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Mass spectrometry (MS)-based targeted lipidomics enables the robust quantification of

selected lipids under various biological conditions but comprehensive software tools to

support such analyses are lacking. Here we present LipidCreator, a software that fully sup-

ports targeted lipidomics assay development. LipidCreator offers a comprehensive framework

to compute MS/MS fragment masses for over 60 lipid classes. LipidCreator provides all

functionalities needed to define fragments, manage stable isotope labeling, optimize collision

energy and generate in silico spectral libraries. We validate LipidCreator assays computa-

tionally and analytically and prove that it is capable to generate large targeted experiments to

analyze blood and to dissect lipid-signaling pathways such as in human platelets.
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Life is swaddled in lipids; they form cells and organelles,
mediate information flow, protect cells and tissues from a
hostile environment and serve as energy building blocks.

Imbalanced lipid homeostasis leads to numerous diseases1–7.
Consequently, lipids are of great clinical interest and have high
potential as biomarkers8,9. However, their chemical structure is
not linearly constructed, as it is for DNA, RNA and proteins,
which form a sequence of nucleotides and amino acids. Lipids are
chemically highly diverse and are assembled from combinations
of distinct building blocks comprising backbones, head groups,
sugars and fatty acyls with different lengths, numbers of double
bonds and bond types. As mass spectrometry (MS) has gained
speed and sensitivity, it has facilitated lipid identification by
deciphering their chemical components and structure10–12,
thereby helping to establish the emerging field of lipidomics.

Despite the rapid growth of the field, there is a lack of a
comprehensive software toolbox for lipidomics, which focuses on
the reproducible, quantitative analysis of a subset of lipids of
interest. MS techniques such as selected reaction monitoring
(SRM) or parallel reaction monitoring (PRM) are employed for
lipid quantification13,14. However, such targeted analyses widely
applied in proteomics have led to software developments such as
Skyline15,16, which was further advanced by tools such as
Panorama, and MSStats17,18. Currently, no open source tool
offers a user-friendly interface for the development of targeted
lipidomics assays that addresses the structural complexity of
eukaryote lipidomes. However, there is a strong need in the field
of metabolic research and lipid signaling to target distinct sets of
molecules in line with their associated biological function, in
contrast to screening approaches. In a previous study19, we
demonstrated the usability of Skyline for lipidomics by encoding
lipids as pseudo-peptides and their fragments as pseudo-amino
acid residues. However, this approach was not broadly applicable;
it worked only for a small subset of lipids and could in retrospect
only be an interim solution.

To quantify diverse lipid classes and lipid-signaling mole-
cules in large cohorts, targeted workflows should be quick to
establish, and the obtained results should be easy to inspect
and validate. In reality, this process is laborious, time con-
suming and most often not accessible to non-experts. To foster
application of mass spectrometry based lipidomics on the
individual level of experience, we here present a targeted lipi-
domics workbench and lipid knowledge-base that is fully
integrated with Skyline.

Results
Features and integration. To address the challenges mentioned
above, we introduce LipidCreator for the automated generation of
targeted lipidomics MS assays (Fig. 1a,b). Assay generation can be
conducted with a graphical user interface (GUI) or by using com-
mand line functionality, covering lipids of the following categories:
sphingolipids (SP), glycerolipids (GL), glycerophospholipids (PL),
sterol lipids (ST), and fatty acyls including mediators (LM) (Sup-
plementary Data 1). LipidCreator can calculate mass to charge ratios
(m/z) for lipid species and their derived fragment ions, covering over
61 lipid classes and a lipid array of 1012 lipid molecules (Supple-
mentary Table 1, Supplementary Data 2, Fig. 1a(1)-(3)). The frag-
mentation information is obtained from literature and own
fragmentation experiments13,20–30 (Supplementary Table 2). On this
basis, the computational permutation of precursors and fragments
considering double bonds and chain length is carried out to calculate
the present lipid array (Supplementary Table 3). From this array, the
lipids of interest are selected with the consensus nomenclature
recommended by the Lipidomics Standards Initiative (https://
lipidomics-standards-initiative.org)]1,31 (Supplementary Table 4,

Supplementary Datas 3 and 4, Fig. 1a(4)&(6)). The stable isotope
feature of LipidCreator enables the custom creation of labeled lipids
and their transitions (Fig. 1b(3)). This simplifies their inclusion as
internal standards for the validation and quantification of lipid
species in assays by stable isotope dilution MS or for the tracing of
lipid building blocks by FLUX analysis.

In addition to the computation of targeted assays, an in silico
spectral library can be generated (Fig. 1a(7), b(5)). Besides the
generation of fragment ions, a critical feature is the ability to
determine the relative intensities of fragment ions at different
defined collision energies (CE). We therefore trained nonlinear
regression models on empirical data from measurements of lipid
mediator standards on two different MS instrument types
(Supplementary Note 3). These fragment ion-specific models
provide the link between CE and predicted relative intensity
(Supplementary Figure 52) that enables us to generate a spectral
library and an optimized CE-based transition list (Fig. 1b(5)&
(6)). The spectral library can be used to support the development
of targeted assays by simplifying the validation of all obtained
fragment ion traces from SRM, PRM or DIA by matching their
mass-spectral fingerprint against the library’s spectra using the
dot product in Skyline (Fig. 1a(9), b(7)). This facilitates the
identification of individual lipid species with high confidence if
the relative pairwise ion ratios are sufficient for distinction. The
CE optimization is also very useful if individual precursor
fragment transitions are being established such as for SRM assays
using triple quadrupole MS.

Supplementing the fully accessible workbench, we also
prepared predefined transition lists for several model system
lipidomes, such as yeast, mouse (platelets, heart, brain hippo-
campus), drosophila and human (plasma, platelets)32–36, making
it straightforward to start a targeted lipidomics experiment.

Using its stand-alone batch-processing mode to create
transition lists from lipid names, it computes precursor-product
ion pairs at a rate of 60,000 pairs per second on a standard
notebook (i5-4310M CPU @ 2.70 GHz with 8 GB of main
memory). LipidCreator can be integrated into KNIME workflows
as an external tool node via its command line interface on Linux
and Windows. It is also a native Skyline plugin (Skyline 64 bit,
version 19.1 and above), which greatly facilitates vendor-
independent assay development and analysis, data visualization
and quality control of MS and MS/MS data (Fig. 1c). LipidCreator
further supports visual inspection of fragments (Supplementary
Note 2) and a lipid name translator supporting LIPID MAPS
nomenclature37.

LipidCreator design and architecture. LipidCreator is written in
the C# language and can be run on both MS Windows (stand-
alone or as a Skyline plugin) and on Linux (using the Mono
framework). It contains multiple levels of structured data to
create lipid transition lists (Fig. 2). The first level, which is the
precursor level, contains information about all lipid classes. This
information refers to the precursor m/z computation. Informa-
tion such as lipid category, lipid class name, length of fatty acyl
chain, type of fatty acyl chain and adduct attributes are included.
In the user interface, the lipid backbone indicates how the
according lipid is assembled (for instance a cardiolipin contains
four fatty acyls etc.). The user has to define the various global
parameters of the lipid (head groups, adducts, fatty acyls or long
chain bases), where each lipid class contains individual compu-
tational rules to assemble head groups, fatty acyls and enabled
adducts to create a customized precursor group. To avoid
redundancy (like for PC 12:0–14:0 and PC 14:0–12:0), the fatty
acyls are sorted numerically according to carbon length, number
of double bonds and number of hydroxyl groups. Each precursor
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Fig. 1 The LipidCreator workbench and its integration into Skyline. a Main steps include the decision of which lipids to query (Lipid Query), the
calculation of the lipid precursor and corresponding fragment masses (Calculation) and the assay design (Targeted Assay). b These main steps consist of
the selection of species or lipidomes to target (1–2), the inclusion of isotope-coded internal standards for validation (3), the calculation of precursor and
fragment masses for the assay (4), library generation (5) and the in silico optimization of CE for individual fragments (6). The steps (1–6) are performed in
LipidCreator. After the submission of the transition list to Skyline and the execution of the targeted lipidomics experiment, lipids can be validated by
spectral library matching (7) and/or their coeluting internal standards, which are further used for quantification (8). Due to the integration features of
Skyline, different downstream quality control systems, such as Panorama, are available (9). c Graphical user interface of LipidCreator integrated into
Skyline.
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group contains all the information of its lipid building blocks to
simplify computation of fragment-specific information.

The fragment level is the second level and stores information
such as the fragment names, the corresponding structure images
and calculation rules which are later utilized to generate the
masses of MS fragments of interest. Users can manually define
additional fragments that are not provided by LipidCreator using
this level. We support both positive and negative mode for each
lipid class. Finally, the exported transition list includes all
mandatory information for both precursor and fragments, such
as name, mass, adduct, and charge state.

Both levels use additional definitions for heavy isotope-coded
precursor and fragment ions following the aforementioned rules.
Finally, if enabled, we apply the collision-energy models to calculate
the relative fragment intensities based on the automatically
calculated optimal collision energies or based on the manually
provided ones to generate the in silico spectral library for use by
Skyline or other tools that support the Bibliospec blib format.

Optimization of collision energy and library generation.
LipidCreator offers a module, enabling the optimization of CEs
for a sophisticated lipid analysis of molecular species. Here, the
user can choose between two complementary modes, finding the
optimal CE of one specific quantifier fragment ion or, defining
the CE with the highest information content in MS/MS. Fur-
thermore, all CE choices can be performed manually for the
highest level of customization of a dedicated lipidomics assay.

Due to the high diversity of lipid fragment properties, we
applied statistical models for the automated CE calculation mode
that are based on experimentally acquired data. Figure 3 shows
the CE optimization workflow for LipidCreator. To determine

suitable collision energies for lipid classes or species defined in
LipidCreator, these lipids need to be selected and added to the
Lipid list (Supplementary Note 2) to define a targeted assay
(Fig. 3, (1)). Each lipid definition includes a set of fragments that
were obtained from literature or were generated based on the
building blocks and the parameters set in the LipidCreator user
interface. We then exported these lipid target lists as target
transition lists. In step (2), we performed repeated experimental
MS/MS measurements of the lipids that we selected in (3) on the
respective target MS platform with different CEs. For the
QExactive HF platform, we acquired the spectra from normalized
collision energy (NCE) 10–60, with a step increase of 1 and an
average of 16 repetitions per NCE (minimum 1, median 18,
maximum 21) and precursor. For the QTOF platform, we
acquired the spectra from CE 10–100, with a step increase of 1
and an average of 3 repetitions per CE (minimum 1, median 3,
maximum 7) and precursor.

The vendor MS raw data was converted into a centroided
format38 using Proteowizard’s MsConvert39 but applied peak
picking algorithm libraries of the vendor. Next, we combined the
target transition lists of step (1) with the converted mzML files of
step (2) to select and transform m/z values and (relative)
intensities into intermediate feature tables (see Supplementary
Note 2) in step (3). In step (4), we processed the extracted feature
tables using the open source R-package flipR (Fragment-based
Lipid Intensity Prediction, see Source code availability). flipR fits
multiple nonlinear regression models for each lipid-specific
transition fragment within a user-defined parameter range, given
the scan-relative intensities over the sampled range of collision
energies. We applied flipR to create QC plots (5) to assess
potential technical issues, estimated the model parameters and
inserted them into LipidCreator to calculate optimized collision
energies (6). The automatic collision-energy selection uses the
mode of the product density distribution over all individual
fragment distributions. Thereby, the selected CE covers the
highest simultaneous product overlap over all fragments. The
user can customize the preselection of all fragments in
LipidCreator, which updates the mode calculation of the product
density distribution accordingly (see Supplementary Figure 1). An
overview of the total number of samples per fragment and PPM
mass error is available in Supplementary Note 3 for 10-HDoHE.
Supplementary Data 5 (QExactive-HF) and Supplementary Data 6
(QTOF) report summary information and diagnostic plots for all
mediators.

Computation of lipidome coverage. To underline the wide
applicability of LipidCreator, and to prove the correctness of the
generated transitions, we performed computational, analytical,
and biological validation experiments for different use cases
ranging from the computation of lipidome coverage to their
applicability to investigate lipid-signaling pathways.

LipidCreator covers lipid classes that occur in many biological
organisms. Several reported lipidome compositions from the
literature were used to determine the coverage provided by
LipidCreator (Fig. 4) for the following organisms and tissues: (a)
Human plasma40, (b) Human platelet36, (c) Mouse heart35, (d)
Mouse platelet36, (e) Mouse brain32,41, (f) Yeast34, (g) Zebra-
fish42, (h) Drosophila33,43, (i) Arabidopsis44, and (j) E. coli45–47.
We can show that the vast majority of reported lipids among the
selected model organisms are supported by LipidCreator. For
expanding the coverage of LipidCreator by adding lipid classes
and categories, we encourage the community to open pull
requests or issues within our github repository (https://github.
com/lifs-tools/LipidCreator). That is how we can ensure a clean
inclusion of the data and a stable functionality of the tool.

Precursor level
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Transition filters

Isotope labeled fragments

Collision energy models

Lipid classes
Backbones

Fatty acyl chains
Adducts

Fragment names
Fragment structure
Fragmentation rules
Add new fragments

Stable isotope labels
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Export level

Transition lists

In-silico spectral library

Skyline import
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Fig. 2 LipidCreator system levels and flow of information. LipidCreator
uses an internal knowledge base that stores information about lipids and
their fragments. This information is assembled based on the user’s
selection of lipid classes and additional parameters from the two main
levels, the precursor and fragment level. Then, LipidCreator combines the
user’s selection with information about lipid classes, precursors, backbones,
fatty acyl chains, lipid fragments and information on isotope labels and
forwards it to the transition layer for targeted assay generation. The
downstream filter layer then applies collision-energy models to the
generated transitions, if either automatic CE optimization or manual CE
mode are enabled. The final export layer generates the final transition lists
and spectral libraries and either stores them locally or transmits them
directly to Skyline.
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False match and target-decoy calculations. To validate the
accuracy of LipidCreator’s transition lists, we conducted two
experiments in a well-controlled manner (Fig. 5). The objective of
the first, computational experiment (i) was to determine the
number of transitions per lipid required for identification within
a small and well characterized lipidome. In the second experiment
(ii), we validated our theoretical calculations and the transition
lists computed by LipidCreator by monitoring true and false
targets. Therefore, we depicted the lipidome of the yeast Sac-
charomyces cerevisiae as a matrix. For yeast, it is well known
which lipid classes occur, which numbers of fatty acyls and
double bond varieties exist, and most importantly, which fatty
acyls and lipid classes do not occur34. This knowledge is
important for our consecutive false identification calculations48.

We calculated a probability measure for lipid identification.
Thereby an important information for lipid identification is the
number of fragments per lipid taken into consideration.
Obviously, it holds that as more fragments are available the
better the identification becomes. Therefore, it is inevitable to
have a measure of reliability of the identification with respect to
the minimum fragment number necessary for an unambiguous
identification at the molecular lipid level31,49. However not always
all available fragments can be considered due to a limited
scanning time. Thus, one has to balance the number of fragments
per precursor analyzed and the numbers of precursors monitored.
Hence, we performed a theoretical calculation to infer the
minimum number of fragments necessary for an unambiguous
identification of a molecular lipid species within a certain
lipidome. Here, we denote a lipid as unambiguous with respect
to a number of n fragments only when (i) no other lipid possesses

a similar precursor mass in this set or (ii) having the same
precursor mass, no other lipid contains n fragments with similar
fragment masses. A fragment’s mass is termed similar to a
reference mass if and only if their mass difference does not exceed
a pre-specified mass tolerance. For our calculation, we used 263
lipid species (367 precursors, 146 negative / 221 positive
precursors) from yeast as background matrix49, 32 lipids (42
precursors, 18 negative / 24 positive precursors) as target lipids,
and 38 (52 precursors, 24 negative / 28 positive precursors) as
decoy lipids. Note that all lipid species are unambiguous among
all three sets. Figure 5a–d illustrate the results. On the MS level,
the masses of each precursor were controlled for similarity against
all remaining precursor masses. If two precursor masses were
similar, the maximum overlap of fragments of a reference lipid
with the fragment of its similar precursor was computed. The
overlap of two fragment lists was computed by using a version of
global sequence alignment adapted to handle numerical values50.

When identification is solely based on the precursor mass, the
probability to unambiguously identify a lipid is 64%. When using
one arbitrary fragment, the probability increases up to 94%, while
using two arbitrary fragments leads to a value of 97%. Therefore,
especially on low resolution devices, we recommend to verify the
target lipid with at least two fragments during the initial method
development (Fig. 5c,d). By monitoring more than three
transitions, the false match probability can be reduced to 2%
for all lipid species.

In addition, we chose a target-decoy approach to validate the
performance and accuracy of the transition lists we created with
LipidCreator. Therefore, we selected 21 target lipids and 21
decoy lipids from the yeast lipidome matrix that we calculated
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Fig. 3 Relative fragment intensity prediction for collision-energy optimization. The workflow is connecting the assay development with LipidCreator (1),
lipid standards measurement (2) and transition extraction from the measured data to create feature tables (3) for the training of fragment-specific
nonlinear regression models for collision-energy-dependent, relative intensity prediction using nonlinear regression models (4). The subsequent QC and
visualization step (5) supports model fit quality inspection and selection of the parameterized model parameters. LipidCreator uses these model
parameters to calculate the optimal collision energy for a lipid based on the selected fragments (6) for further assay refinement and integration with the
MS acquisition workflow.
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Fig. 4 Lipid distribution and lipidome coverage of LipidCreator in different model organisms. a–j Numbers of lipid species per lipid class within different
organisms. A list with all unsupported lipid classes within this experiment is available in Supplementary Note 1 and in Supplementary Data 1. The latter
table further contains detailed descriptions of all lipid name abbreviations and the lipid classes supported by LipidCreator. Source data are provided as a
Source Data file.
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in the previous step. Based on our previous results, all lipid
species were unambiguous and not common between any of the
three sets. For the measurement, we spiked the target lipids into
the yeast matrix. We created an LC-ESI PRM assay and

analyzed both target and decoy lipids (See Supplementary
Methods for LC-MS/MS parameters). Figure 5e–g illustrates the
results. We counted the lipids in each measurement and plotted
their numbers. We used the common definition to calculate

a

c

e f g

b

d

Fig. 5 Probability and false match analysis proves LipidCreator output as correct. For probability calculations, the yeast lipidome34, a set of target lipids
and a set of decoy lipids (in total: 188 negative/273 positive lipid ions) were chosen. a, b The minimum number of lipid ions that can be unambiguously
identified using 0 fragments (i.e., precursor mass), 1 arbitrary fragment etc. was calculated in negative and positive ion mode, respectively. The MS and
MS/MS mass tolerance was set to ±0.5 Da (representing low resolution instrumentation) or ±2.5 ppm (representing high resolution instrumentation).
Sphingolipids (SL) and glycerophospholipids (PL) were investigated in both polarities while, glycerolipids (GL) and sterol lipids (ST) were investigated in
positive ion mode only. c, d Cumulative probability to unambiguously identify any lipid ion when using 0 fragments, 1 arbitrary fragment etc. using 0.5 Da
(low) or 2.5 ppm (high) tolerance in positive and negative ion mode, respectively. To verify the calculations, LC/ESI MS/MS experiments were conducted
in a yeast lipidome background. The monitored lipid set contained yeast lipids, 21 target lipids, and 21 decoy lipids. Here, (un)identified target lipids are
referred to as true positives or false negatives, whereas (un)identified decoys are denoted as false positives or true negatives, respectively. The
identification is based on the upper number of used fragments, where 0 fragments means the identification is solely based on precursor mass. The
accuracy ratio (%) is plotted above each bar. e Numbers of identified and unidentified lipids when considering only positive precursor ions (note that the
majority of lipids do not contain more than one fragment in positive mode). Our knowledge base contains only one or two positive fragments for some
lipids, therefore the percentage remains unchanged when choosing more fragments. f Numbers of identified and unidentified lipids in negative mode.
g Total number of identified and unidentified lipids when taking both polarities into account. When considering three fragments, all target lipids could be
identified and only one decoy was positively identified. Measurements were carried out on a pooled sample of five individual extraction experiments and
were conducted in technical triplicates (n= 3 independent experimental replicates). Source data are provided as a Source Data file.
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accuracy: acc= (TP+ TN) / (TP+ FN+ FP+ TN). Correctly
identified target lipids (true positives, TP) and correctly
unidentified decoys (true negatives, TN) are displayed with
blue bars, whereas incorrectly unidentified targets (false
negatives, FN) or identified decoys (false positives, FP) are
presented with red bars. The results show (i) that LipidCreator
provides correct transition lists for lipid identification and (ii)
that with increasing fragment number the overall accuracy
increases. Especially when we consider the identifications that
use up to three fragments (best tradeoff between accuracy and
number of used fragments) and both polarities, we identified all
target lipids, while we misidentified only one decoy lipid,
resulting in an accuracy of 98%. These results are also in line
with our theoretical calculations.

Quantification of plasma lipids and reference material. To
further verify the LipidCreator workflow, we conducted a quan-
titative lipidomics experiment monitoring 433 lipids in the
plasma of 21 healthy Asian human subjects (an overview is given
in Fig. 6a, b). For individual lipids, we compared the obtained
concentrations to the same set of lipids of a reference material
from a mixed American population (NIST SRM 1950) and a
recently published ring trial that involved 31 laboratories51

(Fig. 6a, Supplementary Fig. 9). The rationale behind this was to
see if the generation of a list including internal standards and
endogenous lipids by LipidCreator leads to a similar quantitative
set of lipids as reported in the NIST SRM 1950. All targeted lipids
were detected in our control group and in the NIST reference
material. The quantitative data reveal that, in the majority of
cases, the measured lipid levels are close to the reference material
itself. However, a significant proportion of lipid species display a
concentration level different from the one reported in the ring
trial (Supplementary Fig. 9). This difference might reflect the
complex interaction of plasma lipidome, ethnicity, diet and life
style14,52 but would also be caused by sample collection as well as
the chosen quantification strategy (Supplementary Fig. 9). The
overall lipid distribution of quantifiable lipids is depicted in
Fig. 6b.

Verification of true responses with calibration curves. In order
to prove that LipidCreator computes correct lipid ion signatures
that can be the basis of a targeted lipidomics assay, we measured
the response of polyunsaturated fatty acyl phospholipids (PUFA-
PL) in human platelets matrix. For well selected ion signature, a
linear correlation between mass spectrometric response and
concentration should be observed. We investigated the fatty acyl
combination 18:0–20:4 in PA, PC, PE, PG, PI, and PS lipid
classes, which are endogenous lipid species in the majority of
mammalian samples and are important pool educts for lipid
signaling53,54.To create the calibration curve, increasing con-
centrations were prepared and analyzed by LC/ESI SRM as spe-
cified in the Supplementary Methods. We observed a linear
response for all analyzed lipids (Supplementary Fig. 2) with an
average correlation coefficient of 0.99. This result underlines that
the transitions generated with LipidCreator are well suited for
targeted lipidomics.

Validation through lipid signaling in human platelets. For
further validation of LipidCreator, we investigated lipid mediators
and their precursor ions during human platelet activation. Pla-
telets are essential for maintaining vascular integrity and
hemostasis and are further critically involved in vascular
inflammation, as well as acute arterial thrombotic occlusion fol-
lowing the rupture of atherosclerotic plaques55,56. Lipid media-
tors have important functions in platelet physiology, signaling

and energy production57. To follow the generation of lipid
mediators upon platelet activation and their arachidonate (fatty
acyl 20:4, AA)-containing precursors in individual human sub-
jects (Supplementary Table 5), we analyzed platelet signaling in a
targeted lipidomics assay. In this assay lipid mediators and AA-
containing glycerophospho- (PL), glycerol- (GL), and cholesteryl
ester (ChE) were included. Next, we verified the results by
spectral matching using a LipidCreator-generated in silico spec-
tral library (Supplementary Figs. 3–8), and determined all lipid
concentrations based on the individual responses of endogenous
lipids and 19 internal standards. The network analysis based on
our results indicates dose-dependent regulation of the lipidome
with strong lipid-lipid correlation in distinct clusters of PC, PE,
PI, and PA (Fig. 7a). In individual stimulations, lipid species in
the PI cluster were dramatically reduced, while the PC and PE
clusters were largely unaffected. This result can be interpreted in
two ways: first, that the AA-containing PIs were the main con-
tributors to AA generation by the action of lipases, such as
phospholipase A2, on lipid precursors; second, that the re-
esterification towards PI was slower than that of other PL classes.
Therefore, PI metabolism remains the main contributor to the
AA pool (Fig. 7b–e) and the subsequent enzymatic oxidation of
fatty acyls catalyzed by lipoxygenases (LOX), cyclooxygenases
(COX) or cytochrome P450 (CYP)58,59. In addition, we observed
re-esterification of AA into lipid classes, such as DG and PA,
during activation. Most mediators were upregulated in a dose-
dependent manner and secreted upon platelet activation. Com-
pared to thrombin activation, CRP had a stronger effect on the
regulation of AA lipids and the production and secretion of
mediators. Compared to enzymatically generated mediators, such
as 15-HETE, PGD2, TXB2, and 12-HETE, the vast amount of
mediators downstream of AA were non-enzymatically generated
(11-HETE). Applying LipidCreator to platelet biology not only
simplified rapid development of the method but also facilitated
quantitative experiments to follow the lipid mediator signaling in
platelets, further underlining its effectiveness and versatility.

Discussion
With LipidCreator, we introduced a knowledge-based tool to
design targeted lipidomics assays. With its user-friendly graphical
interface and supported by built-in interactive tutorials, lipid
researchers with any level of experience can quickly learn how to
design and apply such assays for their own studies. The user can
customize a targeted assay by adding new fragments for lipid
species, by introducing heavy labeled isotopes or by enabling CE
optimization for different MS platforms. The CE optimization
and relative fragment intensity prediction can be extended by
users to cover other MS platforms.

We demonstrated the applicability of the assays designed with
LipidCreator using multiple computational and experimental
methods. With computational simulation, we determined the
minimum number of targeted fragments to unambiguously
identify a lipid with a certain probability and demonstrated
experimentally that for unvalidated assays, multiple fragments
and both polarity modes are required for unequivocal identifi-
cation of lipid species in simple model systems such as yeast. We
showed the accuracy of the transition lists generated with
LipidCreator by performing an analysis of human plasma lipi-
dome samples and NIST SRM 1950 standard material, which we
compared to a recently reported ring trial that used the same
reference material51. As the ring trial was intended to identify the
metrological questions and gaps that currently make it extremely
complicated to reach inter-laboratory comparability, the calcu-
lated consensus neither reflects the most precise value of a certain
analyte nor the true biological quantity. In light of this, we tried to
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Fig. 6 Quantitative comparisons in the human plasma lipidome confirms LipidCreator output. Lipid molecular species from major classes were quantified
from the plasma samples of 21 healthy individuals (n= 21), and the NIST SRM 1950 reference material, by using transitions generated by LipidCreator.
a Concentration differences of selected lipid species between healthy individuals (black dots) and average NIST 1950 plasma samples analyzed in this
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isolate systematic errors due to methodical differences between
the intra-laboratory comparison and the reported control group
by including the NIST SRM 1950 standard as a reference in our
measurements. Here, a direct correlation analysis reveals a good
agreement (R2= 0.98) between the American reference material
and our Asian control group. However, the direct comparison of
both our control group (R2= 0.79), as well as of our reference

standard measurements (R2= 0.8) with the ring trial median of
means values reveal discrepancies specific to certain lipid species
which we attribute to methodical differences in lipidomics
workflows and quantification strategies. The true consensus is
likely to be determined using lipid species-specific standards60

and harmonization efforts61, which are not yet globally available
but are under active development by the International Lipidomics
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Society (ILS), Lipidomics Standard Initiative (LSI) and Singapore
Lipidomics Incubator (SLING). Nonetheless, we were able to use
LipidCreator to generate accurate target transitions to access the
core lipid population of the ring trial.

Finally, we applied LipidCreator to investigate lipid mediator
signaling during human platelet activation. Here, we demon-
strated that similar results in human platelet signaling can be
obtained compared to recent reports in mice36, while we can
attribute differences to species-specific (mouse vs. human) char-
acteristics in lipid metabolism during platelet activation.

Currently, LipidCreator provides CE models exclusively for
lipid mediators. We thus plan to expand our current models to
lipid species of other lipid classes. This requires the availability of
more structurally diverse lipid standards and CE-dependent
measurements of their fragmentation behavior, complemented by
the development and application of more sophisticated machine
learning models62,63. Due to the lack of available standards in
general, rare lipidome wide studies for bacteria such as E. coli and
archaea and the explicit lack of standards for acyl-PG, acyl-PE in
E.coli64 and di- and tetra-alkyl ether lipids in archaea65 the cur-
rent implementation focuses on eukaryotic model systems. Here,
the majority of lipid classes are covered with some exceptions
(Supplementary Data 1). However, we offer a direct interaction
with the community via the LIFS webportal to expand the cov-
ered lipid classes to other model systems. LipidCreator’s lipid
class and fragmentation rule database is openly encouraging
participation in the form of sharing additional rules, with due
credit for contributors.

LipidCreator does not provide a dedicated scoring algorithm to
determine false discovery rates but supports a knowledge-based
selection of transition lists. Thus, it intentionally does not address
the problems of identifying coeluting and / or isobaric lipids and
peak area integration. Instead, it provides notes and visual hints
to the user about potentially interfering transitions (similar pre-
cursor mass and fragment mass with equal polarity). Never-
theless, additional information such as retention time, the elution
order of lipids, as well as isotope labeled standards, if available,
always need to be considered in order to avoid mis-annotations.
To the best of our knowledge, due to the lack of isotope-coded
standards there are currently no large-scale methods available to
cope with occurring stereoisomers. The isomers existence and
quantity should be reported individually based on their retention
time35 or summed up and reported as one species as it was done
here and in previous studies14,51. In the end, the user has to
decide whether these issues pose a potential challenge for their
analysis regarding a specific chromatographic setup, target MS
platform and acquisition scheme.

In conclusion, LipidCreator facilitates the development of
customized targeted lipidomics assays taking into account the
entire analytical process by providing all necessary information
for its optimization. LipidCreator is well integrated into Skyline
for small molecules, which makes it a vendor-independent soft-
ware for fast assay development in targeted lipidomics. It can be
easily extended and customized due to its platform independence

and open source codebase. Method development with Lipid-
Creator is well documented, user-friendly and will not only foster
basic research but also has the potential to pave the way for
clinical investigations.

Methods
Chemicals. Formic acid, tert-butyl methyl ether (MTBE), ammonium formate,
ammonium acetate, acetate acid (HAc), sodium chloride, sodium bicarbonate,
potassium chloride, glucose, disodium phosphate, HEPES, and calcium chloride
were purchased from Sigma Aldrich (Steinheim, Germany). The ULC/MS-grade
solvents, acetonitrile (ACN), methanol (MeOH) were obtained from Biosolve
(Valkenswaard, Netherlands) and isopropanol (IPA) was purchased from Merck
(Darmstadt, Germany). Ultrapure water (18 MΩ cm at 25 °C) was used to prepare
solutions. Sodium dodecyl sulfate (SDS) was obtained from Roth (Karlsruhe,
Germany), tris(hydroxymethyl)-aminomethane (Tris) from Applichem (Darm-
stadt, Germany), and sodium chloride (NaCl) from Merck (Darmstadt, Germany).
Platelets were activated using collagen-related peptide (Richard Farndale, Uni-
versity of Cambridge, United Kingdom) or thrombin from human plasma (Roche,
Germany).

One hundred and thirty-six lipid standards (60 mediators, 58 thereof selected
after model review) (See Supplementary Methods) were used to study the lipid
fragmentation, build optimal collision-energy models, create in silico spectral
libraries and spike-in as internal standards. They were purchased from Avanti
(Alabaster, AL, USA) and Cayman Chemical (Ann Arbor, Michigan, USA). Lipid
fragment masses of mediators were validated with the Metlin database (https://
metlin.scripps.edu/)66.

Ethical regulations. All volunteers gave informed consent for blood samples. The
platelet study was approved by the institutional ethics committee (270/2011BO1) at
University Hospital Tübingen (Germany) and complies with the declaration of
Helsinki and good clinical practice guidelines. The collection and use of human
plasma samples has been approved by the Institutional Review Board of the
National University of Singapore (NUS-IRB N-17-082E and NUS-IRB B-15-094,
Singapore).

Plasma collection. Blood from 21 healthy individuals (12 males, nine females;
22–44 years old) was obtained by venipuncture into K3EDTA BD Vacutainer
tubes. Platelet poor plasma was collected after centrifugation for 10 min at 3850 × g
(4 °C) and stored at −80 °C until analysis. The NIST Standard Reference Material
for Human Plasma (SRM1950) was purchased from the National Institute for
Standards and Technology (Gaithersburg, MD, USA).

Platelet isolation and stimulation. Blood from five individual healthy volunteers
was collected in ACD-buffer and centrifuged at 200 × g for 20 min. The obtained
platelet-rich plasma was added to the modified Tyrode-HEPES (N-2-hydroxyethyl-
piperazone-N´2-ethanesulfonic acid) buffer (137 mM NaCl, 2 mM KCl, 12 mM
NaHCO3, 5 mM glucose, 0.3 mM Na2HPO4, 10 mM HEPES, pH6.5). After cen-
trifugation at 900 × g for 10 min and removal of the supernatant, the resulting
platelet pellet was resuspended in Tyrode-HEPES buffer (pH7.4, supplemented
with 1 mM CaCl2). Freshly isolated and resuspended human platelets were sti-
mulated with 0.01 U mL−1 thrombin, 1 U mL−1 thrombin, 1 µg mL−1 CRP or 5 µg
mL−1 CRP for 5 min. After centrifugation for 5 min at 640 × g at 25 °C, the pellet
and supernatant were separated and separately shock frozen in liquid nitrogen.

Lipid extraction. Lipid (except fatty acids and their derivatives) extraction was
carried out with MeOH and MTBE (See Supplementary Methods). The dried lipid
extract was resuspended in 100 µL of IPA/MeOH/CHCl3 (4:2:1, v/v/v) for further
MS analysis. To extract fatty acid and their derivatives, additional 20 µL of acetic
acid (99.99%, 17.5 M) was added into the sample. After that, the same incubation
and centrifugation procedures as described in the previous paragraph were applied.
The dried lipid extract was resuspended in 50 µL of MeOH for further MS analysis.
Protein pellets were collected and the protein amount was quantified (See Sup-
plementary Methods).

Fig. 7 Lipid regulation during human platelet activation. a Network visualization of the lipid-lipid correlations. Nodes are lipid species. Node size
represents the degree of connectivity, and node color represents the analyzed lipid class (see inset). Edges are correlations with r≥ 0.85. b–e Color-coded
nodes in the network show the lipid fold change with respect to resting platelets during activation by 0.01 U mL−1 thrombin (0.01 Thr), 1 U mL−1 thrombin
(1 Thr), 1 µg mL−1 collagen-related peptide (1 CRP) or 5 µg mL−1 CRP (5 CRP); red indicates a fold change greater than or equal to 2, and olive green
indicates a fold change less than or equal to 0.5. Data are combined from five independent biological experiments (n= 5), and mean values are shown.
f Arachidonic acid (AA)-based mediator production and release upon stimulation. Bar graphs display the determined mediators in platelet cells. Bar graphs
with diamand shape display the secreted mediators. The absolute quantities are reported in pmol mg−1 protein. Error bars are presented as the standard
deviation of the mean (n= 3 independent experimental replicates). 12-lipoxygenase (12-LOX). 15-lipoxygenase (15-LOX). cyclooxogenase (COX).
phospholipase A2 (PLA2). Unst: unstimulated. not detectable (N.D.). Source data are provided as a Source Data file.
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Targeted LC-MS/MS analysis. For the reverse-phase liquid chromatography
(LC), an UltiMate 3000-system from Thermo Fisher Scientific (Darmstadt, Ger-
many) was employed. The chromatographic separation was performed according
to Supplementary Methods on an Ascentis Express C18 main column (150 mm ×
2.1 mm, 2.7 µm, Supelco) fitted with a guard cartridge (5.0 mm × 2.1 mm, 2.7 µm,
Supelco). Samples were injected with a volume of 5 µL and analyzed in triplicates.
The LC was coupled to a Q-Exactive HF (QEx HF) mass spectrometer (Thermo
Scientific, Bremen, Germany) or a QTRAP 6500 (Applied Biosystems, Darmstadt,
Germany) to use PRM or SRM acquisition mode (See Supplementary Methods).

To validate lipid mediator species identified with the QTRAP6500 (Applied
Biosystems, Darmstadt, Germany) instrument, the QEx HF (Thermo Fisher
Scientific, Bremen, Germany) was used to perform high resolution MS full scan
(HR-FS) and data independent acquisition (DIA) analyses. DIA method
preparation and data analysis were performed with Skyline (See Supplementary
Methods).

Direct infusion of lipid standards on QEx HF and QTOF. All 136 lipid standards
were separately diluted to ~1 µM in IPA/MeOH/CHCl3 (4:2:1, v/v/v) with 7.5 mM
ammonium acetate. Then they were infused via robotic nanoflow ion source Tri-
Versa NanoMate (Advion BioSciences, Ithaca NY, USA) into the QEx HF mass
spectrometer (See Supplementary Methods). The PRM inclusion list was adapted
for each lipid standard with NCE ranging from 10–60. The acquisition time was 2
min for each measurement. Raw data were inspected with Thermo Xcalibur version
2.8-280502/2.8.1.2806.

Lipid standards were separately diluted to ~10 µM in MeOH with 0.1% formic
acid and then infused via syringe into Agilent QTOF 6545 (Agilent Technologies,
Waldbronn, Germany). The inclusion list was adapted for each lipid standard with
a collision energy from 10–100 V (See Supplementary Methods). The acquisition
time was 1 min for each measurement. Raw data were inspected with Agilent
MassHunter version 8.0.

Data processing and analysis. Additional information on data processing and
analysis is reported in the Supplementary Methods and together with the datasets
published in MetaboLights.

CE-dependent relative fragment intensity prediction. Nonlinear Regression
Model: flipR uses nonlinear regression with an extended log-normal kernel to fit
fragment-specific dissociation profiles depending on collision energy and scan-
relative intensity (relative to all other fragment intensities in the same scan). We
trained the regression model separately for each lipid species and its fragments on
HCD (QExactive HF) and CID (Agilent QTOF) platforms using the model func-
tion (2), yielding different parameters for each such combination.

We use the probability density function of the log-normal distribution:

fX xjμ; σð Þ ¼ 1
x
� 1

σ
ffiffiffiffiffi

2π
p � exp � ln x � μð Þ2

2σ2

� �

ð1Þ

with parameters μ∈ (−∞, +∞) and σ, x > 0 to model collision-energy dependent
dissociation profiles for lipid fragments. In order to position the parameterized
density function into the collision energy coordinate space we introduced an
additional parameter δ∈ R for the necessary shift and an additional parameter s for
the rescaling of the density function’s height to fit that of the CE profile’s height:

gX xjμ; σ; s; δð Þ ¼ s � fXðx þ δjμ; σÞ ð2Þ
Nonlinear Regression and Grid Search: We use the R-packages minpack.lm

(https://rdrr.io/cran/minpack.lm/), for nonlinear regression based on the
Levenberg-Marquardt nonlinear least squares algorithm) and nls.multstart (https://
rdrr.io/cran/nls.multstart/) to perform a bounded grid search optimization over the
combined parameter range space for each fragment, using the kernel function from
Eq. (2) to model the dependence of scan-relative intensity on (normalized) collision
energy.

We currently do not include any specific handling of outliers. For some of our
instances, we do see drop-offs in scan-relative intensity because of technical
variability of the MS platforms, but due to the high number of repeated
measurements for every collision-energy step, these do not influence the overall fits
significantly.

The minpack.lm package reports different statistics to evaluate the goodness-of-
fit of a nonlinear regression model. minpack.lm calculates the AIC value for each
parameterized model and nls.multstart then selects the one with lowest AIC among
the evaluated parameter combinations. The AIC balances model complexity by
penalizing the number of parameters used for fitting and the prediction error to
avoid overfitting.

Residuals and Sum-of-Squared residuals: In order to be able to assess fragment
model fits, we apply the Shapiro-Wilk test for normality on the standardized
residuals, as calculated between the measured relative scan intensities and the
predicted ones for each collision-energy step (see Supplementary Fig. 54).
However, especially for low and high collision energies (front and tail of the
profile), the fit may diverge, thus leading to consistent over- or under-fitting of the
experimental values (see Supplementary Fig. 53). These over- and under-fits lead to
deviations from the normality assumption of the residual distribution. In case of

the Thermo QExactive HF platform, we often observe an almost constant range of
scan-relative intensities for CE below ~18 (normalized collision energy) (see
Supplementary Fig. 52). Therefore, the instrument specific configuration in
LipidCreator allows the definition of a minimum collision energy above which the
software reports the model-based predicted values.

The overall relative residual for 99.7% (µ(Residual)±3 σ) of all models is well
below 0.1 (10%) for the QExactive HF platform, with many instances reaching
values below 0.03125 (3.125%). The only notable exception here are the ALA-d14
and AA-d8 species measurement, where a weak precursor fragment fit distorts
otherwise low residuals. For this platform, 5 and 10 ppm transition extraction lead
to virtually identical results, with the exception of LTB4-d4 and 5,6-DiHETE,
demonstrating the higher resolution and low intensity variance benefits of the
Orbitrap platform. For the QTOF platform, the residuals do not distribute as
favorably as for the QExactive HF platform. We attribute this to the much higher
variance of fragment intensities, as well as to the different collision technology
(CID on QTOF, vs. HCD on QExactive HF). We therefore see relative residuals of
mostly below 0.0625 (6.25%) when we include 99.7% (µ(Residual)±3 σ) of all
species models, while some outliers reach values between 0.2 (20%) or even above
0.3 (30%). We have nonetheless integrated the QTOF platform into LipidCreator to
demonstrate a) the stability of the FIP nonlinear regression, even on rather noisy
data, and b) to show that the spectral database derived from the nonlinear model
still has a benefit in spectral matching within Skyline, when compared to a bare
binary fingerprint comparison of present/absent masses.

In order to compare the models based on 5 ppm and 10 ppm transition
extraction, we calculate the sum-of-squared residuals for each model and normalize
by the number of data points used for the regression calculation. We correct for the
degrees of freedom (4 estimated parameters) minus 1, to report an unbiased value
of the mean squared error (MSE) of each individual model (see Supplementary
Fig. 55). A smaller MSE value indicates a better estimate, while extraordinarily large
values indicate a less favorable fit estimate, e.g., due to a lack of training data or
large relative intensity variation in the data between repeated measurements.

For the Thermo QExactive HF platform, we were able to consistently choose the
5 ppm window. For the Agilent QTOF platform, 5 ppm was sufficient in most of
the cases. For the insufficient cases, the 5 ppm transition window picked up too few
data points to calculate a usable model. We thus selected model parameters based
on the 10 ppm transition window data for some model instances and fragments.

We provide plots of the model predictions, residuals, standardized residual
quantile-quantile plot and normalized sum-of-squares of the residuals (MSE) in
Supplementary Data 5 (QExactive HF) and Supplementary Data 6 (QTOF) for
lipid mediators.

LipidCreator settings are saved as a MS platform-specific parameter file located
in the data\ce-parameters directory of the LipidCreator installation directory. The
general machine-specific configuration is located in the MS instrument table (data
\ms-instruments.csv). For a tutorial on how to use the collision-energy calculation,
please see Supplementary Note 2 Collision-energy optimization function.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw files and processed data tables are available from public repositories. Skyline projects
for the human platelet activation measurements are available from the Panorama repository
[https://panoramaweb.org/lipidcreator.url]. Raw MS data, mzML converted data, transition
lists, picked and integrated peak areas exported from Skyline and the final, quantified lipid
result tables are available from MetaboLights under the accession codes MTBLS1376
[https://www.ebi.ac.uk/metabolights/MTBLS1376] (yeast data), MTBLS1375 [https://www.
ebi.ac.uk/metabolights/MTBLS1375] (targeted analysis of human plasma samples),
MTBLS1369 [https://www.ebi.ac.uk/metabolights/MTBLS1369] (human platelet data:
targeted LC-MS/MS analysis of phospholipids, glycerolipids and sphingolipids),
MTBLS1381 [https://www.ebi.ac.uk/metabolights/MTBLS1381] (human platelet data:
targeted analysis of mediators), MTBLS1382 [https://www.ebi.ac.uk/metabolights/
MTBLS1382] (human platelet data: DIA validation), MTBLS1333 [https://www.ebi.ac.uk/
metabolights/MTBLS1333] (training Data for CE optimization model training of lipid
mediators: QExactive HF Platform), MTBLS1334[https://www.ebi.ac.uk/metabolights/
MTBLS1334] (training Data for CE optimization model training of lipid mediators: QTOF
Platform). Averaged CE spectra of lipid mediator standards measured on the Thermo
QExactive HF and Agilent QTOF platforms are available from MassBank at https://
massbank.eu/MassBank/Result.jsp?type=rcdidx&idxtype=site&srchkey=ISAS_Dortmund.
The source data underlying Figs. 4, 5a–d, 5e–g, 6a,b, 7a–e, f and Supplementary Figure 2 are
provided as a Source Data file. All other data are available from the corresponding author
on reasonable request.

Code availability
The scripts underlying Figs. 4–7 and Supplementary Figure 2 are provided as
Supplementary Data 7. The source code of LipidCreator is available [https://github.com/
lifs-tools/lipidcreator]. The source code of flipR, the training harness and the code
required to recreate Supplementary Data 5 and Supplementary Data 6 are available from
[https://github.com/lifs-tools/flipr]. A binary compiled version of LipidCreator is
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available as Supplementary Software 1. Releases of LipidCreator are available at [https://
lifs.isas.de/lipidcreator] and at Zenodo [https://doi.org/10.5281/zenodo.3529484].

Received: 4 February 2020; Accepted: 6 April 2020;

References
1. Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation

and its resolution in atherosclerosis: mediators and therapeutic opportunities.
Nat. Rev. Cardiol. 16, 389–406 (2019).

2. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin
resistance and hepatic steatosis. Science 365, 386–392 (2019).

3. Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease.
Nature 510, 58–67 (2014).

4. Platt, F. M. Sphingolipid lysosomal storage disorders. Nature 510, 68–75
(2014).

5. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology.
Nature 510, 92–101 (2014).

6. Summers, S. A. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid
Res. 45, 42–72 (2006).

7. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide
production promotes weight gain and glucose intolerance. Cell Metab. 20,
678–686 (2014).

8. Bayir, H. et al. Selective early cardiolipin peroxidation after traumatic brain
injury: an oxidative lipidomics analysis. Ann. Neurol. 62, 154–169 (2007).

9. Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients
with stable coronary artery disease and acute coronary syndromes beyond
LDL-cholesterol. Eur. Heart J. 37, 1967–1976 (2016).

10. Han, X., Yang, K. & Gross, R. W. Multi-dimensional mass spectrometry-based
shotgun lipidomics and novel strategies for lipidomic analyses.Mass Spec. Rev.
31, 134–178 (2012).

11. Shevchenko, A. & Simons, K. Lipidomics: coming to grips with lipid diversity.
Nat. Rev. Mol. Cell Biol. 11, 593–598 (2010).

12. Wenk, M. R. Lipidomics: new tools and applications. Cell 143, 888–895
(2010).

13. Peng, B. et al. A comprehensive high-resolution targeted workflow for the
deep profiling of sphingolipids. Anal. Chem. 89, 12480–12487 (2017).

14. Saw, W. Y. et al. Establishing multiple omics baselines for three Southeast
Asian populations in the Singapore Integrative Omics Study. Nat. Com. 8, 653
(2017).

15. MacLean, B. et al. Skyline: an open source document editor for creating and
analyzing targeted proteomics experiments. Bioinformatics 26, 966–968
(2010).

16. Pino, L. K., Searle, B. C., Bollinger, J. G., Nunn, B., MacLean, B. M. J. M. The
Skyline ecosystem: informatics for quantitative mass spectrometry proteomics.
Mass Spec. Rev. 39, 1–16 (2017).

17. Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J.
Proteome Res. 13, 4205–4210 (2014).

18. Choi, M. et al. MSstats: an R package for statistical analysis of quantitative
mass spectrometry-based proteomic experiments. Bioinformatics 30,
2524–2526 (2014).

19. Peng, B. & Ahrends, R. Adaptation of skyline for targeted lipidomics. J.
Proteome Res. 15, 291–301 (2016).

20. Bilgin, M. et al. Quantitative profiling of PE, MMPE, DMPE, and PC lipid
species by multiple precursor ion scanning: a tool for monitoring PE
metabolism. Biochim. Biophys. Acta 1811, 1081–1089 (2011).

21. Cai, S. S., Short, L. C., Syage, J. A., Potvin, M. & Curtis, J. M. Liquid
chromatography-atmospheric pressure photoionization-mass spectrometry
analysis of triacylglycerol lipids-effects of mobile phases on sensitivity. J.
Chromatogr. A 1173, 88–97 (2007).

22. Ejsing, C. S. et al. Collision-induced dissociation pathways of yeast
sphingolipids and their molecular profiling in total lipid extracts: a study by
quadrupole TOF and linear ion trap-orbitrap mass spectrometry. J. Mass
Spectrom. 41, 372–389 (2006).

23. Hsu, F. F., Lodhi, I. J., Turk, J. & Semenkovich, C. F. Structural distinction of
diacyl-, alkylacyl, and alk-1-enylacyl glycerophosphocholines as [M - 15](-)
ions by multiple-stage linear ion-trap mass spectrometry with electrospray
ionization. J. Am. Soc. Mass Spectrom. 25, 1412–1420 (2014).

24. Hsu, F. F. & Turk, J. Differentiation of 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-
2-acyl glycerophospholipids by multiple-stage linear ion-trap mass
spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 18,
2065–2073 (2007).

25. Ikeda, K., Shimizu, T. & Taguchi, R. Targeted analysis of ganglioside and
sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded
multiple reaction monitoring. J. Lipid Res. 49, 2678–2689 (2008).

26. Li, Y. T. et al. Association of GM4 ganglioside with the membrane
surrounding lipid droplets in shark liver. J. Lipid Res 43, 1019–1025
(2002).

27. Ogiso, H. et al. Comparative analysis of biological sphingolipids with
glycerophospholipids and diacylglycerol by LC-MS/MS. Metabolites 4, 98–114
(2014).

28. Zamfir, A. et al. Fully-automated chip-based nanoelectrospray tandem mass
spectrometry of gangliosides from human cerebellum. J. Am. Soc. Mass
Spectrom. 15, 1649–1657 (2004).

29. Zarei, M., Muthing, J., Peter-Katalinic, J. & Bindila, L. Separation and
identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line
nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of
animal cell lines. Glycobiology 20, 118–126 (2010).

30. Zemski Berry, K. A. & Murphy, R. C. Electrospray ionization tandem mass
spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J.
Am. Soc. Mass Spectrom. 15, 1499–1508 (2004).

31. Pauling, J. K. et al. Proposal for a common nomenclature for fragment ions in
mass spectra of lipids. PLoS ONE 12, e0188394 (2017).

32. Almeida, R. et al. Quantitative spatial analysis of the mouse brain lipidome by
pressurized liquid extraction surface analysis. Anal. Chem. 87, 1749–1756
(2015).

33. Carvalho, M., Sampaio, J. L., Palm, W., Brankatschk, M., Eaton, S. &
Shevchenko, A. Effects of diet and development on the Drosophila lipidome.
Mol. Syst. Biol. 8, 600 (2012).

34. Ejsing, C. S. et al. Global analysis of the yeast lipidome by quantitative shotgun
mass spectrometry. PNAS 106, 2136–2141 (2009).

35. Keat Tham, Y. et al. Lipidomic profiles of the heart and circulation in response
to exercise versus cardiac pathology: a resource of potential biomarkers and
drug targets. Cell Rep. 24, 2757–2772 (2018).

36. Peng, B. et al. Identification of key lipids critical for platelet
activation by comprehensive analysis of the platelet lipidome. Blood 132,
e1–e12 (2018).

37. Sud, M. et al. LMSD: LIPID MAPS structure database. NAR 35, D527–532
(2007).

38. Martens, L. et al. mzML-a community standard for mass spectrometry data.
Mol. Cell Proteom. 10(R110), 000133 (2011).

39. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and
proteomics. Nat. Biotechnol. 30, 918–920 (2012).

40. Begum, H, et al. Discovering and validating between-subject variations in
plasma lipids in healthy subjects. Sci. Rep. 6, 19139 (2016).

41. Ellis, S. R. et al. Automated, parallel mass spectrometry imaging and structural
identification of lipids. Nat. Methods 15, 515–518 (2018).

42. Fraher, D., Sanigorski, A., Mellett, N. A., Meikle, P. J., Sinclair, A. J. & Gibert,
Y. Zebrafish embryonic lipidomic analysis reveals that the yolk cell is
metabolically active in processing lipid. Cell Rep. 14, 1317–1329 (2016).

43. Guan, X. L. et al. Biochemical membrane lipidomics during Drosophila
development. Dev. Cell 24, 98–111 (2013).

44. Higashi, Y, Okazaki, Y, Myouga, F, K. S, Saito, K. Landscape of the lipidome
and transcriptome under heat stress in Arabidopsis thaliana. Sci. Rep. 5, 10533
(2015).

45. Herzog, R. et al. LipidXplorer: a software for consensual cross-platform
lipidomics. PLoS ONE 7, e29851 (2012).

46. Jeucken, A., Molenaar, M. R., van de Lest, C. H. A., Jansen, J. W. A., Helms, J.
B. & Brouwers, J. F. A comprehensive functional characterization of
Escherichia coli lipid genes. Cell Rep. 27, 1597–1606 e1592 (2019).

47. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D.
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J.
Lipid Res. 49, 1137–1146 (2008).

48. Schwudke, D., Schuhmann, K., Herzog, R., Bornstein, S. R. & Shevchenko, A.
Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb.
Perspect. Biol. 3, a004614 (2011).

49. Liebisch, G. et al. Shorthand notation for lipid structures derived from mass
spectrometry. J. Lipid Res. 54, 1523–1530 (2013).

50. Kopczynski, D. in Informatics. (TU Dortmund, 2017).
51. Bowden, J. A. et al. Harmonizing lipidomics: NIST interlaboratory

comparison exercise for lipidomics using standard reference material 1950
metabolites in frozen human plasma. J. Lipid Res. 58, 2275–2288 (2017).

52. Sales, S. et al. Gender, contraceptives and individual metabolic predisposition
shape a healthy plasma lipidome. Sci. Rep. 6, 27710 (2016).

53. Bazinet, R. P. & Laye, S. Polyunsaturated fatty acids and their metabolites in
brain function and disease. Nat. Rev. Neurosci. 15, 771–785 (2014).

54. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid
mediator class switching during acute inflammation: signals in resolution.
Nat. Immunol. 2, 612–619 (2001).

55. Borst, O. et al. The inflammatory chemokine CXC motif ligand 16 triggers
platelet activation and adhesion via CXC motif receptor 6-dependent
phosphatidylinositide 3-kinase/Akt signaling. Circulation Res. 111, 1297–1307
(2012).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15960-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2057 | https://doi.org/10.1038/s41467-020-15960-z | www.nature.com/naturecommunications 13

https://lifs.isas.de/lipidcreator
https://lifs.isas.de/lipidcreator
https://doi.org/10.5281/zenodo.3529484
www.nature.com/naturecommunications
www.nature.com/naturecommunications


56. Münzer, P. et al. CK2β critically regulates thrombopoiesis and Ca2
+-triggered platelet activation in arterial thrombosis in vivo. Blood 130,
2774–2785 (2017).

57. McFadyen, J. D. & Peter, K. Platelet lipidomics and function: joining the dots.
Blood 132, 465–466 (2018).

58. Coffey, M. J. et al. Platelet 12-lipoxygenase activation via glycoprotein VI:
involvement of multiple signaling pathways in agonist control of H(P)ETE
synthesis. Circulation Res 94, 1598–1605 (2004).

59. Yeung, J. et al. Platelet 12-LOX is essential for FcγRIIa-mediated platelet
activation. Blood 124, 2271–2279 (2014).

60. Rampler, E., Coman, C., Hermann, G., Sickmann, A., Ahrends, R. &
Koellensperger, G. LILY-lipidome isotope labeling of yeast: in vivo synthesis of
(13)C labeled reference lipids for quantification by mass spectrometry. Analyst
142, 1891–1899 (2017).

61. Liebisch, G. et al. Lipidomics needs more standardization. Nat. Metab. 1,
745–747 (2019).

62. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass
spectra by deep learning. Nat. Methods 16, 509–518 (2019).

63. Schuhmann, K. et al. Quantitative fragmentation model for bottom-up
shotgun lipidomics. Anal. Chem. 91, 12085–12093 (2019).

64. Raetz, C. R. Molecular genetics of membrane phospholipid synthesis. Annu
Rev. Genet. 20, 253–295 (1986).

65. Jain, S., Caforio, A. & Driessen, A. J. Biosynthesis of archaeal membrane ether
lipids. Front. Microbiol. 5, 641 (2014).

66. Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug
Monit. 27, 747–751 (2005).

Acknowledgements
This project was funded by the BMBF grant LIFS (de.NBI /BMBF 031L0108A,B),
granted to R.A. and D.S., the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Projektnummer 374031971 – TRR 240, supported by the
Leibniz Association awarded to R.A. and supported by the Ministerium für Kultur und
Wissenschaft des Landes Nordrhein-Westfalen and the Regierende Bürgermeister von
Berlin, Senatskanzlei Wissenschaft und Forschung - inkl. Wissenschaft und For-
schung, and the Bundesministerium für Bildung und Forschung granted to R.A. This
work was further supported by the VILLUM Foundation (VKR023439; C.S.E.; http://
villumfonden.dk) and the Lundbeckfonden (R54-A5858; CSE; www. lundbeckfoun-
dation.com) granted to C.S.E., the Skyline R01 (“Skyline Targeted Proteomics
Environment” R01 GM103551) granted to B.M. and the National University of Sin-
gapore via the Life Sciences Institute (LSI) and the Singapore National Research
Foundation (NRFI2015-05) granted to M.R.W. We thank Fernando Martínez-
Montañés for providing the yeast samples.

Author contributions
B.P., D.K., D.S., and R.A. designed the concept of LipidCreator. B.P., C.S.E., M.H., and
R.A. discussed and finalized the nomenclature. B.M. and B.S.P. performed the Skyline
integration for LipidCreator. R.A., B.P., F.T., B.B., P.I.B., S.H.T., M.Y.C., C.C., S.M., and
M.C.M. designed and performed the experiments. B.P., N.H., B.B., C.C., and R.A. ana-
lyzed the experiments. N.H. implemented and trained the relative intensity prediction
models. B.P. and N.H. validated the model predictions. D.K., N.H., and B.S.P. wrote the
source code. N.H. prepared and submitted the datasets to MetaboLights and MassBank.
B.P., D.K., C.S.E., D.S., S.M., O.J.S., B.M., O.B., N.H., M.R.W., and R.A. discussed the
content. B.P., D.K., N.H., and R.A. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15960-z.

Correspondence and requests for materials should be addressed to R.A.

Peer review information Nature Communications thanks Gerhard Thallinger for their
contribution to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15960-z

14 NATURE COMMUNICATIONS |         (2020) 11:2057 | https://doi.org/10.1038/s41467-020-15960-z | www.nature.com/naturecommunications

http://villumfonden.dk
http://villumfonden.dk
https://doi.org/10.1038/s41467-020-15960-z
https://doi.org/10.1038/s41467-020-15960-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	LipidCreator workbench to probe the lipidomic landscape
	Results
	Features and integration
	LipidCreator design and architecture
	Optimization of collision energy and library generation
	Computation of lipidome coverage
	False match and target-decoy calculations
	Quantification of plasma lipids and reference material
	Verification of true responses with calibration curves
	Validation through lipid signaling in human platelets

	Discussion
	Methods
	Chemicals
	Ethical regulations
	Plasma collection
	Platelet isolation and stimulation
	Lipid extraction
	Targeted LC-MS/MS analysis
	Direct infusion of lipid standards on QEx HF and QTOF
	Data processing and analysis
	CE-dependent relative fragment intensity prediction
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




