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Accurate geographical origin identification is of great significance to ensure the quality of
traditional Chinese medicine (TCM). Laser-induced breakdown spectroscopy (LIBS) was
applied to achieve the fast geographical origin identification of wild Gentiana rigescens
Franch (G. rigescens Franch). However, LIBS spectra with too many variables could
increase the training time of models and reduce the discrimination accuracy. In order to
solve the problems, we proposed two methods. One was reducing the number of
variables through two consecutive variable selections. The other was transforming the
spectrum into spectral matrix by spectrum segmentation and recombination. Combined
with convolutional neural network (CNN), both methods could improve the accuracy of
discrimination. For the underground parts of G. rigescens Franch, the optimal accuracy in
the prediction set for the two methods was 92.19 and 94.01%, respectively. For the aerial
parts, the two corresponding accuracies were the samewith the value of 94.01%. Saliency
map was used to explain the rationality of discriminant analysis by CNN combined with
spectral matrix. The first method could provide some support for LIBS portable instrument
development. The secondmethod could offer some reference for the discriminant analysis
of LIBS spectra with too many variables by the end-to-end learning of CNN. The present
results demonstrated that LIBS combinedwith CNNwas an effective tool to quickly identify
the geographical origin of G. rigescens Franch.
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INTRODUCTION

Gentiana rigescens Franch is a representative medicinal plant of
gentiana in south China. The main medicinal ingredients of G.
rigescens Franch are gentianine and gentiopicri. The former has
significant liver protection and stomach strengthening effects and
the latter has anti-inflammatory, anti-hyperthyroidism, blood
glucose raising, blood pressure lowering and antibacterial
effects (Acquarelli et al., 2017). G. rigescens Franch has been
included in the “List of Species of Wild Medicinal herbs under
State Key Protection”. It is a class III protected species of wild
medicinal herbs, which has been listed as one of ten important
endangered medicinal plants in Yunnan province in 2002.

Plants of G. rigescens Franch are mainly distributed in
Yunnan, Guizhou, Sichuan, etc. These regions have a wide
range of elevations and temperature distribution. Due to the
different geographical locations with different altitudes, biological
climate, soil environment and so on, the distribution area of G.
rigescens Franch can be divided into different suitable growth
grades, including unsuitability, low suitability, moderate
suitability, middle suitability and high suitability (Shen et al.,
2019b). Moreover, these environmental factors will lead to the
differences in the secondary metabolites of Chinese medicinal
herbs, affecting multi-component coordination in exerting the
multi-channel and multi-target pharmacological action (Zhao
et al., 2009). Therefore, the geographical origin identification is of
great significance to the quality and medicinal value of G.
rigescens Franch.

Traditional methods of origin identification include high-
performance liquid chromatography (HPLC) coupled with
mass spectrometry (Badmos et al., 2020), fourier transform
infrared spectroscopy (FTIR) fingerprints (Zhao et al., 2020b),
combined analysis of stable isotopes and multi-elements (Zhao
et al., 2020a), inductively coupled plasma-mass spectrometry
(ICP-MS) (Bronzi et al., 2020) and untargeted
chromatographic fingerprint coupled with data fusion and
chemometrics (Shen et al., 2019a). Although these methods
have high detection accuracy and sensitivity, they are
destructive, time-consuming and usually involve complex
operating procedures, which will not meet the rapid and
efficient detection demand of the market. Thus, it is necessary
to put forward a rapid and accurate method without complicated
pretreatment for the identification of the geographical origin.

Laser-induced breakdown spectroscopy (LIBS) fulfils the
above criteria. LIBS is an atomic spectrum that can
simultaneously detect multiple elements in a sample with the
capability for in-situ or remote real time operation. So, over the
years, LIBS has been applied in the quantitative and qualitative
analysis of mineral resources (Kim et al., 2018), plastic detection
(Stefas et al., 2019), industrial application (Noll et al., 2018) and
so on. In this study, LIBS was used to identify the geographical
origins of G. rigescens Franch. So far, most people have used
machine learning methods for LIBS spectra analysis (Liu et al.,
2019), and few have used deep learning. The possible reason is
that the number of variables in a LIBS spectrum is so large that it
is easy to cause overfitting for deep learning. Convolutional
neural network (CNN) is one kind of deep learning and has

been popularly applied in various fields. CNN has shown
competitive or better performances compared with machine
learning methods (Liu et al., 2017; Yu et al., 2018). Therefore,
CNN was taken into consideration to improve the identification
efficiency in this study. To solve the problems above, we proposed
two methods for LIBS spectra. One was selecting feature variables
to reduce the representation learning burden of one-dimensional
CNN (1D-CNN). The other was transforming the spectrum into
spectral matrix by spectrum segmentation and recombination to
achieve end-to-end training of two-dimensional CNN (2D-
CNN). The results showed that both methods could obtain
better performance than machine learning. Thus, the
objectives of this study were: 1) to find the differences of
average spectra of underground and aerial parts of G. rigescens
Franch from 12 geographical origins; 2) to extract feature
variables through two variable selection; 3) to compare the
discriminant effects of machine learning and 1D-CNN using
full spectra and feature variables; 4) to use spectral matrix as the
input of 2D-CNN 5) to present the clustering effects of different
layers in 2D-CNN by t-distributed stochastic neighbor
embedding (t-SNE); 6) to visually display the spectral matrix
pixels that had an high important impact on the discrimination
results of 2D-CNN through saliency map.

MATERIALS AND METHODS

Sample Preparation
The main medicinal component of G. rigescens Franch is located
in the root, however recent studies have shown that the anti-
inflammatory effect of the aerial parts of G. rigescens Franch is
better than that of the underground parts (An et al., 2003).
Therefore, both the aerial and underground parts of G.
rigescens Franch were set as research objects in this study.
Plants of G. rigescens Franch were collected from 12 different
places in Yunnan and Guizhou province, China, as shown in
Supplementary Table S1. Only samples from Houyan
(geographical origin 3) were domesticated, while the rest were

FIGURE 1 | The schematic diagram of the laser-induced breakdown
spectroscopy (LIBS) experiment.
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wild. Wild plants of G. rigescens Franch grew in natural
populations, which were labeled by longitude and latitude.
Wild plants of G. rigescens Franch are very precious and few
in number. We collected eight plants from Puer, Yunnan
(geographical origin 2), and ten plants from each of the
remaining geographical origins. The plants were rinsed with
deionized water to remove dust and soil. Then, aerial and
underground parts were separated for each plant. They were
put in an oven at 40°C for 5 h to remove the moisture. Afterwards,
the aerial and underground parts of the same plant were ground
separately at 60 Hz for 1 min. Finally, 0.15 g powders were
pressed into a tablet with a diameter of about 15 mm in a
pressure of 20 MPa for 30 s. Therefore, there were 236 tablets
in total.

Experimental Setup
The experiment was carried out with a self-assembled LIBS
system, of which the detailed information could refer to this
article (Peng et al., 2017). The schematic diagram is shown in
Figure 1. The laser (532 nm) with a pulse duration of 8 ns was
generated by Q-switched Nd:YAG pulsed laser (Vlite-200,
Beamtech Optronics, Beijing, China). A self-designed optical
system was used to direct the laser to the sample’s position.
Right above the sample, a plano-convex lens (f � 100 mm) was
fixed to focus the laser 2 mm below the surface of the sample.
Under the action of laser ablation, the plasma was excited with an
extremely short lifetime. The spectra were collected before the
plasma disappeared using a spectrometer (ME5000, Andor,
Belfast, UK), which could split a spectrum with a range from
229 to 878 nm with a resolution of 0.01 nm. Then the spectra
were converted into electrical signals by an intensified charge
coupled device (ICCD) camera and recorded in a computer. To
prevent repeated ablations, an X-Y-Zmotorized stage was applied
to move the sample. The samples of G. rigescens Franch are not
easy to be obtained. To reduce the impact of a small number of
samples, 16 different positions in a tablet were ablated. Each
position was ablated five times in succession and the five spectra
were averaged. Therefore, there were 16 spectra for each tablet
and 3,776 spectra in total. Delay time and gate width were the two
important parameters for LIBS system, which were optimized as
1.5 and 10 µs respectively with reference to these articles (Shen
et al., 2018; Liu et al., 2019) about plant samples. The energy of
laser was set as 60 mJ.

Data Preprocess
A wavelet transform was applied to eliminate random noise. The
values of the wavelet function Daubechies and the decomposition
level were optimized in the range of 3–10 according to themaximum
SNR (signal-to-noise ratio). For aerial and underground parts’
spectra, the two parameters were optimized as (4,3) and (5,3)
respectively. To reduce fluctuations from point to point (Bolger,
2000), area normalization method was used for each LIBS spectrum
using the following equation:

Xi � xi

∑
n
i�1xi

(1)

where xi is the i-th variable relative intensity measured by the
instrument, n is 22015 which is the total number of LIBS spectral
variables,Xi is the relative intensity by area normalization. All the
tablets of G. rigescens Franch for both the underground and aerial
parts were randomly divided into the calibration set, validation
set, and prediction set according to the ratio of 3:1:1. The number
of spectra in the three corresponding datasets was 1,120, 384 and
384 respectively for both the underground and aerial parts.

Variable Selection and Spectral Matrix
In this study, variable selection and spectral matrix was used for
1D-CNN and 2D-CNN respectively. For variable selection, the
data transmission including two consecutive variable selections
was marked using grey dotted lines in Figure 2. The first variable
selection was to remove the LIBS noise variables with near-zero
standard deviation (Boucher et al., 2015). And the second variable
selection was to reserve the feature variables by variable
importance measurement (VIM). Noise signals have a
relatively lower value of the standard deviation in LIBS
spectra. Moreover, variables with low standard deviation also
mean that the differentiation in all samples of them is little, which
is not conducive to the discrimination by models. Therefore,
variables with near-zero standard deviation were removed firstly
in this study, which could also reduce the number of variables for
the second selection to decrease the selection time.

Random forest (RF) is a tree based nonparametric ensemble
learning method, which can effectively deal with high-
dimensional variable problems for classification and regression
(Strobl et al., 2009; Shi et al., 2019). The number of the trees had a
significant impact on the classification accuracy, which was
optimized in the range of 50–110 in this study. For each
decision tree, about a third of the data do not participate in
the growth of the tree, which are called the out of bag data (OOB).
OOB can be used to evaluate the performance of the decision tree
and calculate the prediction error rate of the model, which is
called OOB error. After adding random noise to a variable, the
larger the OOB error’s change is, the more important the
corresponding variable is. The score of a variable importance
is calculated with the following equation:

Vim � ∑OOBerror2 − OOBerror1
N

(2)

Where Vim is the score based on the variable importance,
OOBerror2 is the OOB error after adding random noise and
OOBerror1 is the OOB error without random noise, N is the total
number of decision trees. In this study, RF was used as a second
variable selecting. Spectral variables were sorted by Vim, and 5%
of the variables with the lower score were removed. This process
was repeated 60 times. For each iteration, the number of decision
trees was optimized in the range of 50–110. The feature variables
were finally determined by the classification accuracy of the OOB.

For spectral matrix, the data transmission was marked using
yellow dotted lines in Figure 2. Firstly, we cut a LIBS spectrum
into n segments of equal length (h variables). Since there were
22,015 variables, n was the integer part of 22015/h. Then the n
segments were recombined into a spectral matrix sequentially. In
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this study, h was selected as 110, 150 and 200 for a comparison
analysis. As we all know, CNN is particularly suitable for image
data processing relying on the two-dimensional and self-adaptive
characteristics of the convolution kernel (Zhang et al., 2020).
Therefore, we proposed a new form of LIBS data by recombining
spectrum segments into a spectral matrix. On the other hand, this
method could offer more spectral information to CNN and
achieve the end-to-end training.

Discriminant Analysis Method
Machine Learning
Linear discriminant analysis (LDA) is a classical linear
classification algorithm, which was first proposed by Fisher
(1936). The idea of LDA is projecting the samples onto a
straight line, so that the projection points of similar samples
are as close as possible. Then, samples from different categories
can be distinguished.

K-nearest neighbor (KNN) is the simplest non-linear
classification algorithm in machine learning. It calculates the
distance among the samples and k nearest samples are regarded
as one category (Chu et al., 2018). In this study, the optimal
parameter k (3–20) was determined by the validation set’s
discriminant accuracy.

Support vector machine (SVM) is a stable binary classification
model (Vapnik and Chapelle, 2000). SVM divides the samples
into two categories by the optimal hyperplane composed of
support vector points. The SVM model has two characteristics.
The first is to map low data to high-dimensional space through
kernel function, and the second is to add penalty term in the

optimal function to make SVM fault-tolerant to some extent.
Kernel function parameter g determines the linearity of the
hyperplane and the regularization parameter c determines the
capacity of fault tolerance (Yu et al., 2016). In this study, the two
parameters were optimized through grid searching in the range of
10–8–108 and determined by classification accuracy of cross
validation set.

Convolutional Neural Network
Deep learning method has been increasingly used in spectral data
analysis (Kamilaris and Prenafeta-Boldú, 2018). Convolutional
neural network (CNN) is one of the well-known deep learning
structures for classification (Feng et al., 2019). AlexNet, an 8-layer
convolutional neural network, won the Image Recognition
Challenge based on ImageNet in 2012 with great advantage.
Therefore, people considered adding more convolutional layers
to reduce the error. However, in practice, the training error
tended to increase rather than decrease after adding too many
layers. To solve this problem, the residual network (ResNet) was
proposed and won the first prize in the 2015 Image Recognition
Challenge. AlexNet and ResNet were designed for image
recognition. In this study, 1D-CNN1 and 1D-CNN2 with the
network structures similar to AlexNet and ResNet were designed
to identify LIBS spectra of G. rigescens Franch. By applying the
same convolutional kernel in a spectrum, CNN could be used to
identify important regions of the one-dimensional spectra
(Acquarelli et al., 2017). At the same time, 2D-CNN with a
simpler network structure than 1D-CNN1 and 1D-CNN2, was
designed to identify spectral matrix.

FIGURE 2 | The geographical origin identification flowchart using convolutional neural network including variable selection and end-to-end learning based on
spectral matrix.
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1D-CNN1, similar to AlexNet, was mainly composed of two
blocks including Convolution 1Block (Conv. 1Block) and Dense
Block (Den. Block) as shown in Figures 3A,B. Batch
normalization (BatchNorm) can improve the training speed
and focus less on initialization (Wu et al., 2019). Pooling layer
(Max pooling) was used to reduce the sensitivity of convolution to
wavelength location. To prevent overfitting, dropout layer was
added to randomly reduce the number of the neurons (Nie et al.,
2019). The probability of deleting neurons was selected as 0.3 in
this study. Others were some basic structures of CNN, such as
convolutional layer (Conv) or dense layer (Dense). The activation
function of them was rectified linear unit (ReLU) to improve the
nonlinear learning ability of the network. The detailed
architecture of the CNN1 is shown in Figure 3E. The
numbers of kernels were 512, 128, 64 and 16 for Convs in
Conv. 1Block 1, 2, 3 and 4, respectively. The size of kernel
was three for Convs in four Conv. 1Blocks. The numbers of
the neurons for Dense in Den. Block1, 2 and 3 were defined as
256, 64, 32, respectively.

1D-CNN2, similar to ResNet, was mainly composed of two
blocks including Convolution 2Block (Conv. 2Block) and
Residual Block (RES. Block) as shown in Figures 3C,D. The
design of ResNet structure refers to the well-known ResNet for
image classification (Nie et al., 2019). The main difference between
CNN1 and CNN2 is the addition of a RES. Block, in which the input
can be propagated forward more quickly through a cross-layer data
path. The detailed architecture of the CNN2 is shown in Figure 3F.
For Conv. 2Block1, the number and size of the kernel was 64 and 3,
respectively. For each RES. Block, the kernel size of Conv and the
number were the important parameters with the values of (64, 2),
(128, 2) and (256, 2) for RES. Block 1 2 3, respectively. For Den.
Block 4, the number of the neurons was defined as 128.

The detailed architecture of the 2D-CNN is shown in
Figure 3G. The number of kernels was 64 and 16 for Convs
in Conv. 1Block 1 and 2, respectively. The corresponding kernel
size was 7 and 3. The larger kernel size can capture more spectral
matrix features at once. The number of neurons in Den. Block 1
and Den. Block 2 were defined as 256 and 64, respectively.

Different learning rates and thresholds were set to train the CNN
based on stochastic gradient descent (SGD). In each training process,
the training ended when the classification accuracy of the validation
set reached the threshold, or when the number of iterations reached
1,000. In the process of piecewise training, the learning rate
decreased gradually and the corresponding thresholds gradually
increased until the model converged. Taking 2D-CNN (h � 150)
based on underground parts as an example, the learning rates were
set as 0.1, 0.05, 0.01 and 0.005, respectively, and the corresponding
thresholds were set as 0.6, 0.75, 0.92, and 0.96. The accuracy of the
validation set finally converged to 0.95.

Model Evaluation and Visualization
Discriminant accuracy was used to evaluate the performance of
models in this study. Discriminant accuracy was defined as the
ratio of the number of correctly discriminated spectra to the total
number of spectra.

A confusion matrix was conducted to analyze the effect of the
optimal model further. The difference between the prediction
results and actual measurements for each geographical origin
could be visually observed. The confusion matrix’s vertical axis
represented the real class, and the horizontal axis represented the
prediction class.

T-distributed stochastic neighbor embedding (t-SNE) was
used to visualize the clustering process of the extracted
features from the CNN. It could realize the nonlinear

FIGURE 3 | The architectures of the proposed classification models: (A) the architecture of the Convolution 1Block; (B) the architecture of the Dense Block; (C) the
architecture of the Convolution 2Block; (D) the architecture of the Residual Block; (E) the architecture of the 1D-CNN1; (F) the architecture of the 1D-CNN2; (G) the
architecture of the 2D-CNN.
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dimension reduction of high-dimensional spectra data (Van Der
Maaten and Hinton, 2008). The Gaussian distribution’s
perplexity was defined as 30, and the initial dimensions of
PCA were defined as 12 in t-SNE. For the output data with
three dimensions, the dimension representing sample number
was retained and the data from other two dimensions were
averaged (Zhang et al., 2020).

Saliency map can obtain the weight of pixels through the back-
propagation algorithm (Liu et al., 2011). The larger the weight, the
greater the influence of the corresponding pixels on the model.
Therefore, every spectral matrix has a corresponding saliency
map. In this study, the weights of spectral matrix in the
prediction set from the same origin were averaged to represent
the origin’s saliency map. Because the spectral matrix was
obtained by spectrum segmentation and recombination, we could
transform the spectral matrix back to a spectrum using the same rule.
So, the spectral wavelengths could correspond to the pixels one by
one. In this way, we could extract the important wavelengths
according to the weight of the pixels in a saliency map.

Software and Hardware
The machine learning algorithms were run on Matlab R2014b (The
MathWorks, Natick, MA, USA). The software was installed on a
Windows7 Desktop with Intel Xeon E5-2620 and 64 GB RAM.
Convolutional Neural Network was deployed on the framework of
Apache MXNet1.4.0 in another computer of Ubuntu Desktop with
GTX1080Ti (NVIDIA, California, USA) and 48 GB RAM.

RESULTS

Average Spectral Analysis
The average LIBS spectra of G. rigescens Franch from 12
geographical origins is shown in Figure 4. For underground
and aerial parts, the excitation wavelengths of the spectral lines
were almost the same, as they all originated from the G. rigescens
Franch’s plants and had similar elements. However, there were
some slight differences in spectral intensity in some spectral lines
(circled in red), which represented for Ca (612.30, 616.38,

854.29 nm) and H (656.28 nm) according to the National
Institute of Standards and Technology (NIST) database. The
relative intensity of Ca spectral lines in aerial parts were
higher than that in underground parts, which was consistent
with the findings in this article (Dong et al., 2015). The spectral
lines of H in aerial parts were barely visible, but they could be seen
in the spectra of underground parts. This might be related to the
medicinal ingredients in the roots of loganic acid (C16H24O10)
and gentiopicroside (C16H20O9). It was impossible to distinguish
the geographical origin by LIBS spectrum. Therefore, further
analysis was needed by identification models.

Variable Selection
For underground parts, the standard deviation of all LIBS
variables in 2048 spectra were calculated and arranged in
order from smallest to largest (see Supplementary Figure
S1A). By human observation, the standard deviation of the
variables before the red dot were close to 0. Therefore, a total
of 2016 variables after red point were retained. For aerial parts
(see Supplementary Figure S1B), the result was similar to the
underground parts and 2016 variables were left.

The LIBS spectra for underground parts of G. rigescens Franch
before and after variable removing is shown in Figures 5A,B. In
Figure 5B, the variables with near-zero standard deviation were
set as “0” and colored black for better comparison. We could find
that most of the signals were retained, including signals standing
for nutrient element and signals with relatively low intensity.
From the detail diagram, it could be found that the noise signals
with near-zero intensity were effectively removed. In the
comparison of Supplementary Figures S2A,B, for aerial parts
of G. rigescens Franch, the same results could be observed.
Therefore, removing the variables with near-zero standard
deviation was an efficient method to eliminate noise of LIBS
spectra. In this study, through this method, the number of
variables decreased by 90.8% from 22015 to 2016 for both
underground and aerial parts of G. rigescens Franch.

Although the noise signals were eliminated, the variables
that could effectively represent the origin information needed
to be further selected. RF is a supervised classification model,

FIGURE 4 | The average LIBS spectra of G. rigescens Franch from 12 geographical origins: (A) underground parts and (B) aerial parts.
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which can screen out the variables highly related to the
geographical origins by VIM. Supplementary Figure S3
shows the change in the accuracy of the OOB as the
number of iterations increases. It could be seen that as the
number of iterations increased, the accuracy increased first
and then decreased. The optimal iteration number was 35 and
38 for underground and aerial parts respectively with the
corresponding accuracy of 96 and 93%. Therefore, for
underground and aerial parts, when the number of
iterations reached 35 and 38 respectively, the remaining
variables were retained as the result of the second variable
selection.

The variables selected by VIM of RF are shown in Figure 6.
The number of reserved variables were 325 and 277 for
underground and aerial parts respectively, which were further
reduced by 83.8 and 86.3% based on the first variable selection.
Most of the preserved spectral lines represented for nutritive
elements, indicating that the nutritive element content of G.
rigescens Franch was closely related to its geographical origin.
The results showed the effectiveness of VIM of RF in selecting
important variables for LIBS spectra.

Discriminant Analysis Using Full Spectra
and Selected Variables
Table 1 shows the results of discriminant models based on
underground parts of G. rigescens Franch using full spectra

and selected variables. With the gradual selecting of variables,
the accuracy of the validation set and prediction set of most
discriminant models displayed an increasing trend, which
indicated the effectiveness of the variable selection. For linear
machine learning of LDA, with the gradual selecting of variables,
the accuracy in the prediction set was 59.90, 66.41 and 74.48%,
respectively. Non-linear machine learning (KNN and SVM)
obtained better performance than LDA. For KNN, with the
gradual selecting of variables, the accuracy in the prediction
was 82.03, 82.03 and 88.02%, respectively. For SVM, the
corresponding accuracy was 91.93, 89.58 and 88.02%,
respectively. LDA can only extract linear relationships of data
(Li et al., 2018). Therefore, LDA usually has worse performance
than other non-linear machine learning algorithms (Benos et al.,
2021). SVM obtained better performance than KNN. This is
because the advantages of SVM are structural risk minimization
rather than the empirical risk minimization (Belayneh et al.,
2014).

For 1D-CNN, the results based on full spectra were overfitting,
because the number (22014) of variables was so much higher than
the number (1,120) of spectra that the accuracy of the validation
set was always around 0.08% even though the accuracy of the
calibration set reached 100%. Thus, variables selection was of
great significant to the better training of 1D-CNN models. After
the second variable selection, the accuracy of the prediction set
was the highest with the value of 92.19% based on 1D-CNN1.
This indicated the effectiveness of variable selection. The running

FIGURE 5 | The average LIBS spectra for underground parts of G. rigescens Franch with (A) original variables and (B) reserved variables by standard deviation.
Note: The variables with near-zero standard deviation were set as “0” and colored black for better comparison.
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time of SVM and 1D-CNN1 is shown in Supplementary Figure
S4A. With the gradual variable selection, the training time of
SVM and 1D-CNN1 became less and less with the value of 312.2
and 161.3 s respectively in the end. Therefore, the method of

variable selection in this study could not only reduce the
training time of models but also improve the discriminant
accuracy. On the whole, 1D-CNN1 was the optimal model
for the geographical origin identification of underground
parts of G. rigescens Franch.

Supplementary Table S2 shows the results of discriminant
models based on aerial parts of G. rigescens Franch. The same
results with above could be found that with the gradual selection
of variables, the accuracy of the validation set and prediction set
of most discriminant models displayed an increasing trend. In
brief, after the second variable selection, 1D-CNN1 obtained the
highest accuracy in the prediction set among the five models with
the value of 94.01%. The running time of SVM and 1D-CNN1 is
shown in Supplementary Figure S4B. After the second selection

TABLE 1 | The results of discriminant models based on underground parts of G.
rigescens Franch using full spectra and selected variables.

Variables selection method
(number of variables

Model Cal1(%) Val2(%) Pre3(%)

Full variables (22015 LDA 73.35 65.89 59.90
KNN 89.46 68.75 82.03
SVM 100.00 86.72 91.93
1D-CNN1 100.00 8.33 8.33
1D-CNN2 100.00 8.33 8.33

First variable selection (2016 LDA 75.95 74.22 66.41
KNN 88.93 68.75 82.03
SVM 100.00 89.06 89.58
1D-CNN1 100.00 92.19 89.32
1D-CNN2 100.00 90.36 88.54

Second variable selection (325 LDA 83.12 79.17 74.48
KNN 90.18 73.44 85.94
SVM 100.00 90.63 88.02
1D-CNN1 100.00 92.45 92.19
1D-CNN2 100.00 87.24 89.84

1 2 3. Cal, Val and Pre are assigned respectively as the discriminant accuracy of calibration
set, validation set, and prediction set.

TABLE 2 | The results of 2D-CNNwith the input of spectral matrix for underground
and aerial parts of G. rigescens Franch.

Sample H Cal1(%) Val2(%) Pre3(%)

underground parts 110 100.00 95.57 93.49
150 100.00 95.05 94.01
200 100.00 95.57 92.97

aerial parts 110 100.00 93.23 92.71
150 100.00 93.23 94.01
200 100.00 96.35 92.45

FIGURE 6 | The selected variables by VIM using RF in LIBS spectra for (A) underground parts and (B) aerial parts of G. rigescens Franch.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7355338

Li et al. Geographical Origin Identification

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


of variables, the running time of SVM and 1D-CNN1 was 269.4 s
and 44.7 s, respectively. Thus, 1D-CNN1 was the optimal model
for the geographical origin identification of G. rigescens Franch
for both the underground and aerial parts.

Discriminant Analysis Using Spectral Matrix
Table 2 shows the results of 2D-CNN with the input of spectral
matrix.Hwas selected as 110, 150 and 200 for a comparison analysis.
For underground parts, as the value of h increased, the accuracy in

the prediction set was 93.49, 94.01 and 92.97%, respectively. The
corresponding accuracy in the validation set was 95.57, 95.05 and
95.57%, respectively. This indicated that the 2D-CNNwith the input
of spectral matrix had a good generalization ability. Besides, all the
results were better than the optimal result based on 1D-CNN1. And
2D-CNN had a much simpler network structure than 1D-CNN1.
These indicated the effectiveness of changing the LIBS spectrum into
spectralmatrix by spectrum segmentation and recombination. At the
same time, 2D-CNN combined with spectral matrix could achieve

FIGURE 7 | The average saliency map of each geographical origin based on 2D-CNN for underground parts of G. rigescens Franch. (A–L) represent 12 different
geographical origins. (M, N) represent the important wavelengths selected by 2D-CNN and VIM of RF, respectively.

FIGURE 8 | The confusion matrix for the prediction set of underground parts ofG. rigescens Franch based on (A) 1D-CNN1 after the second variable selection and
(B) 2D-CNN with the input of spectral matrix.
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the end-to-end training. For aerial parts, the optimal value of h was
also 150. The corresponding accuracy in the prediction set was
94.01%, which was the same as the optimal results by 1D-CNN1.
However, the accuracy in the validation set was 93.23%, which was
4% higher than that of 1D-CNN1. On the whole, 2D-CNN
combined with spectral matrix could capture the characteristics of
geographical origin more effectively than 1D-CNN1.

Convolution kernel is especially suitable for processing
image data due to the two-dimensional and self-adaptive
characteristics (Yan et al., 2021). Therefore, the input of
spectral matrix could be better processed by 2D-CNN. For a
better interpretation of good results by 2D-CNN, we extracted
the wavelengths that had a higher influence on the model results
by saliency map (see Figure 7M). Most of the wavelengths
represented for nutritive elements, indicating the reasonability
of the discrimination by 2D-CNN to some extent. At the same
time, these wavelengths had certain similarities with the
wavelengths (see Figure 7N) selected by VIM of RF. This
further confirmed the rationality by using spectral matrix.
The average saliency map of each geographical origin based
on 2D-CNN is shown in Figures 7A–L. The darker the color, the
greater the influence of the corresponding pixels on the results
of the model. It could be seen that there was a certain overlap of
saliency pixels from different geographical origins, because the
spectra that made up the image were from the same TCM called
G. rigescens Franch. There were also some differences in color
intensity and distribution, representing the differences in
different geographical origins, which was helpful for the
discrimination of 2D-CNN.

Confusion Matrix Analysis
The confusion matrixes for the prediction set of underground
parts of G. rigescens Franch based on 1D-CNN1 after the second
variable selection and 2D-CNN are shown in Figures 8A,B. The
bigger the value was, the darker the color presented. The value on
the diagonal represented the number of samples that were
correctly classified. It could be seen that all the values on the
diagonal based on 2D-CNN were higher than that based on 1D-
CNN1. This indicated that 2D-CNN with the input of spectral
matrix was more appropriate in the discriminant analysis for
LIBS spectra. For 2D-CNN, the misclassification rate of
geographical origin 1 and 10 was a litter higher. The same
phenomenon could be seen for 1D-CNN1. Therefore, special
attention should be paid when identifying samples from
geographical origin 1 and 10 in practical application. As for
the remaining geographical origins, at most two spectra from
one area could not be correctly identified. The results showed that
2D-CNN with the input of spectral matrix combined with LIBS
technology could realize the geographical origin identification of
G. rigescens Franch.

Cluster Visualization of 2D-CNN.
The clustering visualization in layers of 2D-CNN for underground
parts is shown in Figure 9. For the shallower layers in 2D-CNN
including Conv. 1Block1 and Conv. 1Block2 (see Figures 9A,B), the
boundaries between different geographical origins were not clear,
indicating that these layers have not been able to extract effective
features representing different geographical origins. And for the
deeper layers of Dense 12 (see Figure 9C), there were obvious

FIGURE 9 | The clustering visualization in layers of (A) Conv. 1Block1, (B) Conv. 1Block2 and (C) Dense 12 in 2D-CNN for underground parts by t-SNE.
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boundaries between different geographical origins, indicating that
deeper layers in 2D-CNN had learned the effective information
related to geographical origin.

The Advantages and Disadvantages of
2D-CNN Based on Spectral Matrix
For the advantages, taking the underground parts ofG. rigescens as an
example (seeTable 1), 1D-CNNwith the input of full spectra showed
over-fitting phenomenon. What’s more, the optimal accuracy
obtained by 1D-CNN coupled with variable selection was still 2%
lower than that of 2D-CNN (from 92.19 to 94.01%). Therefore, 2D-
CNN based on spectral matrix could restrain over-fitting
phenomenon, improve accuracy and realize end-to-end training.
When h (see Figure 2) changed from 110 to 200, the accuracy in
the prediction set did not changemuch (seeTable 2), which indicated
that our method of transforming the single spectrum to spectral
matrix had a good stability. Ourmethod could provide a new idea for
processing spectral data with high variables.

For the disadvantages, when h (see Figure 2) could not be divided
exactly by the number of spectral variables, we had to directly discard
the rest variables that couldn’t form a complete matrix. However, the
discarded variables might be highly relevant to the geographical
origin. In Figure 7M, we could find that some important variables
after 700 nm were abandoned by our method compared with that in
Figure 7N. Subsequently, we will consider weighting variables and
the variables with low weights can be discarded first to preserve as
many important variables as possible.

CONCLUSION

Laser-induced breakdown spectroscopy combined with CNN
could be used to achieve the fast geographical origin
identification of G. rigescens Franch. 1D-CNN coupled with
variable selection could improve the accuracy and reduce the
training time effectively. 2D-CNN with the input of spectral
matrix could improve the accuracy further. The optimal
accuracy in the prediction set for underground and aerial

parts of G. rigescens Franch was the same with the value of
94.01%. The method of 1D-CNN coupled with variable selection
can provide some support for LIBS portable instrument
development. The method of 2D-CNN combined with spectral
matrix can offer some reference for the discriminant analysis of
LIBS spectra with too many variables. At the same time, it can
achieve the end-to-end learning of CNN. In the future, large
number of samples should be prepared to improve the
generalization ability of the CNN model further.
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