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Data presented here are associated with the article: “In-depth
proteomic analysis of soybean (Glycine max) seeds during con-
trolled deterioration treatment (CDT) reveals a shift in seed
metabolism” (Min et al., 2017) [1]. Seed deterioration is one of the
major problems, affecting the seed quality, viability, and vigor in a
negative manner. Here, we display the gel-based and gel-free
proteomic data, associated with the CDT in soybean seeds. The
present data was obtained from 2-DE, shotgun proteomic analysis
(label-free quantitative proteomic analysis) using Q-Exactive, and
gene ontology analysis associated with CDT in soybean seeds (Min
et al., 2017) [1].
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ubject area
 Biology

ore specific
subject area
Plant science, Proteomics, Controlled Deterioration Treatment (CDT)
ype of data
 Tables and Figures

ow data was
acquired
MALDI-TOF/TOF-MS (ABI4800, Applied Biosystems, Framingham, MA, USA)
and QExactive TM Orbitrap High-Resolution Mass Spectrometer (Thermo Fisher
Scientific, USA) coupled with UHPLC Dionex UltiMate ® 3000 (Thermo Fisher
Scientific, USA) system
ata format
 Raw, Analyzed

xperimental
factors
CDT in soybean seeds
xperimental
features
CDT related proteins were characterized
ata source
location
Department of Functional Crop, National Institute of Crop Science (NICS), Rural
Development Administration (RDA), Miryang, South Korea (latitude 35N)
ata accessibility
 Data within this article and the ProteomeXchange Consortium via the PRIDE
[6] partner repository with the dataset identifier PXD006064
Value of the data

� The presented data show a shift in diverse metabolic processes in soybean seeds under CDT stress
condition.

� A total of 1626 proteins were identified from label-free quantitative proteome analysis by
Q-Exactive and 31 proteins from 2-DE under CDT.

� This data provide new evidences on CDT associated changes in low abundance proteins (LAPs)
proteome profiles and metabolic process in soybean seeds.
1. Data

The dataset reported here was obtained from the proteome analysis of CDT exposed soybean
seeds, analyzed by gel-based (1-DE and 2-DE) and gel-free (label-free proteome) approaches
(Figs. 1 and 2). Supplementary Table 1–4 representatively show list of identified proteins from gel-
based (Supplementary Table. 1) and gel-free (Supplementary Table 2–5) proteomic analysis. Fur-
thermore, gene ontology and pathway analysis indicated major metabolic changes during CDT in
soybean seeds [1].
2. Experimental design, materials and methods

2.1. Plant materials

Soybean seeds were collected from the experimental field of National Institute of Crop Science
(NICS), Rural Department Administration (RDA) at Miryang, Korea. The soil was supplemented with a
standard RDA N-P-K fertilizer (N-P-K¼3-3-3.3 kg/10 acre). Seeds were harvested in October (average
temperature 23.573.5 °C, average day length 12 h 17 min).

PXD006064


Fig. 1. SDS-PAGE analysis of precipitated protein fraction using PSP method. Abbreviations: T-Total, S-PS supernatant, P-PS
pellet.
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2.2. CDT treatment and protein extraction

CDT and protein extraction was carried out as described previously [2]. In brief, 25 g of soybean
seeds were incubated at 99% relative humidity and 42 °C, placed and sealed inside of chamber after
adding 200 mL water to maintain humidity and harvested 3 days and 7 days. Protein extraction was
carried out using PSP method as described previously [3,4]. Proteins from each fraction were first
analyzed on 1-DE and for depletion of seed storage proteins and then used for further analysis (Fig. 1).

2.3. Two-dimensional electrophoresis and MALDI-TOF/TOF MS

The 2-DE with MALDI-TOF/TOF MS analysis were carried out as described previously [1,5]. Briefly,
protein samples were resuspended in the rehydration buffer containing 7 M urea, 2 M thiourea, 4% v/v
CHAPS, 2 M DTT, and 0.5% v/v IPG buffer pH 4–7 (GE Healthcare, Waukesha, WI, USA). Protein con-
centration of PSS fraction was determined by 2D-Quant kit (GE Healthcare). Total 600 µg protein of each
sample was loaded onto the 24 cm IPG strip (pH 4–7) as described previously (Min et al. 2017). Gels
were stained by colloidal Coomassie Brilliant Blue (CBB) and distained with 30% (v/v) methanol twice.
Furthermore, the protein spots on 2-D gels which were showed differentially modulated under CDT
were detected using ImageMaster 2D Platinum software 6.0 (GE healthcare). Each protein spots showed
differentially modulated were carried out statistical test using Tukey's post-hoc test (p-value o0.05,
Fig. 2, and Supplementary Table 1). The selected spots were subjected in-gel digestion with trypsin and
identified by MALDI-TOF/TOF MS (ABI4800, Applied Biosystems, Framingham, MA, USA) as described in
details previously [1] (Supplementary Table 1).

2.4. Label-free quantitative proteome analysis with Q-Exactive

The isolated proteins were carried out label-free quantitative proteome analysis using QExactiveTM

Orbitrap High-Resolution Mass Spectrometer (Thermo Fisher Scientific, USA) coupled with UHPLC
Dionex UltiMate® 3000 (Thermo Fisher Scientific, USA) system as described previously [1]. In brief, CDT
proteins were digested using in-solution tryptic digestion (filter-aided sample preparation, FASP) and
further analyses were conducted as described in details previously [1] (Supplementary Table 2–4). The
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the
PRIDE [6] partner repository with the dataset identifier PXD006064.

PXD006064


Fig. 2. 2-DE analysis of CDT seeds using 4–7 cm pH strip. (A) PSP method was applied and PS supernatant fraction was loaded
for comparative analysis of the LAPs in CDT seeds. (B) Enlarged view of the major proteins related to stress response and
protein metabolism.
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2.5. Statistical test and functional classification

Label-free quantitative proteome analysis was carried out by MaxQuant software (version 1.5.3.30)
[1,7] followed by statistical analysis of the obtained data using Perseus software (version 1.5.8.5) [8].
Multiple sample test was performed to find out significant differences (Z1.5 fold change, permu-
tation based FDR o0.01) in the protein abundance during CDT (Supplementary Table 2–4).
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