remelted seven times to 

promote sample homogeneity. Subsequently, the samples were heat treated using a tube furnace under 

argon atmosphere for 4 h at temperatures 150 °C below the respective solidus temperatures followed by 

cooling down to 600 °C in a furnace at a rate of 10 °C/min and air-cooling to room temperature. These 

heat treatment conditions were chosen in accordance with the binary Ti–Ag phase diagrams [16]. 

3.2. Material Characterization 

Phase analysis and structural characterization were performed by X-ray diffraction (XRD). The 

XRD diffraction patterns were collected for the bulk sample using a X’Pert PRO Multi–Purpose  

X-Ray Diffractometer (40 kV and 40 mA, PANalytical B.V., Almelo, The Netherlands) with Cu Kα  

(λ = 1.54056 Å). Intensities of the XRD were obtained in the 2θ range between 20° and 90° with a step 

size of 0.02°/3 s. The lattice parameters were obtained by least squares refinement of data in the 2θ 

range of 20°–90° with the aid of a Rietveld refinement program [25]. The microstructure of samples 

was examined using optical/metallurgical microscopy (Epiphot FX-35WA, Nikon, Tokyo, Japan), 

scanning electron microscopy (SEM; Hitachi, S-3000N, Tokyo, Japan.), high-resolution transmission 

electron microscopy (HR-TEM; Philips, Technai-F20, Amsterdam, The Netherlands), selected area 

energy diffraction (SAED) and energy dispersive X-ray analysis (EDX; EMAX, Horiba, Kyoto, 

Japan). Compositions of the cast Ti–xAg alloys were determined using a scanning electron 

microscopy/energy dispersive spectrometry (SEM/EDS). Data collection was performed with a 20-kV 

accelerating voltage and 15% of mean dead time. The acquisition rate was 6 kcps, and the magnification 

was ×200. To carry out the quantitative analyses, pure Ag (99.95%) and Ti (99.99%) elements were used 

as standards (Taylor standard block, C60-001, CM Taylor Company, Amelia, VA, USA). 

The phase transformation in Ti–xAg alloys was investigated by heating approximately 200 mg of 

the sample to 1000 °C at a heating rate of 20 °C/min using a differential scanning calorimeter (DSC, 

DSC 404 C, Netzsch, Selb, Germany). The oxidation behavior of cp-Ti with different Ag contents was 

tested with TGA (SDTA 851e, Mettler-Toledo, Columbus, OH, USA), which measures the change in 

mass due to oxidation. The samples measuring 4.5 mm × 4.2 mm × 14.0 mm in size were heated to 

795 °C or 1000 °C at a heating rate of 10 °C/min with an air flowing rate of 50 mL/min. Duplicate 

samples were tested per each test group. 

3.3. Measurement of Mechanical Properties 

For the measurement of mechanical properties, samples embedded in epoxy resin were cut and 

polished into disks of about a 1.2-mm thickness with successively finer SiC papers up to #2000 grit 

and then ultrasonically cleansed in distilled water. Subsequently, the polished samples were etched 

with Keller’s solution (distilled water: 65%; HNO3: 32%; HCl: 40%; HF = 95:2.5:1.5:0.5).  

The microhardness of polished alloys was measured using a Vickers microhardness tester  

(Zwick, Postfach4350, Ulm, Germany) with a load of 500 g for 30 s. Elastic modulus measurement 
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was performed using Nanoindenter (MTS Company, Dubuque, IA, USA) in a continuous stiffness 

measurement mode with the Berkovich-type indenter. The indentations were made using a constant 

nominal strain rate of 5 × 10−2 s−1. The maximum indentation depth was 2 μm. A Poisson’s ratio of 

0.35 was used to calculate the elastic modulus. 

3.4. Electrochemical Analysis 

The potentiodynamic anodic polarization test was conducted at a scan rate of 5 mV/s from −1.5 to  

+1.5 V (vs. SCE (saturated calomel electrode)) using a potentiostat (WAT 100, WonA Tech Co., Ltd., 

Seoul, Korea) in 0.9% NaCl solution at 37 ± 1 °C. At least three samples were tested to confirm  

the repetition of the experimental results. The surface of the sample with an approximately 10-mm 

diameter was mechanically polished with SiC paper up to 2000 grit. The electrochemical 

measurements were recorded using the three electrode technique consisting of the working electrode 

(test samples), the counter electrode (high density carbon) and the reference electrode (saturated 

calomel electrode). Before measurements, argon gas was bubbled through the electrolyte at  

150 mL/min for more than 20 min to eliminate the residual oxygen in the electrolyte. Fresh electrolyte 

was used for each measurement. The exposed surface area of samples in the electrolyte was 0.283 cm2. 

Potentiodynamic anodic polarization measurements were carried out after an immersion period of 1 h 

at open circuit potential. The potentiodynamic polarization curves were plotted using an automatic data 

acquisition system. Corrosion potential and current density were estimated by the Tafel plots using 

both anodic and cathodic branches. The galvanic current densities of various Ti–xAg/cp-Ti galvanic pairs 

were measured over a 20-min period by using a potentiostat/galvanostat at ambient conditions (ZIVE SP2, 

WonA Tech Co., Ltd., Seoul, Korea). The experimental setup for electrochemical measurements 

consisted of a three-electrode cell with the sample as a working electrode with an exposed area  

of 0.785 cm2, a saturated calomel electrode (SCE) as a reference electrode and cp-Ti as the  

counter electrode. 

3.5. Statistical Analysis 

Version 19.0 of the statistical software, SPSS (SPSS, Inc., Chicago, IL, USA), was used to analyze 

the data by means of the Kruskal–Wallis one-way analysis of variance and Duncan’s multiple range 

test with α = 0.05. Data were expressed as the mean ± standard deviation (SD) for each of the tests. 

4. Conclusions 

This study investigated the influence of Ag addition on the microstructure, mechanical properties 

and corrosion behavior of commercially pure titanium (cp-Ti). The Ti–xAg alloys exhibited α-Ti 

structure at a silver content below 20 wt%. Based on the EDX and HR-TEM analysis, all of the Ti–xAg 

alloys showed a massive transformation from the β-Ti to αm phase, which has a different crystal 

structure from that of the matrix phase, but it has the same composition as the matrix α-Ti phase. As a 

result of solid-solution strengthening of α-Ti and massive transformation phase, the Ti–xAg exhibited 

higher hardness and better oxidation protection ability than the cp-Ti. Electrochemical results showed 

that the Ti–xAg alloys exhibited improved corrosion resistance compared to cp-Ti. After considering 
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the mechanical properties and corrosion behavior of Ti–xAg alloys, Ti alloys with Ag addition can be 

considered as good candidates for dental casting alloys. 
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