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Abstract: In this present work, an electrochemical sensor was developed for the sensing of uric
acid (UA). The sensor was based on a carbon paste electrode (CPE) modified with electroactive
polyimide (EPI) synthesized using aniline tetramer (ACAT) decorated with reduced nanoparticles
(NPs) of Au, Pt, and Ag. The initial step involved the preparation and characterization of ACAT.
Subsequently, the ACAT-based EPI synthesis was performed by chemical imidization of its precursors
4,4′-(4.4′-isopropylidene-diphenoxy) bis (phthalic anhydride) BPADA and ACAT. Then, EPI was
doped with distinctive particles of Ag, Pt and Au, and the doped EPIs were abbreviated as EPIS,
EPIP and EPIG, respectively. Their structures were characterized by XRD, XPS, and TEM, and the
electrochemical properties were determined by cyclic voltammetry and chronoamperometry. Among
these evaluated sensors, EPI with Au NPs turned out the best with a sensitivity of 1.53 uA uM−1 UA,
a low limit of detection (LOD) of 0.78 uM, and a linear detection range (LDR) of 5–50 uM UA at a
low potential value of 310 mV. Additionally, differential pulse voltammetric (DPV) analysis showed
that the EPIG sensor showed the best selectivity for a tertiary mixture of UA, dopamine (DA), and
ascorbic acid (AA) as compared to EPIP and EPIS.

Keywords: electroactive; polyimide; nanoparticles; uric acid; electrochemical sensor

1. Introduction

Uric acid (UA) in the human body stems from purine metabolism and is an important
marker for illness [1]. Generally, a person’s health is related to the concentration of UA in the
blood (1.2–4.5× 10−4 mol L−1) or urine (2× 10−3 mol L−1) [2]. An abnormal concentration
of UA in body fluids could be a symptom of a disease like Lesch–Nyhan syndrome [3],
toxemia of pregnancy [4], or hyperuricemia [5], and along with cardiovascular diseases
it may also affect the circulatory system [6]. Therefore, UA sensing with cost-effective
monitoring, intended sensitivity, and accuracy in human body fluids is crucial to disease
screening [7]. In general, different techniques have been acquired for UA sensing, including
HPLC [8], fluorescence [9], a single line manifold [10], uricase immobilization methods [11],
chemiluminescence [12], and direct electrochemical detection [13].

Among all these methods, the electrochemical technique is extensively used and
has been proven to be an excellent method for the determination of UA due to its quick
response, easy handling, specificity, low expenditure, and high sensitivity [14,15]. In an
aqueous solution, UA undergoes oxidation at common electrodes with ease, so direct
electrochemical detection leads to better sensing. Moreover, direct sensing can be extended
for evaluating UA in a blood sample by the simple pin-prick method [13].

However, other potentially co-existing analytes in body fluids like AA and DA may
interfere with the electrochemical detection of UA. The oxidation potential of UA, AA, and
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DA are too close to strongly overlap, which results in poor selectivity of electrodes. To ad-
dress this concern, two techniques have been employed, i.e., polymer-modified electrodes
and chemically-modified electrodes. Thus, the electrode can be modified and improved us-
ing conducting polymers (CPs), noble metal nanoparticles, organic/inorganic compounds,
and ionic/polymeric film [16,17]. Conducting polymers have various properties, includ-
ing electrochemical activity, electrical conductivity, mechanical strength, biocompatibility,
and environmental stability, which are highly desirable for the advancement of sensing
performance in analytical or bioanalytical system. Moreover, they can be easily doped by
electrochemical techniques [18].

For instance, Ramanavicius et al., recently developed a quartz-crystal microbalance
sensor (EQCM) based on polypyrrole imprinted by uric acid (MIP(UA)-Ppy). Experimental
measurements and theoretical calculations showed that the formation of a uric acid complex
with MIP(UA)-Ppy is thermodynamically more favorable than that of complexation with
NIP-Ppy. However, the sensitivity of the MIP(UA)-Ppy-based sensor to uric acid in a
linear dependence interval was approximately 3.5 times higher than that of a NIP-Ppy-
based sensor [19]. Gryglewicz et al., developed a GCE sensor modified with nitrogen-
doped reduced graphene oxide and gold nanoparticle nanocomposites to improve the
simultaneous detection of DA, AA, and UA. The results showed that nitrogen doping
exhibited better electrochemical performance due to the more efficient anchoring of Au NPs
on the N-doped areas of the graphene structure [20]. Similarly, Ma et al., devised a system
that includes a screen-printed electrode (SPE), which is used as a sensor by alternately
depositing PEDOT, CS, and graphene onto the working electrode for the detection of
dopamine. The system could detect DA with a detection sensitivity of 0.52 ± 0.01 uA/uM
and a limit of detection of 0.29 uM in the linear range of DA concentrations from 0.05 to
70 uM [21].

Due to its superior environmental stability, ease of synthesis, low cost, and uniform
conductive mechanism, PANI is a popular conjugated polymer. Doped PANI is often used
in sensing applications as it shows high conductivity under acidic conditions. Generally,
PANI doped with noble metal nanoparticles (NPs) enhances the electron transfer and im-
proves the conductivity and stability. Therefore, it is used in electrochemical sensing [22–24]
as it provides rapid and accurate sensing [25].

As a model compound of PANI, oligoanilines have been studied enormously in the
past decade. Consequently, oligoaniline-derived electroactive polymers (OAEPs) have
gained considerable attention [26–29] due to their good solubility, biodegradable nature,
and mechanical strength [30–33]. For instance, Chao and Wang prepared OAEPs that
have remarkable electrochemical and electrochromic behavior [34,35]. In 2020, Yeh et al.
reported an H2S gas sensor based on an electroactive polymer containing aniline trimer
in the main chain [36]. Additionally, Huang et al., prepared a polylactide-based OAEP
for tissue engineering [37]. Some reports [38] of fullerene (C60) and carbon nanotubes
(CNTs) grafted with oligoanilines were reported in the literature. Moreover, OAEPs report
good thermal stability [39], electrochemical activity [40,41], biomedical applications [42],
electrochromic properties [43], and electrochemical [44] and conductivity studies [45].
Additionally, in our previous studies, OAEPs have been used for electrochemical sensing
of ascorbic acid [46–54].

To the best of our knowledge, OAEPs are generally use for electrochemical sensing of
ascorbic acid [55,56] but are seldom mentioned for UA sensing. With this information in
hand, we constructed an electrochemical sensor for UA sensing based upon an oligoaniline
derived electroactive polyimide (EPI). Furthermore, to improve analytical performances
like sensitivity and detection limit, nanosized particles of noble metals [57–61] were reduced
on the surface of EPI. An electroactive polyimide (EPI) was prepared by a two-step process
followed by a complete characterization. The as-prepared EPI was then immersed in
different aqueous solutions including AgNO3, H2PtCl6, and HAuCl4 for 6 h. The presence
of metal particles that were reduced on the EPI surface was examined by XRD, TEM, and
XPS. The electrochemical sensors constructed for UA sensing were investigated for various
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studies, such as electroanalytical, kinetic, sensitivity, selectivity, and differential-pulse
voltammetry.

2. Materials and Methods

All the chemicals purchased from Sigma-Aldrich (St. Louis, MO, USA), TCI (Tokyo,
Japan) and Seechem (Seoul, Korea). All the solvents were purchased from J.T. Baker (Ran-
dor, PA, USA), Riedel-de-haën (Seelz, Germany) and Macron (Belmont, CA, USA), with
99.99% purity. HAuCl4•3H2O), H2PtCl6•6H2O, hydrazine, and AgNO3 were all from
Alfa Aesar. 1H-NMR and LCMS were performed on a Bruker AVANCE300 spectrometer
and Bruker Daltonics IT mass spectrometer model Esquire 2000 (Leipzig, Germany), re-
spectively. An FTIR spectrometer (JASCO FT/IR-4100, Easton, PA, USA) and VoltaLab
50 (PST050) were used to perform FTIR and electrochemical experiments. The molecular
weight was determined on a Waters GPC-150CV (Milford, CT, USA), and a JEOL-200FX
TEM (Tokyo, Japan) was used for TEM study.

2.1. Synthesis of Amino-Capped Aniline Tetramer (ACAT)

As shown in Scheme I, aniline tetramer (ACAT) was prepared using a simple pro-
cedure [62]. First, diphenylamine (0.01 mol) and 4,4′-diaminodiphenyl-amine sulphate
(0.01 mol) were dissolved in a tri-solvent system of DMF (100 mL), H2O (20 mL) and 1 N
HCl (25 mL). After that, ammonium persulphate solution (2.28 g in 25 mL of 1 N HCl)
was added slowly to the above-mentioned solution at 0 ◦C via a dropping funnel. Subse-
quently, after one hour of stirring at 0 ◦C the reaction was precipitated out in distilled water
(700 mL). Finally, the vacuum filtration was used to obtain the precipitate followed by a
washing with 400 mL of HCl (1 N), 100 mL of NH4OH (1.2 N), and distilled water. Lastly,
the crude product of ACAT was dried in a vacuum at 50 ◦C and obtained as blue powder.

2.2. Synthesis of EPI

The EPI preparation was a two-step process. First, 0.52 g of 4,4′-(4.4′-isopropylidene-
diphenoxy) bis (phthalic anhydride) and 0.379 g of ACAT were added to 16 g of DMAc
in a two-neck-round bottom flask. The reaction mixture was stirred for 24 h at room
temperature to produce electroactive polyamic acid (EPAA). Afterwards, the mixture of
acetic anhydride and pyridine (0.102/0.079, v/v) was added to the previous solution under
stirring for 1 h. Subsequently, the reaction mixture was heated at 150 ◦C for 3 h to obtain
the EPI solution. Finally, the precipitation was carried out in methanol and the precipitate
washed with hot methanol. Lastly, the EPI was dried at 60 ◦C in a vacuum and collected in
a good yield (80%) [62].

2.3. Preparation of EPIS, EPIP, and EPIG

The standard procedure for the preparation of EPIS, EPIP, and EPIG was as follows:
Firstly, an EPI (leucoemeraldine base) was prepared by dispersing 0.1 g of as-prepared EPI
in 10 mL of 1.0 M NH4OH containing 1 mL of hydrazine solution. The reaction mixture
was stirred for 24 h, filtered, and washed with water until the pH became neutralized. At
this time, a freeze-drying technique was used at −42 ◦C for 24 h, and EPI (leucoemeraldine
base) was collected in form of blue powder. Similarly, EPIS, EPIP, and EPIG were prepared
by immersing 0.1 g EPI (leucoemeraldine base) in 19 mL of 0.1 mM AgNO3, H2PtCl6•6H2O
and HAuCl4•3H2O for 6 h, respectively. Later, the EPIS, EPIP, and EPIG powders were
collected by centrifugal filtration, washed with an excess amount of distilled H2O and
dried at 50 ◦C for 24 h. Finally, the as-prepared EPI decorated with distinctive metallic
particles was collected as a fine blue powder. The synthetic route for EPI decorated with
Ag/Pt/Au particles is shown in Scheme 1.
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Scheme 1. Possible mechanism for the formation of metal nanoparticles on EPI.

2.4. Electrochemical Cyclic Voltammetry of EPI, EPIS, EPIP, and EPIG

The redox behavior of the as-prepared EPI, EPIS, EPIP, and EPIG was determined by
spin-coating these electroactive materials onto an indium titanium oxide (ITO) followed by
performing a series of CV studies. Firstly, different solutions were prepared by dissolving
0.05 g of respective sample in 5 mL of DMAc under magnetic stirring for 6 h. After this,
these solutions were spin-coated on an ITO and dried by heating at 120 ◦C for 1 h. Cyclic
voltammetry (CV) of as-prepared ITOs was performed on a AutoLab PGSTAT 204 (Houten,
The Netherlands).

2.5. Electrochemical Sensing of UA

Figure 1 shows the fabrication of a sensor for electrochemical detection of UA by
using a carbon paste electrode (CPE) modified with EPIs. At first, four different samples
were prepared by a thorough mixing of 0.04 g of each respective polymer (EPI, EPIS, EPIP,
EPIG) with graphite powder (0.05 g) and paraffin oil (0.01) to form a homogeneous carbon
paste. A portion of all these samples was packed firmly into a Teflon tube cavity, and the
opposite end was inserted with a copper rod to make an electrical contact. Voltammetric
studies were performed on an AutoLab PGSTAT 204 electrochemical work station in a 0.1 M
phosphate buffer solution (PBS) (20 mL). Platinum foil was used as a counter electrode
and Ag/AgCl (3.0 M NaCl solution) served as a reference electrode, while CPE electrodes
modified with EPI, EPIS, EPIP or EPIG were employed as working electrodes.
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Figure 1. The flowchart for preparing CPE modified with different samples (i.e., EPI-S, EPI-P, and EPI-G).

3. Results
3.1. Characterization of ACAT

Figure 2 shows the complete characterization of ACAT. As presented in Figure 2a, the
1H-NMR spectrum of ACAT reveals the signal at 5.50 ppm indicating the NH2 protons.
Moreover, the signals around 7.3–6.8 ppm show the splitting of the aromatic protons. The
FTIR spectrum of ACAT in Figure 2b shows the absorption band at 3300 and 3200 cm−1

corresponding to the NH2 groups, while the vibrational bands for quinoid and benzenoid
ring appears at 1600 and 1500 cm−1, respectively. The peak at 830 cm−1 may be correlated
to the substitution pattern of a 1,4-disubstituted benzene ring. Moreover, Figure 2c shows
the molecular weight of ACAT with a molecular ion peak appeared at 380 (m/z) [63,64].
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3.2. Characterization of EPAA and EPI

As shown in Figure 3, FTIR was used to characterize the structure of EPAA and EPI.
The FTIR spectra of EPAA 3a showed a characteristic carboxylic and amide absorption
band at 3250–3500 (N–H and O–H spectra), 1677 (acid C=O spectra), and 1641 (amide
C=O spectra) cm−1. In addition, the peaks observed at 1596 and 1503 cm−1 indicated
the presence of quinoid and benzenoid rings. On the other hand, EPI showed typical
asymmetric and symmetric carbonyl group absorption bands at 1715 and 1675 cm−1.
Moreover, the absorption band of the carboxylic acid group completely disappeared, which
indicated the complete conversion of EPAA to EPI.
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3.3. Structural and Morphological Characterization of EPIS, EPIP, and EPIG

Various characterization tools were used for the determination of structure and mor-
phology of the as-prepared materials.

3.3.1. X-ray Diffraction (XRD)

The XRD patterns clearly indicates that EPIS, EPIP, and EPIG had a crystalline nature
as shown in Figure 4a. It can be seen that as compared to EPI and EPIS, EPIG exhibited four
additional peaks at 2θ of 38.01◦, 43.96◦, 64.50◦, and 77.42◦. All these peaks were attributed
to the standard Bragg reflection from (111), (200), (220), and (311) of the crystallographic
planes of the face-centered cubic lattice. The intense peak at 38.1 indicated that the growth
of gold was fixed in (111) direction. Likewise, the EPIP curve showed the crystal-plane
peaks of (111), (200), and (220) of platinum metal at 2θ of 39.5◦, 44.6◦, and 64.9◦. Thus,
we may infer that the composition of the respective material was as expected, and no
impurities were found in the XRD pattern [57,65,66].
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3.3.2. X-ray Photoelectron Spectroscopy (XPS)

The XPS analysis was employed to determine the composition of all the given samples
as shown in Figure 4b. The XPS spectra of EPIS, EPIP, and EPIG clearly showed peaks for
C, N, and O atoms, while the absence of any other peak indicated the purity of the given
materials. The binding energy peak at 287.82 eV arose from C 1 s, while the peak at 399.8 eV
corresponded to N 1 s. This peak was developed due to interactions with the N atom and
respective nanoparticles. In addition, for EPIS the binding energy of Ag 3d5/2 Ag 3d3/2
was found to be 371.5 eV and 365.6 eV, respectively, which were comparable to the values
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reported in the literature for bulk Ag crystals (368 eV, 374 eV) [67]. Similarly, in case of EPIP,
peaks appeared at 71.3 eV and 74.6 eV for Pt 4f7/2 and 4f5/2, respectively, corresponding to
the zero-oxidation state [68]. Moreover, the EPIG XPS signal for Au 4f7/2 and Au 4f5/2 was
observed as doublets at 81.5 and 85.3 eV, respectively, which clearly indicates the reduction
of Au3+ into Au0, as the binding energy of Au 4f7/2 for Au+3 is 86.5 eV [54].

3.3.3. Transmission Electron Microscopy (TEM)

Figure 4c–e presents the TEM images of EPIS, EPIP, and EPIG, respectively, under
high magnification (200 K). The reduced metal NPs developed on the EPI surface were
observed as black spots as shown in the Figure The average particle size of EPIS, EPIP, and
EPIG was found to be ≈22 nm, ≈68 nm, and ≈20 ± 2 nm in diameter, respectively, as seen
in Figure 4c–e.

3.4. Redox Capability of Materials Measured by Electrochemical CV Studies

The cyclic voltammograms (CV) of all EPIs are shown in Figure 5. As no redox peak
was observed for bare ITO electrodes, it was used as a control for 5a. The CV curve for
EPI 5b showed a relatively small peak of a redox current at 100 A cm−2

. However, the
doping of EPI with respective metal nanoparticles resulted in an increase in current density.
For example, the current density for EPIS 5c was 225 A cm−2, which was 2.3 times higher
than that for EPI, while the response for EPIP 5d increased by four times with a current
density of 400 A cm−2. Subsequently, the highest response was observed for EPIG with
a current density of about 600 A cm−2, as shown in Figure 5e. Thus, the redox capability
of the as-prepared ITO electrode coated with electroactive materials was decreased in the
following order: EPIG > EPIP > EPIS > EPI.
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3.5. Kinetic Parameters Study of CPE Modified with EPIG

To study the nature and kinetics of the electrochemical reaction, the effect of the scan
rate on CV was determined on a CPE modified with EPIG was used in 0.1 M PBS (pH = 7)
towards the oxidation of 50 µM UA as evident in Figure 6a. It can be seen that with an
increasing scan rate, the current density increased from 3 µA cm−2 to 8.6 µA cm−2. Fur-
thermore, the peak potential shifted towards the positive side with the increasing scan rate.
Figure 6b showed a linear relationship between the peak current (Ip) and square root of the
scan rates (ν1/2), and the regression equation was Ip (µA) = 11.147 ν1/2(VS−1)1/2 + 0.562
with a correlation coefficient of R2 = 0.9958. Thus, it indicated that the UA oxidation process
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proceeds via a diffusion-controlled electron transfer reaction, which is generally observed
in systems when the kinetics are fast. Additionally, to investigate the mechanism of UA
electrocatalysis on an EPIG, a graph was plotted between the peak potential (Ep) and logν
as shown in Figure 6c. From the curve, it can be seen that Ep was proportional to logν by
the following linear equation Ep = 0.1112 log (ν) + 0.5346, R2 = 0.97548, which indicates
that the reaction is irreversible. Hence, an anodic peak potential can be evidenced by [69]

Ep =
2.303RT

2(1− α)naF
· log ϑ+ k (1)

where R and F are the universal gas constant and Faraday constant, respectively; α is the
electron transfer coefficient; na is the number of electrons transferred; and T is the room
temperature. The Tafel slope value calculated from Figure 6c was 0.222 V/decade, which
shows that one electron transferred in a rate-determining step by assuming α = 0.61.
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3.6. Electrochemical Sensing of UA

CV and amperometric studies were used to determine the electrocatalytic activity
of the respective material for the detection of UA. Figure 7a showed the CV response
corresponding to a bare CPE and a CPE modified with EPI, EPIS, EPIP, and EPIP in 0.1 M
PBS (pH = 7) at 350 M UA concentration with scan rate of 50 mV s−1. As observed, the bare
CPE 7a showed the smallest response with a current density of 12.73 uA cm−2 at a more
positive potential of 459 mV, while, the current density for the CPE modified with EPI,
EPIS, EPIP, and EPIG was found to be 28.10, 29.67, 32.68, and 37.39 uA cm−2, respectively.
It may be conclude that UA sensitivity decreases in the following order EPIG > EPIP >
EPIS > EPI.
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(c) The corresponding calibration plot for current density vs. [UA] of CPE (a), EPI (b), EPIS (c), EPIP (d), and EPIG (e)
modified electrodes.

The quantitative detection of UA with bare CPE and the EPI, EPIS, EPIP, and EPIG
modified CPE was investigated by chronoamperometric measurements as shown in
Figure 7b. The response was obtained by plotting a current–time (i–t) curve for 350 M UA
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at 340 mV in 30 mL of PBS solution (pH = 7) under constant stirring. It is noteworthy
that the current density increases after each addition of UA. Further, a rapid and sensitive
response was observed in the case of a CPE modified with EPIG, the sensitivity of which
was calculated to be 0.153 A M−1, which is 1.84-fold, 3.56-fold, 4.5-fold, and 6.12-fold
higher than those of a CPE modified with EPIP, EPIS, EPI, and a bare CPE, respectively,
under the same analytical conditions as shown in Table 1.

At a constant potential of 340 mV and a lower concentration (0–50 µM), all the electro-
chemical sensors showed a linear relationship between current response and UA, as shown
in Figure 7c. However, the response curve for EPIG was steep among all electrodes with a
high sensitivity (0.153 A M−1) and having a good correlation coefficient (R2 = 0.9951). On
the other hand, at a higher concentration of UA, the relationship between current density,
and UA concentration was determined by the following equation [70]:

j = jmax[1 − exp(−c/b)] (2)

Table 1. Comparison of our electrochemical sensor with other modified electrodes using various methods reported in
the literature.

Materials/Electrode Type Analyte Sensitivity
(µA·µM−1)

Limit of Detection
(LOD)(µM)

Linear Dynamic Range
(LDR)(µM) Reference

RGO/ZnO/GCE [66] UA 0.31 1–800 [71]
G-30 [67] UA 17.8 5–1000 [72]

ZnO NPs/CPE [68] GA 0.124 1–1000 [73]
CoO NPs/CPE GA 1.52 100–10,000 [74]
CCE/MWCNT UA 1.5 1.4 0.5–10.0 [75]

CPE/MWCNT/α-CD UA 0.325 5 5.0–40 [76]
LaPO4/CPE UA 0.9 2.7–24 [77]

PANI/GO fibers UA 0.2 2–18 [78]
Fe-Meso-PANI UA 0.2621 5.3 100–300 [79]

EPI/CPE UA 0.34 3.81 5–15 This work
EPIS/CPE UA 0.47 4.33 5–20 This work
EPIP/CPE UA 0.83 2.60 5–20 This work
EPIG/CPE UA 1.53 0.78 5–50 This work

(c = concentration of UA, j = oxidation current, b = empirical coefficient related to the
steepness of the j, c transient curve and jmax = current maxima at higher UA concentration).
Based on the data, the previous equation yielded jmax = 15.33 A cm−2, b = 92.59 M, and a
correlation coefficient of R2 = 0.9968. However, it is not easy to apply the above equation
for a current vs concentration plot. Thus, we generated a linear relationship by taking the
log of the abscissa of the calibration curve. So, the sensitivity values calculated for a CPE
modified with an EPIG, EPIP, EPIS, EPI, and a bare CPE was 0.153, 8.3 × 10−2, 4.7 × 10−2,
3.4 × 10−2, and 2.5 × 10−2 A M−1, respectively. In addition, the current density increased
with the successive addition of UA, while the steady state was achieved after 2 s. These
results indicated that, an EPIG is a highly sensitive sensor with a rapid response, wide
linear dynamic range (LDR) and low limit of detection (LOD) (Table 1).

3.7. Differential Pulse Voltammetric Responses for Tertiary Mixtures of AA, UA, and DA

Differential pulse voltammograms (DPVs) were used [80] to determine the selectivity
of designed electrochemical sensors. The experiment was carried out using a tertiary
mixture of 10 M of DA, 10 M of AA, and 10 M of UA for a bare CPE, a CPE modified with
an EPI, EPIS, EPIP, and EPIG in 0.1 M PBS (pH = 7) in the range of−0.3 to 0.8 V, as shown in
Figure 8. It can be seen that the bare CPE 8a showed poor selectivity for a tertiary mixture
of AA/DA/UA. However, an improved and clearly distinguished signal can be seen for a
CPE modified with EPI 8b, EPIS 8c, EPIP 8d, and EPIG 8e. The overall current value of a
CPE modified with metal NPs increased as compared to a EPI due to electrocatalysis. The
separation potential was also significantly improved. It showed good separation with three



Polymers 2021, 13, 252 12 of 16

oxidation peaks around 10–50 mV, 160–180 mV, and 300–340 mV, which corresponded to
the anodic potentials of AA, DA, and UA respectively. Due to the excellent electrocatalysis
of EPIG as caused by Au NPs, the overall sensing current value was increased, depicting
excellent selectivity, good resolution and prominent voltammetric peaks.
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4. Conclusions

In conclusion, we fabricated stable and sensitive UA sensors based on EPI decorated
with reduced nanoparticles of Ag, Pt, and Au, i.e., EPIS, EPIP, and EPIG, respectively. The
characterization of the as-prepared materials via XRD, XPS, CV, and TEM demonstrated
the metallic nanoparticles were successfully reduced upon the electroactive segment of
the EPI. The redox capability of the UA sensors based on CV studies decreased in the
following order EPIG > EPIP > EPIS > EPI > ITO, which implied that EPIG may reveal
the highest sensitivity. The amperometric data showed that the UA sensor EPIG exhibited
higher sensitivity (0.153 A.M−1 UA), low LOD (0.78 µM,) and wide LDA (5–50 µM UA)
at a lower oxidation potential of 310 mV. Similarly, the DPV results clearly indicated the
excellent selectivity of EPIG as compared to other constructed sensors. Hence, the EPIG
electrochemical sensor developed for UA detection showed reliable results. Considering
the good selectivity, simple preparation, low cost, and selectivity of the modified sensor of
UA the practical application value of this system will be later evaluated using real samples.
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