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Abstract: The purpose of this work was to investigate the effect of cellulose nanocrystals (CNC)
from bamboo fiber on the properties of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS)
composites fabricated by melt mixing at 175 ◦C and then hot pressing at 180 ◦C. PBS and CNC (0.5,
0.75, 1, 1.5 wt.%) were added to improvise the properties of PLA. The morphological, physiochemical
and crystallinity properties of nanocomposites were analysed by field emission scanning electron
microscope (FESEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD),
respectively. The thermal and tensile properties were analysed by thermogravimetic analysis (TGA),
Differential scanning calorimetry (DSC) and Universal testing machine (UTM). PLA-PBS blend
shows homogeneous morphology while the composite shows rod-like CNC particles, which are
embedded in the polymer matrix. The uniform distribution of CNC particles in the nanocomposites
improves their thermal stability, tensile strength and tensile modulus up to 1 wt.%; however, their
elongation at break decreases. Thus, CNC addition in PLA-PBS matrix improves structural and
thermal properties of the composite. The composite, thus developed, using CNC (a natural fiber) and
PLA-PBS (biodegradable polymers) could be of immense importance as they could allow complete
degradation in soil, making it a potential alternative material to existing packaging materials in the
market that could be environment friendly.

Keywords: poly(lactic acid); poly(butylene succinate); cellulose nanocrystals (CNC); nanocomposites:
morphological properties

1. Introduction

The increasing usage of petroleum-based plastics in the present times is leading to
increased accumulation of plastic waste in the environment as their natural degradation
time is longer. To prevent this, there is a need to develop environment friendly bioplastics
derived from biomass. PLA, a bioplastic material that originates from the renewable
resources, is mostly preferred and extensively studied as environmental and sustainable
material [1]. It has high strength, high modulus and good clarity. However, PLA is brittle,
with low toughness, slow degradation, slow rate of crystallisation and elongation at break
less than 10% that restrict its usage [2]. These properties can be enhanced by adding fillers
or additives [3]. Moreover, its mechanical properties can be improvised by blending with
PBS. On the other hand, PBS is flexible and tough; when blended with PLA, it overcomes
the limitations of PLA and results in the development of plastic materials of desirable
mechanical properties [4–6]. Additionally, the ability of PLA-PBS blend for packaging
application has been reported earlier by the researchers [7] and higher miscibility has
also been achieved [8]. Further, the addition of natural fibers (bamboo fiber) in the blend
has proved to improve their properties; however, there was an improvement in tensile
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strength [9,10]. Furthermore, cellulose nanocrystals (CNCs) incorporation in the blend
can improve their properties more significantly, as in case of [11]. CNCs are also derived
from renewable resources and have low density, exceptional morphology, high aspect ratio,
higher mechanical strength, good biodegradability and larger surface area [12]. CNCs
are obtained from cellulose, which is abundantly available in the nature.CNCs can be
produced via several techniques mostly by oxidation using ammonium persulfate or by
hydrolysis of microcrystalline cellulose (MCC) using sulphuric acid [13–15].

Adding cellulose to the biocomposites increases their mechanical strength [16]. At
nanoscale, cellulose can considerably modify the chemical or physical properties of nanocom-
posites [17]. CNC has been added to PLA by many researchers, showing that mechanical
properties of the developed PLA/CNC nanocomposites, fabricated via solvent exchange
method, get enhanced [18]. Some other methods used to prepare the composite include
melt blending method [19]. Further, Pirani [20] investigated the mechanical properties of
electro spun PLA-CNC composite developed using aqueous mixing and freeze-drying
techniques. CNCs have also been reinforced in PBS by various researchers [21,22]. Thus,
it is interesting to determine the influence of PBS and CNC together, on the properties of
the PLA. Luzi et al. [23] reported an improved barrier property as a result of collective
nucleation effect of CNCs extracted from hemp fiber and PBS content about 20% on PLA
matrix, thereby improving its crystallinity. There is not much research work dedicated
to the study of CNC-reinforced PLA composites as it is hard to get the uniform distribu-
tion of nanoparticles in the polymer matrix [24]. To explore this area further, the CNCs
extracted from bamboo fiber will be incorporated in PLA-PBS polymer blend to enhance
their properties further and achieve uniform distribution of CNCs in the PLA-PBS blends.

In this research work, the main aim was to investigate the impact of PBS and cel-
lulose nanocrystals (CNC) on the properties of PLA based nanocomposite. The CNCs
were synthesised by acid hydrolysis technique. Then, the extracted CNCs were used as
reinforcements to fabricate PLA-PBS-CNC nanocomposites by using hot pressing tech-
nique. The composites were further characterised to analyse the effect of the PBS and
CNCs on properties of the nanocomposites. SEM, XRD, FTIR and tensile testing were
carried out for investigating the morphology, crystallinity, physiochemical and mechanical
properties of the fabricated composites. This work contributes towards the attainment of
better dispersion of CNCs in the PLA-PBS blend thereby enhancing their properties and
thus advancing our understanding in promoting the development of biocomposites as
replacement for the conventional plastics and material for packing applications.

2. Materials and Methods
2.1. Materials

PLA pellets (7001 IngeoTM of specific gravity 1.24) were obtained from Nature Works
LCC, MN, USA. It has a melting point of 154 ◦C and is a hydrophobic polymer. PBS pellets
(1.26 g/cm3) were procured from PTT public company limited in Bangkok, Thailand. The
melting point of PBS is 95 ◦C. CNCs were extracted from bamboo fiber via acid hydrolysis
technique. The average length of isolated CNCs was 200–500nm and an average diameter
of 10 nm [25].

2.2. Methods
2.2.1. Extraction of CNC from Bamboo Fiber

Bamboo chips were dried in oven and pretreated before isolation by NaOH (17 wt.%)
aqueous solution, followed by 40% of sodium hypochlorite and lastly with NaOH to
eliminate the residual lignin, fatty acids and other impurities, and also to remove the
hemicellulose and lignin from bamboo pulp, respectively. In addition, there was a swelling
of amorphous cellulose during the pre-treatment in order to facilitate the penetration of
sulfuric acid (64%,100 mL) into the bamboo pulp during the process of acid hydrolysis exe-
cuted at 45 ◦C for 45 min, and was continuously stirred at the constant frequency of 20 kHz
in an ultrasonic bath. Further, when there was a change in suspension colour into dark
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yellow, then the hydrolysis was discontinued upon addition of deionised water (DI) and
left for several hours until layered suspensions were obtained and were decanted off until
no more layer appeared. Then, the suspension was washed with DI water and subjected
to centrifuge cycles at the speed of 6000 rpm for the duration of 15 min. The suspension
was washed out, and again DI water was added, and this process was discontinued until
it turned turbid. Finally, it was washed many times until pH of water did not vary and
the extracted CNC were then dried using oven at 55 ◦C for the duration of 24 h and were
obtained in the form of powder [25].

2.2.2. Preparation of CNC Reinforced PLA/PBS Composites

PLA, PBS and CNC were dried at 60 ◦C for 24 h using an oven. Six compositions as
mentioned in Table 1 were prepared by hot pressing technique. Initially the constituents of
compositions were mixed by melt mixer at the temperature of 175 ◦C at 60 rpm for 10 min.
The mixture was then crushed in a crusher to get it in the form of pellets. Compressed
nano-composite films with a thickness of 0.09mm were obtained by compressing these
pellets in a hot press at the temperature of 180 ◦C at the constant pressing pressure of
150 MPa for reheating time of 5 min and then pressing time of 4 min. The compressed
sheets were then dried in oven at 50 ◦C for 24 h. The fabricated samples were stored in
desiccator prior to testing.

Table 1. Composition of PLA-PBS-CNC Composites.

S.No Samples PLA (wt.%) PBS (wt.%) CNC

1. N1 80 20 0
2. N2 79.5 20 0.5
3. N3 79.25 20 0.75
4. N4 79 20 1
5. N5 78.5 20 1.5

2.3. Characterisation and Testing
2.3.1. Field Electron Scanning Electron Microscopy (FESEM)

The morphologies of nanocomposite films were examined via JEOL JSM-7000F FESEM
(Tokyo, Japan) at 10–20 kV (accelerating voltage). To prevent electrostatic charging of films,
these were coated before inspection.

2.3.2. Thermal Properties

Thermal stability of the nanocomposite films was determined by using Perkin-Elmer
TGA7 (Wellesley, MA, USA). TGA analysis was executed on samples around 10 mg at
10 ◦C/min (heating rate) from 0 to 600 ◦C in the presence of nitrogen atmosphere. Then,
the variation in weight ratio with respect to temperature of the samples was recorded. DSC
analysis was carried via Perkin-Elmer DSC7 (Wellesley, MA, USA) using samples of around
3–5 mg in weight, which were placed in the sample pan followed by the performance
of temperature scan at 10 ◦C/min (heating rate) in temperature range of 0 to 200 ◦C.
Here, an aluminum pan was treated as a reference. From the scan results, the glass
transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm)
for nanocomposite films were revealed.

2.3.3. XRD

XRD was performed to find a crystalline structure of nanocomposite films by SHI-
MADZU XRD-6000 (Tokyo Japan) employing Cu K-alpha radiation that were Ni-filtered
and the incident angle ranging from of 20 ◦C to 70 ◦C.
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2.3.4. FTIR

FTIR spectra were obtained using FTIR (Perkin Elmer 1600 Infrared spectrometer,
Wellesley, MA, USA) along with a universal attenuated total reflection technique. The
spectra of the composite films were measured in the frequency range of 500–4000 cm−1.

2.3.5. Tensile Properties

Tensile properties were acquired as per ASTM Standard Method (D638-14 (2014)) via (Lloyds
LRX) UTM (Largo, FL, USA). The nanocomposite films of dimensions (10 mm × 100 mm) were
used, and tensile testing was executed at 10 mm/min crosshead speed and 50 mm as initial
grip separation. Ten samples of each composition were dried at 50 ◦C for 24 h before testing.
Then, the tensile strength, elongation at break and tensile modulus were acquired from
stress-strain curve. Tests were repeated for four samples of each composition to get the
accuracy in results.

2.3.6. SEM

The fractured surface of tensile tested films was studied via Hitachi Model S-3400N
SEM (Tokyo, Japan). The fractured surface was coated with gold by sputter coating process
before examination to prevent electrostatic charging.

3. Results and Discussion
3.1. Morphology

FESEM was utilised to analyse the morphology of developed PLA-PBS and PLA-
PBS-CNC nanocomposite films, and the distribution of CNCs in the PLA-PBS matrix.
Figure 1a reveals the smooth surface of PLA-PBS blend also displaying their homogeneous
morphology, and Figure 1b–e shows the composites containing rod-like CNC particles
that are embedded in the polymer surface. As from our previous study, the dimensions of
extracted CNCs from TEM and AFM were typically ranging from 200–500 nm (length) and
10 nm(diameter) [25]. In addition, composites (N2, N3, N4 and N5) reveal quite uniform
dispersion of CNC in the nanocomposites up to 1 wt.%, as evident from Figure 1b–e.
Therefore, the CNCs were approximately homogeneously distributed inside the matrix
polymer as the presence of micro agglomerates of nanocellulose were not revealed from
the FESEM images [26]. On further addition of CNC, micro agglomerates were found as
evident from Figure 1e. Thus, better dispersion of CNCs were obtained in the resultant
composites.
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3.2. Thermal Properties

To determine the thermal stability of the nanocomposite films, the TGA and DTG
curves for PLA-PBS and PLA-PBS-CNC (0.5, 0.75, 1 and 1.5 wt.%) composite films were
acquired as demonstrated in Figure 2 and their results were given in Table 2. The initial ther-
mal decomposition of PLA-PBS was observed at 331.7 ◦C. However, for CNC-reinforced
composites, the initial thermal degradation temperature upon addition of CNC decreased
(331.2 ◦C) first, then it increased (334 and 332 ◦C) for 0.75 and 1 wt.% of CNC, respec-
tively [27].On further addition, it decreased to a value of 330 ◦C, as evident from Figure 2a.
The maximum degradation temperature is the highest degradation peak demonstrated by
DTG thermogram [28]. The maximum degradation temperature (Tmax) was obtained from
DTG; it first increased by adding CNC to the PLA-PBS matrix. The Tmax of the blend is
higher, that is, 366.08, then decreased insignificantly, and on further addition it increased
to 367.52 and the weight loss at maximum temperature increased insignificantly due to
presence of CNC, as shown in Figure 2b.
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Table 2. TGA and DTG Results of PLA/PBS/CNC Composites.

Samples Ti
a

(◦C)
T50%

b

(◦C)
Tmax

c

(◦C)
Tf

d

(◦C)
Wi

e

(◦C)
Wmax

f

(%)
Wresidue

g

(%)

N1 331.7 359.42 366.08 387.3 98.7 22.15 0.562
N2 331.2 363.87 364.37 393.6 98.8 23.91 1.172
N3 334.1 362.94 366.64 391.4 99.3 22.4 0.368
N4 332.1 361.52 363.24 390.8 98.9 23.44 1.068
N5 330.4 361.48 367.52 390.1 98.7 23.68 1.236

a TGA, initial degradation temperature; b TGA, 50% degradation temperature; c DTG, peak temperature; d TGA,
final degradation temperature; e TGA, maximum weight loss; f DTG, maximum weight loss; g TGA, char
residue weight.

However, final degradation temperature was higher in case of PLA-PBS composite
(396.8 ◦C), upon addition of CNC, it was reduced (387.3 ◦C) initially then it increased (390
and 391 ◦C for 0.75 and 1 wt.% of CNC, respectively). On further addition it decreased
(385.2 ◦C). Thus, Tf and T50% increased on incorporation of CNC in the PLA-PBS matrix,
indicating that CNC improves the thermal stability of PLA and retards the thermal degra-
dation rate [29]. Comparable results were observed by [30] for polyvinyl alcohol-based
nanocellulose composites and by [31] on the PLA/wood-based CNC nanocomposites.
Additionally, the higher value of thermal degradation temperature can be credited to the
interaction of CNC with PLA-PBS matrix, impeding chain movement and preventing
melting of chain during the process of degradation [32–34]. In case of weight residue for
PLA-PBS composite, the same trend was observed, where it was found to be least (0.562%);
however, upon addition of CNC, it increased (1.172%), then on further addition upto 1wt.%
it decreased to 0.3676% and 1.068% for 0.75 and 1 wt.% of CNC, respectively.

DSC analysis was performed to explore how CNC incorporation affects the thermal
properties of nanocomposites. The DSC curves of the PLA-PBS and nanocomposites
with CNCs are demonstrated in Figure 3. The crystallinity and melting parameters as
acquired from the DSC curves are mentioned in Table 3. From the curves of PLA-PBS and
their nanocomposites, glass transition peak and melting peak were observed at around
58.49 and 114.1 corresponding to the PLA and PBS, respectively [26,35]. Further, the
double melting peaks were witnessed at 147.2 and 153.59 ◦C. The double melting peaks
implies the thickness of two lamellas; the thinner and the thicker one melts at low and
higher temperature, respectively [36,37]. Many researchers [38–41] described this Tm as a
presence of α and α’. In addition, the two temperatures indicate the melting temperatures
of unstable and stable crystals that melt at low and high temperatures, respectively. Thus,
the melting rate was found to be greater than the crystallisation rate, and result in an
endothermic peak [42].
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Table 3. DSC Results of PLA/PBS/CNC Composites.

Sample Tg (◦C) Tm (◦C) ∆H (J/g) Tm1 (◦C) ∆H (J/g) Tm2 (◦C) ∆H (J/g)

N1 58.49 114.1 7.28 147.2 6.94 153.59 1.04
N2 61.43 113.91 8.06 146.17 7.57 152.87 3.66
N3 63.15 114.5 8.4 147.08 8.33 153.60 4.64
N4 61.73 114.02 10.13 146.43 7.66 153.15 3.02
N5 62.89 113.25 13.52 146.85 7.35 152.56 3.83

Here, PBS restricts crystallization with similar findings as the crystallization behaviour
observed in the case of other polymer blends [43,44]. PBS as well as the CNC content in the
blend increased the melting temperature of PLA in the blend. Additionally, the sharper and
narrower peaks were obtained upon addition of CNC up to 1wt.% (N2, N3 and N4), and
on further addition broadened peaks were obtained as in case of composite with 1.5wt.%
CNC(N5). It could be assumed that the CNCs in the composites N2, N3 and N4 are more
homogeneously distributed in the blend. The nucleation effect of CNC on PLA was reduced
due to existence of PBS in the blend as PBS inhibits the crystallisation of PLA in the blends,
indicating that the interaction of PBS with CNC is stronger in comparison to PLA with
CNCs [45]. Hence, PBS covers most of the surfaces of CNCs and restricts the non-uniform
nucleation effect of PLA by CNC. Similar behavior was noticed in the PVDF-PBS-CNT and
PLA-PBS-CNC systems fabricated via solution casting techniques [46,47]. Thus, thermal
analysis of nano composites revealed enhancement upon addition of CNC, and similar
improvement was achieved in the previous work where CNCs extracted from hemp fibers
were added in PLA-PBS composites [23].

3.3. X-ray Diffractometer (XRD)

The crystalline structure of the nanocomposite films and the influence of CNC on the
crystal structure of the composite films N1–N5 were examined by the XRD analysis as
shown in Figure 4. Sharper peaks were obtained on inclusion of CNC, thereby influencing
the crystallinity of the composites, as evident from Figure 4. Comparable findings were
acquired when CNC was added to PLA-based nanocomposites [20]. The CNC used
as extracted from bamboo fiber revealed sharper peak at 22.8◦, indicating the highest
crystallinity degree of 86.96% as reported in our previous work [25]. The PLA component
in the composites revealed broad and obscure diffraction patterns [48,49], indicating the
existence of PLA mostly in amorphous state with small number of crystallites as observed
in our previous work for pure PLA composite developed using the same parameters and
techniques [50]. This indicates lower rate of crystallisation of PLA, which may be due to
the fast rate of cooling during processing, preventing crystallisation of PLA [51,52]. PBS
exhibits the main distinctive diffraction peaks at 2θ; 19.6, 21.8 and 22.7 corresponding to
the (020), (021) and (110) planes of PBS, respectively [53,54].

Addition of the PBS in the PLA causes a rise in the peak intensities. Moreover, there
was insignificant co-crystallisation at the interfaces of PLA and PBS [55] as also evident
from DSC curve in Figure 3. The absence of PLA diffraction peak in all the five composites
(N1–N5) indicates that the PLA component has undergone no crystallisation, while the
diffraction peak of PBS at 22.5◦ was noticed in all composites. Similar diffraction patterns
were obtained for PLA-PBS-CNC nanocomposite films, indicating that the retention of the
crystal structure of PBS was on incorporation of CNC, irrespective of the CNC contents [42].
In addition, the PBS peak intensity increased upon increasing CNC content. However, this
can be credited to the integration of the diffraction peak of PBS with the CNC diffraction
peak at 2θ = 23◦ [56]. Due to this, it was hard to differentiate the change of crystalline
properties in the composites. Thus, the addition of PBS and CNC does not undergo
crystallisation of PLA, thereby their crystal structure remains the same.
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3.4. Physiochemical Analysis

The FTIR analysis was obtained to examine the chemical structure of the PLA-PBS(N1),
and PLA-PBS-CNC (N2–N5) composites, with varying CNC content as presented in
Figure 5. The FTIR spectrum of PLA-PBS-CNC (Figure 5) revealed the characteristic peaks
of OH stretching vibration at 3502 cm−1, 2994 and 2955 cm−1 [57]. The asymmetric and sym-
metric stretching vibrations of CH3, respectively, were observed, with peak at 1753 cm−1

that indicated the stretching vibration of C=O. The asymmetric bending vibration of CH3
was displayed by peak at 1455 cm−1 and peaks at 1186, 1086 and 1094 cm−1, referring to
stretching vibrations of C–O–C [58] of PLA and PBS. Bending frequencies for –CH3 symmet-
ric and –CH3 asymmetric were spotted at 1361 and 1452 cm−1, respectively [58]. The peaks
at 754 and 868 cm−1 represent the crystalline and amorphous phases of PLA, respectively,
which was also observed in the FTIR analysis of PLA in our previous work [50].
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In the case of FTIR of CNC sample reported in our previous work, a strong band was
seen at 3332 cm−1, 2899 cm−1, and 1636 cm−1, indicating the O–H stretching vibration
and thereby revealing their hydrophilic nature, as well as the symmetric C–H vibrations,
an intense adsorption originating from the absorbed water. The sharper peaks of CNC at
1732 cm−1 and 1048 cm−1 indicated the reduction of hemicellulose and lignin and C-O-C
pyranose ring vibration, demonstrating higher quantity of cellulose in CNC [25].Similar
characteristics peaks were reported in the literature [59,60]. Figure 5 demonstrates the
broadening of the distinctive carbonyl peak at 1753 cm−1, implying the partial dispersion
of PLA and PBS [61]. In addition, this behaviour may be due to C=O or C–O and the
OH interactions at the chain endings of PLA and PBS. Furthermore, PLA-PBS and PLA-
PBS-CNC nanocomposite present identical absorption peaks as that of PLA and PBS. This
indicates that there exist definite interactions between the polymers and the CNCs and no
chemical interactions or new bonds were formed within the nanocomposites [62].

3.5. Tensile Properties

The tensile testing was executed to evaluate the tensile strength (MPa), tensile modulus
(MPa) and elongation at break(%). The tensile properties of PLA-PBS (N1) and PLA-PBS-
CNC (N2–N5) composite films were tested at room temperature and tests were repeated
four times as demonstrated by Table 4. The average, standard deviation and error values of
the results were obtained on repetition to achieve accuracy. In addition, the average values
of tensile strength (MPa), tensile modulus (MPa) and elongation at break (%) are plotted in
Figures 6 and 7.

Table 4. Experimental Results for Tensile Strength, Tensile Modulus and Elongation at Break
of Composites.

Samples Tensile Strength
(MPa)

Tensile Modulus
(MPa)

Elongation at Break
(%)

N1 75.6 ± 0.747 3200 ± 73.59 17.5 ± 0.1256
N2 74.6 ± 0.554 3975 ± 131.49 16.35 ± 0.1039
N3 85.1 ± 0.569 6925 ± 124.39 15.25 ± 0.1041
N4 92.6 ± 0.607 755 ± 144.34 12.9 ± 0.3446
N5 64.6 ± 0.480 3275 ± 85.39 12.45 ± 0.1553
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The PLA-PBS has typically high tensile strength, tensile modulus and elongation at
break. Similar results were reported in some previous works [23,58]. CNCs’ effect on
the mechanical properties of PLA-PBS composite blend is presented in Figure 7. The
purpose of CNC addition is to enhance mechanical properties of these composite films.
Tensile strength of PLA-PBS composite enhances with the incorporation of CNCs, and
it increases with increase in CNC content up to 1wt.% (N4); on further addition, tensile
strength decreases, as evident from Figure 6a.

The enhancement of the tensile properties of the PLA-PBS-CNC composite films can
be credited to the uniform distribution and placement of the CNCs in the matrix, as evident
from Figure 1, and the strong interface interaction between them. However, the decreased
values of tensile strength on incorporation of CNC above 1wt.% could be ascribed to intrin-
sic van der Waals interaction of CNC, which results in unavoidable agglomeration of the
CNC, thereby inhibiting effective transfer of load to the matrix polymer [11]. Further, the
introduction of higher content of nanoparticles may lead to the aggregation of CNCs and
possible separation of microphase in the composites. In addition, the increased agglomera-
tion of CNCs can further cause the reduction of mechanical properties of nanocomposites,
which can be correlated with SEM images (Figure 7). Comparable results were also stated
by other researchers [31,63].

In the meantime, tensile modulus also increases upon addition of CNC, as shown
in Figure 6b, indicating the higher stiffness of the composites with CNC loading [29].
Further, upon increasing CNC content, it decreases due to agglomeration of CNCs that
fail to offer strong interactions between the reinforcement and the matrix. Figure 7 shows
the elongation at break of PLA-PBS-CNC nanocomposites. However, a slight decrease in
elongation at break of PLA-PBS blend upon incorporation of CNC was observed, thus
indicating the lower strain rates experienced by the composites upon addition of CNC.
The reason for this can be associated with the CNCs aspect ratio being large and also the
interaction at the interfaces between CNC and the matrix, constraining the motion of the
polymer chains [52]. Thus, the incorporation of CNC improved the tensile strength and
tensile modulus up to a certain limit; however, elongation at break was reduced upon
addition of CNC in PLA-PBS composites.

3.6. SEM Analysis of Fractured Surfaces

The relationship of mechanical properties with the comprehensive structures of the
composites was studied using SEM micrography of the tensile tested PLA-PBS-CNC
nanocomposite films with varying percentages of CNCs, as evident from Figure 8. The
fractured surfaces are rougher with delaminations, broken fibers and some fiber pull-
outs [64]. The broken fiber ends are mostly observed from the fractured surfaces, indicating
a brittle failure mode [65].
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PLA-PBS blend revealed clear interfaces between PLA and PBS in all the blends.
This reveals the immiscibility of the blend [66,67]. When lower content of CNCs less
than 1wt.% was introduced, the nanofibers get distributed uniformly in PLA-PBS matrix
as demonstrated by Figure 8b–e. Subsequently, PLA-PBS-CNC nanocomposite films
displayed rougher surfaces and the blends with relatively low CNC contents exhibited
more interfacial bonding as a result. CNC fiber does not debond easily; rather, it undergoes
brittle fracture during the fracture process, indicating that the matrix is adhered to the
fibers, which reveals a good bonding at the interface of the fiber and matrix [68]. This
leads to brittle failure in the fibers as interfacial bonding influences the interlaminar
tensile strength, the interlaminar shear strength and the intralaminar strength [69] as
evident from Figure 8b–d. However, blending 1.5 wt.% of CNCs (N5) with the PLA-PBS
leads to formation of some fiber pull-outs as observed from composite fractured surfaces
in Figure 8e. This fiber pull-out implies that the fiber-matrix interfacial bond strength
surpassed before the tensile failure strength of the composite was acquired at this loading
rate. The fiber pull-out is dependent on the bonding strength as well as on the load transfer
mechanism from matrix to fiber [65]. The lower bonding strength in composite N5 with
increased CNC content thereby reduced the mechanical strength. All fractured surfaces
showed a matrix delamination and cracking, displaying the direction of crack propagation
through the matrix as evident from Figure 8 [70]. This suggests that the composite failed
by fiber brittle failure with fiber pull-out and matrix failure. Comparable results for
morphology phenomenon were observed for PLA-CNC in some other studies [71].

4. Conclusions

The outcome of this research work was the achievement of the uniform dispersion
of CNCs in the composites up to 1wt.% as revealed by FESEM, resulting in improve-
ment in their chemical structure, morphologies, thermal and mechanical properties. From
TGA/DTG analysis, it was found that CNCs improvised the thermal stability of the com-
posite films and also restricted the crystallization of PLA-PBS blends as demonstrated
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by XRD and the DSC studies. The FTIR results revealed distinct interaction between the
polymers in the blend and no chemical reaction occurred between the constituents of the
composites. The tensile strength of the PLA-PBS-CNC composite films were improved
upon addition of CNCs because of their homogeneous dispersion as observed from FESEM,
leading to effective load transfer and distribution. Further, the tensile modulus increased
upon addition of CNCs, making the composite films stiffer; however, the elongation at
break decreased insignificantly due to reduction in flexibility of composites upon addi-
tion of CNCs. The highest values of tensile strength and tensile modulus approximately
93 MPa and 7600 MPa were obtained for composite with 1wt.% of CNC. Thus, the im-
proved properties of polymer matrix upon addition of CNCs (extracted from bamboo fiber)
demonstrate their advantageous features in development of higher strength sustainable
polymers as replacement to conventional plastics and material for packaging applications.
The novelty of this work was the inclusion of high quality CNCs extracted from bamboo
fiber in PLA-PBS polymer blend with enhanced characteristics and properties. Further
studies involving combination of techniques or some novel techniques are required for
achieving better dispersion of CNCs in order to improve the thermal stability as well as the
strength of such bio-composites to broaden their scope in various applications.
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