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Abstract: A new optimization algorithm of sensor selection is proposed in this paper for decentralized
large-scale multi-target tracking (MTT) network within a labeled random finite set (RFS) framework.
The method is performed based on a marginalized δ-generalized labeled multi-Bernoulli RFS. The
rule of weighted Kullback-Leibler average (KLA) is used to fuse local multi-target densities. A new
metric, named as the label assignment (LA) metric, is proposed to measure the distance for two
labeled sets. The lower bound of LA metric based mean square error between the labeled multi-target
state set and its estimate is taken as the optimized objective function of sensor selection. The proposed
bound is obtained by the information inequality to RFS measurement. Then, we present the sequential
Monte Carlo and Gaussian mixture implementations for the bound. Another advantage of the bound
is that it provides a basis for setting the weights of KLA. The coordinate descent method is proposed
to compromise the computational cost of sensor selection and the accuracy of MTT. Simulations
verify the effectiveness of our method under different signal-to- noise ratio scenarios.

Keywords: sensor selection; multi-target tracking; labeled random finite set; decentralized sensor
network; error bound

1. Introduction

With the development of communication and information fusion technologies, multi-target
tracking (MTT) [1] based on sensor network becomes a new research hotspot. In general, the sensor
networks are divided into two main categories according to their structure: one is centralized network
and the other is decentralized network. Compared with the centralized network, the decentralized
network is more widely concerned because of its parallelism, flexibility, robustness, scalability,
anti-interference and fault tolerance, et al. In most practical applications, due to the limitations
of communication bandwidth, energy consumption, computational cost, storage space et al, not all
sensors in a network can be activated to observe targets at the same instant. As a result, the problem
of sensor selection arises from this, which actually belongs to a branch of sensor management [2].
Although some research results [3–8] have been proposed for it, none of them jointly consider the
uncertainty of target number and data association.

In the past two decades, random finite set (RFS) [9] based MTT has attracted extensive attention.
By the use of RFS, MTT is described as a Bayesian estimation of state and observation sets. RFS filtering
has been developed from the primal probability hypothesis density (PHD) [10–12], cardinalized
PHD [13,14] and multi-Bernoulli [15,16] filters to the latest δ-generalized labeled multi-Bernoulli
(δ-GLMB) filter [17–19]. The advantage of the latter is its conjugacy and track formation. Nevertheless,
the number of components involved in the GLMB density increases exponentially with the recursion.
Therefore, two approximation methods, the LMB and Marginalized δ-GLMB (Mδ-GLMB) [20–22], are
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subsequently proposed to reduce the computational cost of GLMB. They are also more suitable for
multi-sensor scenarios. [23] has shown that the filtering accuracy of Mδ-GLMB is close to δ-GLMB and
the two are significantly superior to LMB in the scenarios of low signal-to-noise ratio (SNR).

Besides the δ-GLMB conjugate prior, the Poisson multi-Bernoulli mixture (PMBM) filter [24,25]
and multi-Bernoulli mixture (MBM) filter [25] are also conjugate priors. Track formation in the (P)MBM
formulation can also be attained using RFS of trajectories [26].

In recent years, although the RFS-based methods have been used to control the position of one or
several mobile sensors for MTT [27–34], none of them refer to the sensor network. Actually, in many
cases, the sensors in a network are immobile. Instead, the problems of structure, constraints, node
selection and so forth become rather important especially for a large-scale sensor network.

As a result, this paper focuses on the emerging problem of sensor selection for decentralized
large-scale MTT networks. A new optimization algorithm for sensor selection is proposed based on
the Mδ-GLMB filter. In the proposed method, the fusion of local multi-target posterior densities is
carried out by using the rule of weighted Kullback-Leibler average (KLA) [23].

The main contributions of our method includes four aspects. First, the sensor selection is described
as a constrained optimization problem with a Bayesian recursion of labeled multi-target RFS. A new
metric, named as the label assignment (LA) metric, is proposed to measure the distance for two labeled
sets. The lower bound of LA metric based mean square error (MSE) between the labeled multi-target
state set and its estimate is treated as the optimized objective function of sensor selection. The bound is
derived by the information inequality to RFS measurement [35]. The detailed proofs for the LA metric
and its lower bound are presented in the appendices. Second, the normalized weights of the KLA rule
are set according to the proposed bound. Third, both the sequential Monte Carlo (SMC) [10,36] and
Gaussian mixture (GM) [11–16] implementations for the bound are presented. Fourth, because the
computational cost of selection optimization increases with sensor number in the form of combination
explosion, a sub-optimization method called coordinate descent [37] is proposed to compromise the
computational cost and tracking accuracy.

The simulation results show that when the sensors in a decentralized large-scale network have
different observation performance, 1) the MTT accuracy of our method is much better than that of the
Cauchy-Schwarz (CS) divergence based methods [31,32]; 2) compared with the genetic algorithm [38],
the coordinate descent method significantly shortens the calculation time of sensor selection; 3) the
GM implementation of the bound is obviously faster than its SMC implementation.

2. Mathematical Background

2.1. Labeled RFS and Mδ-GLMB

In this paper, the unlabeled and labeled variables are, respectively, represented by the italics and
bold. For example, the unlabeled state, measurement and their sets are noted as x, z, X and Z; the
labeled state and its set are noted as x = (x, `) and X, where ` is the discrete label of x. Let L(X),
|X| and X× L denote the label set, cardinality and space of X, where X and L are the spaces of the
unlabeled state and label.

The state estimates of single-target and multi-targets derived from a measurement set Z are both
the functions of Z. To make this clearer, they are, respectively, noted as x̂(Z) and X̂(Z). x̂(Z) and X̂(Z)
are their labeled versions.

Let δY(X), 1Y(X) and pX denote the functions of generalized Kronecker, inclusion indicator and
multi-object exponential,

δY(X) =

{
1, if X = Y
0, otherwise

(1)

1Y(X) =

{
1, if X ⊆ Y
0, otherwise

(2)
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pX =

 ∏
x∈X

p(x), X 6= ∅

1, X = ∅
(3)

where 1Y({x}) is abbreviated as 1Y(x). Furthermore, if 1Y(X) = 1, then let Y − X denote the
complementary set of X in Y. Y− {x} is abbreviated as Y− x.

For any real-valued function b(X) of X, its set integral
∫

b(X)δX is defined as

∫
b(X)δX =

∞

∑
n=0

1
n! ∑

`1:n∈Ln

∫
Xn

b(Xn)dx1:n (4)

where x1:n = x1, . . . , xn and `1:n = `1, . . . , `n, Xn = {x1:n} is a n-element labeled set, Xn and Ln are the
spaces of Xn and `1:n.

If X is a Mδ-GLMB RFS, then its density is described as [22]

π(X) = ∆(X) ∑
I∈F (L)

δI(L(X))ωI pX
I (5)

where ∆(X) = δ|X|(|L(X)|) is a distinct indicator for the labels of X, I ∈ F (L) is a label set in the
collection F (L) of finite subsets of L, the weight ωI is the existing probability of the label set I, pI(x)
is the density of x involved in I. The Mδ-GLMB density is abbreviated as π = {(ωI , pI)}I∈F (L) and its
cardinality distribution is

P(|X|= n ) = ∑
I∈Fn(L)

ωI (6)

where Fn(L) is the collection of n-element subsets of L.

2.2. Information Inequality to RFS Measurement

Let x̂(Zm) be an unbiased estimate of x derived from an m-element measurement set Zm and
f (x, Zm) be a joint density over the space X1 × Zm. Assuming that regularity conditions hold and
∂2 log f (x, Zm)/∂xi∂xj exists, the information inequality to RFS measurement is [35]

∫
Zm

∫
X1

f (x, Zm)
(

xl − x̂l(Zm)
)2

dxdz1:m ≥
[

J−1
m
]l,l , l = 1, . . . , L (7)

where z1:m = z1, . . . , zm, L is the dimension of x, xl and x̂l(Zm) are the lth components of the vectors x
and x̂(Zm), Jm is the L× L Fisher information matrix (FIM) given |Z|= m ,

[Jm]
i,j = −E f

[
∂2 log f (x,Zm)

∂xi∂xj

]
= −

∫
Zm

∫
X1

f (x, Zm)
∂2 log f (x,Zm)

∂xi∂xj dxdz1:m, i, j = 1, . . . , L (8)

(7) holds with equality if and only if f (x, Zm) satisfies the distribution of exponential family.

2.3. A New Metric for Labeled RFS

It is well known that the optimal sub-pattern assignment (OSPA) metric [39–41] has been
extensively used to measure the distance for two unlabeled sets. Although the OSPA metric could
also measure differences in the set labels, it may not be very appropriate for the labeled RFS in some
application scenarios. As a result, a new metric between two labeled sets X and Y of order 1 ≤ p ≤ ∞
with cut-off c > 0 is proposed as follows.

d
(c)
p (X, Y) =


0 |X|=|Y|= 0(

∑`∈L(X)∩L(Y) d(c)(x`,y`)
p+cp(|L(X)∪L(Y)|−|L(X)∩L(Y)|)
|L(X)∪L(Y)|

) 1
p
|X|+|Y|> 0

(9)
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where L(X) and L(Y) are the label sets of X and Y, x` ∈ X and y` ∈ Y are the unlabeled elements
corresponding to the label `, |L(X) ∩ L(Y)| and |L(X) ∪ L(Y)| − |L(X) ∩ L(Y)| respectively indicates
the number of elements in X and Y which have the same and different labels,

d(c)(x`, y`) = min(c, ‖x` − y`‖) (10)

denotes the 2-norm of x` and y` cut off at c > 0.

See Appendix A for the proof that the d
(c)
p (X, Y) is a metric.

The proposed metric, which is named as the LA metric by us, is a different metric than the OSPA.
A physical meaning about the LA metric between two labeled sets X and Y is explained as follows. For
all x ∈ X and y ∈ Y, if x has the same label as y, then x is paired with y and a ‘location’ error d(c)(x, y)
between them is involved in the metric; otherwise, x is unpaired with y and a ‘penalty’ error c for them
is involved in the metric.

The most significant difference between the OSPA metric and the LA metric is: In the OSPA
metric, the elements of X are paired with the elements of Y depending on the optimal assignment
distance of their unlabeled versions. In contrast, in the LA metric, the elements of X are paired with
the elements of Y completely depending on their labels.

Take the MTT with the labeled RFS state for example. The calculation of the OSPA error may
pair an estimate with a state due to the rule of optimal assignment even if they have different labels.
Instead, the calculation of LA error prohibits this kind of pairing even if their unlabeled states are
sufficiently close to each other. As a result, the LA metric involves not only the estimation error arising
from the target number and individual states as the OSPA metric but also the additional estimation
error arising from the labels. In this sense, the LA metric is more demanding than the OSPA metric for
measuring the error between the labeled state set and its estimate.

3. Problem Formulation

To simplify the formulas, the time index is omitted and the subscript ‘+’ is used to indicate the
predicted density.

Multiple targets independently move in region A with random birth and death. The multi-target
states are modeled as a labeled RFS X. The dynamic of a single state x = (x, `) ∈ X is described by the
survival probability ps(x) and transition density f (x|x′)δ`′(`). The dynamic of multi-target states is
described by the transition density f (X|X′). Here x′ = (x′, `′) and X′ are, respectively, the state and
state set at the last time.

Targets are observed by the decentralized sensor network shown in Figure 1. The network is
composed of sensor nodes (SNs) and local fusion centers (LFCs). Each SN receives measurements and
communicates with its superior LFC. Each LFC receives the measurements, conducts data processing
and storage, communicates with the other LFCs connected to it and manages its subordinate SNs.

The network structure is completely described by a topological graph with parameter {N, C, A},
where N and C are the label sets of SN and LFC, A ⊆ C× C is the set of directed connections between
LFCs. If the LFC j can receive data of the LFC i, then (i, j) ∈ A. Let Cj = {i ∈ C : (i, j) ∈ A} be the label
set of the LFCs connected to the LFC j (including itself) and N j be the label set of the SNs belonging to
the LFC j. Each SN only belongs to one LFC, which indicates ∩j∈C N j = ∅ and ∪j∈C N j = N.

The most significant difference between the decentralized network and the centralized or
hierarchical network is that the former has no global fusion center connected to all SNs or all
LFCs. The network structure remains unchanged and all measurements are synchronized during the
monitoring period.
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κ
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Figure 1. Diagram for decentralized sensor network. # and � denote SN and LFC, solid lines with
arrows denote directed connections between LFCs, the dotted lines denote connections between LFC
and its subordinate SNs.

For the SN s ∈ N, it may receive clutter and target measurement or miss the detection. The
measurements are modeled as a RFS Zs over the space Zs. zs ∈ Zs is a single measurement. Clutter is
modeled as a Poisson RFS with intensity κs(zs), and

λs =
∫
Zs

1

κs(zs)dzs (11)

is the clutter rate.
The multi-target likelihood of the SN s is obtained from [9] as

gs(Zs|X ) = e−λs
[κs]Z

s

∑
θs∈Θs

[ψs
Zs(·; θs)]X (12)

where

ψs
Zs(x; θs) = δ0(θ

s(`))(1− ps
d(x)) + (1− δ0(θ

s(`)))
ps

d(x)gs
(

zs
θs(`)

∣∣∣x)
κs
(

zs
θs(`)

) (13)

where ps
d(x) and gs( zs|x) are the single-target detection probability and likelihood, Θs is a collection

of association mapping θs : L(X)→ {0, 1, . . . , |Zs|} . θs(`) > 0 or θs(`) = 0 indicates that the track
` ∈ L(X) generates a measurement zs

θs(`)
∈ Zs or be missed. Each track at most generates one

measurement and each measurement is at most generated by one track, which indicates that ` = `′ if
θs(`) = θs(`′) > 0. The number of association hypotheses is [42]

χ|L(X)|,|Zs | =
min(|L(X)|,|Zs |)

∑
i=0

|L(X)|! · |Zs|!
(|L(X)| − i)! · (|Zs| − i)! · i! (14)

Due to some restrictions, only part of SNs involved in the sub-network of each LFC can be
activated to observe targets at each scan. Assume that the multi-target likelihoods of all the SNs in the
network are independent of each other given the labeled state set X. Algorithm 1 presents the steps of
sensor selection and MTT for the LFC j ∈ C under a Bayesian framework. Note that the sequence of
measurement sets up to the last time is omitted here for simplifying the formulas of Bayesian recursion.
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Algorithm 1. Sensor selection and MTT for the LFC j.

1. Prediction: Calculate the current predicted density by π
j
+(X) =

∫
f (X|X′)π j(X′)δX′, where π j(X′) is the

fused density at the last time;
2. SN selection: Select the SN subset Sj ⊆ N j and receive a collection of their measurement sets ZSj

;

3. Update: Calculate the current posterior density by π j
(

X|ZSj
)
=

∏s∈Sj gs( Zs |X)π j
+(X)∫

∏s′∈Sj gs′ ( Zs′ |X)π
j
+(X)δX

and then transmit

the density to the LFCs connected to the LFC j;
4. Fusion: Receive the posterior densities from the LFC set Cj and then calculate the fused density by the

weighted KLA rule π j(X) =
∏i∈Cj

[
πi
(

X|ZSi
)]αj,i

∫
∏i′∈Cj

[
πi′
(

X|ZSi′
)]αj,i′

δX
, where αj,i (i ∈ Cj) is the preset normalized weight;

5. State extraction: Extract the current state estimate from π j(X) as the output. Go to Step 1.

Remark 1. It can be seen from Steps 3 and 4 of Algorithm 1 that in this network, each LFC only communicates
once with the LFCs connected to it per recursion. Because of this, the consensus iteration [43,44] of each LFC
cannot be carried out since each LFC has to communicate with other LFCs more than once in the iterative process.
Finally, the consensus fusion [23] over the entire decentralized sensor network cannot be achieved. As a result,
the multi-target estimates outputted by different LFCs may be different. In fact, this character is consistent with
most practical application systems.

The SN selection in Step 2 of Algorithm 1 is described as the following constrained optimization
problems: [

Sj]∗ = argmin/max
Sj⊆N j

ϑj
(

Sj; π
j
+

)
s.t.

 γ
j
i

(
Sj; π

j
+

)
≥ 0 i = 1, . . . , l

ν
j
k

(
Sj; π

j
+

)
= 0 k = 1, . . . , m

(15)

where ϑj
(

Sj; π
j
+

)
, γ

j
i

(
Sj; π

j
+

)
≥ 0 and ν

j
k

(
Sj; π

j
+

)
= 0 are the objective function, inequality and

equality constraints of Sj given the predicted density π
j
+(X).

The ultimate goal for a MTT network is to optimize the tracking precision. As is known to all, the
MSE between target state and its estimate is currently the most widely-used evaluation indicator for

tracking accuracy. Given the selected SN subset Sj for the LFC j ∈ C, the MSE
[
σ

j
Sj

]2
between X and

its Bayesian estimate X̂j
(

ZSj
)

is

[
σ

j
Sj

]2
= E

[
e2
(

X, X̂j
(

ZSj
))]

=
∫
ZSj
∫
X×L f

(
X, ZSj

)
e2
(

X, X̂j
(

ZSj
))

δXδZSj

=
∫
ZSj
∫
X×L ∏

s∈Sj
gs(Zs|X)π j

+(X)e
2
(

X, X̂j
(

ZSj
))

δXδZSj

(16)

where ZSj
is the joint measurement space of the SN set Sj, f

(
X, ZSj

)
is the joint density of

(
X, ZSj

)
,

e
(

X, X̂j
(

ZSj
))

denotes the error distance between X and X̂j
(

ZSj
)

. In this paper, e
(

X, X̂j
(

ZSj
))

is

measured by the 2nd-order LA metric d
(c)
2

(
X, X̂j

(
ZSj
))

in (9).

Nevertheless,
[
σ

j
Sj

]2
cannot be used as the objective function of sensor selection optimization

in (15) because X̂j
(

ZSj
)

is unknown before sensor selection. To solve this, we replace
[
σ

j
Sj

]2
with its

lower bound
[
σ

j
Sj

]2
, which provides an online indication on the limit of MTT accuracy within the

labeled RFS framework.
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Treating π
j
+(X) as a default condition, (15) is finally rewritten as

[
Sj]∗ = argmin

Sj⊆N j

[
σ

j
Sj

]2

s.t.

{
γ

j
i
(
Sj) ≥ 0 i = 1, . . . , l

ν
j
k
(
Sj) = 0 k = 1, . . . , m

(17)

4. Lower Bound For LA Metric Based MSE and Sub-Optimization For Sensor Selection

4.1. Derivation of LA Bound

In Section 4.1, Section 4.2, Section 4.3 and Appendix B, the superscript ‘j’ for the index of LFC is

omitted. For example,
(

σ
j
Sj

)2
is abbreviated as σ2

S.

In order to derive σ2
S, it is assumed that

A1: Multi-target Bayesian recursion is a Mδ-GLMB RFS [22]. As a result, the predicted density
π+(X) and posterior density π

(
X|ZS) can be described as π+ = {(ωI,+, pI,+)}I∈F (L) and π

(
·|ZS) ={(

ωI
(
ZS), pI

(
·|ZS))}

I∈F (L).
A2: Although the optimal estimate of X can be extracted from the fused density π(X) by using

the joint or marginal multi-target estimator [9], both the methods are very difficult to be implemented.
Alternatively, the target number is firstly estimated according to the maximum a posterior (MAP)
criterion and then the individual states are estimated according to the unbiased criterion under
the obtained target number. In fact, the suboptimal method is applied in almost all multi-target
Bayesian filters.

Let ZS
mS = Zs1

ms1 , . . . , Z
s|S|
m

s|S| be the collection of measurement sets from the SN set S and

ZS
mS = Zs1

ms1 × · · · ×Z
s|S|
m

s|S| be the space of ZS
mS , where msi is the number of measurements received by

the SN si. Let q
(

Xn, ZS
mS

)
be the joint density over the space (X×L)n ×ZS

mS . According to Bayesian

formula, q
(

Xn, ZS
mS

)
is written as

q
(

Xn, ZS
mS

)
=

1
Ωn,mS

∏
s∈S

gs(Zs
ms |Xn)π+(Xn) (18)

where Ωn,mS is a normalization factor,

Ωn,mS = ∑
`1:n∈Ln

∫
ZS

mS

∫
Xn

∏
s∈S

gs(Zs
ms |Xn)π+(Xn)dx1:ndzS

1:mS (19)

where
∫
ZS

mS
· dzS

1:mS =
∫
Z

s|S|
m

s|S|
· · ·
∫
Zs1

ms1
· dzs1

1:ms1 · · · dz
s|S|
1:m

s|S| . (19) shows that Ωn,mS /
(
mS! · n!

)
is

actually the probability P
(∣∣X∣∣= n,

∣∣ZS
∣∣ = mS ), where mS! = ms1 ! · · ·ms|S| ! and

∣∣ZS
∣∣ = mS denotes

|Zs1 | = ms1 , . . . ,
∣∣Zs|S|

∣∣ = ms|S| . Substituting A1 and (12) into (19) as well as using Lemma 12 in [17],
Ωn,mS is obtained as

Ωn,mS = n!

(
∏
s∈S

e−λs
[λs]m

s

)
∑

I∈Fn(L)
ωI,+ ∑

θS∈ΘS

ϕI

(
θS
)

(20)

where θS ∈ ΘS denotes θs1 ∈ Θs1 , . . . , θs|S| ∈ Θs|S| ,

ϕI

(
θS
)
=

〈
pI,+(·, `), ∏

s∈S

(
δ0(θ

s(`))(1− ps
d(·, `)) + (1− δ0(θ

s(`)))
ps

d(·, `)
λs

)〉I

(21)
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Assume that θs(`) > 0 if s ∈ Y and θs(`) = 0 if s ∈ (S−Y). Then, (21) can be rewritten as

ϕI

(
θS
)
=

∑
Y⊆S

〈
pI,+(·, `), pY,S

d (·, `)
〉

∏s∈Y λs

I

= ϕI(S) (22)

where
〈

pI,+(·, `), pY,S
d (·, `)

〉
=
∫
X1

pI,+(x, `)pY,S
d (x, `)dx denotes the inner product corresponding to

x,
pY,S

d (x) = ∏
s∈Y

ps
d(x) ∏

s′∈(S−Y)

(
1− ps′

d (x)
)

(23)

denotes the probability that only the SN subset Y ⊆ S receives the measurement from state x while the
others miss the measurement.

(22) shows that ϕI
(
θS) is independent of the association mapping θS. From (14), (20) and (22),

Ωn,mS is finally obtained as

Ωn,mS = n!

(
∏
s∈S

e−λs
[λs]m

s
χn,ms

)
∑

I∈Fn(L)
ωI,+ϕI(S) (24)

Since q
(

Xn, ZS
mS

)
is permutation invariant over x1:n, its marginal density over any of x1:n is the

same and is obtained by

qn

(
x, ZS

mS

)
=
∫
Xn−1

q
(
{x, x2:n}, ZS

mS

)
dx2:n (25)

Substituting (18) into (25) as well as using A1 and the identical equation δn(|{`, `2:n}|) =

δn−1(|{`2:n}|)
(

1− 1{`2:n}(`)
)

, qn

(
x, ZS

mS

)
is written as

qn

(
x, ZS

mS

)
= 1

Ωn,mS
∑

`2:n∈Ln−1

δn−1(|{`2:n}|)
(

1− 1{`2:n}(`)
)

∑
I∈Fn(L)

ωI,+δI({`, `2:n})

·
∫
Xn−1

∏
s∈S

gs(Zs
ms |{x, x2:n})pI,+(x)

n
∏

t=2
pI,+(xt)dx2:n

(26)

Substituting (12) into (26) and then simplifying the result, we get

qn

(
x, ZS

mS

)
=

1
Ωn,mS

(
∏
s∈S

e−λs
[κs]Z

s
ms

)
∑

I∈Fn(L)
∑

θS∈ΘS

1I(`)ωI,+ηI,ZS
mS

(
`; θS

)
qI

(
x, ZS

mS ; θS
)

(27)

where qI

(
x, ZS

mS ; θS
)

is the marginal density of q
(

X, ZS
mS

)
over any of x1:n given the label set I and

association mapping θS,

qI

(
x, ZS

mS ; θS
)
= ∑

Y⊆S
pY,S

d (x)pI,+(x)∏
s∈Y

gs
(

zs
θs(`)

∣∣∣x) (28)

ηI,ZS
mS

(
`, θS

)
=

〈
pI,+

(
·, `′
)
, ∏

s∈S
ψs

Zs
ms

(
·, `′; θs − θs(`)

)〉I−`

(29)

where θs − θs(`) denotes the remaining association mapping in θs except for θs(`).
MAP detection criterion determines

∣∣∣X̂(ZS
mS

)∣∣∣ = n̂ (n̂ = 0, 1, . . . , ∞) if and only if ZS
mS ⊆ ZS

n̂,mS ,

ZS
n̂,mS =

{
ZS

mS ⊆ ZS
mS : n̂ = argmax

n

(
P
(
|X|= n |ZS

mS

)) }
(30)
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where ZS
n̂,mS = Zs1

n̂,ms1 × · · · × Z
s|S|
n̂,m

s|S| is the joint measurement subspace of the SN set S where the

target number is estimated as n̂; ZS
0,mS ,ZS

1,mS , . . . ,ZS
∞,mS is a partition of ZS

mS ; P
(
|X|= n |ZS

mS

)
is the

posterior probability of |X|= n given ZS
mS . From (6), P

(
|X|= n |ZS

mS

)
is written as

P
(
|X|= n |ZS

mS

)
= ∑

I∈Fn(L)
ωI

(
ZS

mS

)
(31)

where ωI

(
ZS

mS

)
is the existing probability of the label set I given ZS

mS . According to the update step of

Mδ-GLMB [22], ωI

(
ZS

mS

)
is obtained as

ωI

(
ZS

mS

)
= ∑

θS∈ΘS

ωI,+β I,ZS
mS

(
θS)

∑I′∈F (L) ∑θ′S∈ΘS ωI′ ,+β I′ ,ZS
mS

(
θ′S
) (32)

β I,ZS
mS

(
θS
)
=

〈
pI,+(·, `), ∏

s∈S
ψs

Zs
ms
(·, `; θs)

〉I

(33)

where we have β I,ZS
mS

(
θS) = ∑`∈L1

ηI,ZS
mS

(
`, θS) from (29) and (33).

Let Ψn̂,n,mS be the integral of q
(

Xn, ZS
mS

)
over the space (X×L)n ×ZS

n̂,mS . From (18), Ψn̂,n,mS can
be written as

Ψn̂,n,mS = ∑
`1:n∈Ln

∫
ZS

n̂,mS

∫
Xn

q
(

Xn, ZS
mS

)
dx1:ndzS

1:mS

= 1
Ωn,mS

∑
`1:n∈Ln

∫
ZS

n̂,mS

∫
Xn

∏
s∈S

gs(Zs
ms |Xn)π+(Xn)dx1:ndzS

1:mS

(34)

(34) shows that Ωn,mS Ψn̂,n,mS /
(
mS! · n!

)
is actually the probability

P
(∣∣∣X̂(ZS

mS

)∣∣∣ = n̂,
∣∣∣X∣∣∣= n,

∣∣ZS
∣∣ = mS

)
. Substituting A1 and (12) into (34) as well as using Lemma 12

in [17], Ψn̂,n,mS is obtained as

Ψn̂,n,mS =
n!

Ωn,mS

(
∏
s∈S

e−λs
[λs

n̂]
ms

)
∑

I∈Fn(L)
∑

θS∈ΘS

ωI,+φI,n̂

(
θS
)

(35)

where
λs

n̂ =
∫
Zs

n̂,1

κs(zs)dzs (36)

φI,n̂
(
θS) = 〈pI,+(·, `), ∏

s∈S

(
δ0(θ

s(`))
(
1− ps

d(·, `)
)
+ (1− δ0(θ

s(`)))
ps

d(·,`)
∫
Zs

n̂,1
gs( zs |·,`)dzs

λs
n̂

)〉I

(37)

Similar with ϕI
(
θS), φI,n̂

(
θS) can be rewritten as

φI,n̂

(
θS
)
=

∑
Y⊆S

〈
pI,+(·, `)∏s∈Y

∫
Zs

n̂,1
gs( zs|·, `)dzs, pY,S

d (·, `)
〉

∏s∈Y λs
n̂


I

= φI,n̂(S) (38)
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(38) shows that φI,n̂
(
θS) is independent of the association mapping θS. From (14), (35) and (38),

Ψn̂,n,mS is finally obtained as

Ψn̂,n,mS =
n!

Ωn,mS

(
∏
s∈S

e−λs
[λs

n̂]
ms

χn,ms

)
∑

I∈Fn(L)
ωI,+φI,n̂(S) (39)

Theorem 1: Given A1, A2 and the SN set S, the lower bound for the 2nd-order LA metric based
MSE of (16) is

σ2
S =

∞
∑

mS=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

min(n,n̂)
∑

k=0
∑

`∈L1

Ωn,mS Ψn̂,n,mS

mS !(n−k)!

(
εk,n̂,nmin

(
c2, 1

Ψn̂,n,mS

L
∑

l=1

[
J−1
n̂,n,mS(`)

]l,l
)
+ (1− εk,n̂,n)c2

)
(40)

where c is the cut-off of the LA metric, L is the dimension of x, Ωn,mS and Ψn̂,n,mS are given in (24)
and (39),

εk,n̂,n =
k

n + n̂− k
, k = 0, 1, . . . , min(n, n̂) (41)

is actually the possible ratio of the number of common labels to the number of all distinct labels
for the multi-target states and their estimates given

∣∣∣X̂(ZS
mS

)∣∣∣ = n̂,
∣∣∣X∣∣∣= n,

∣∣ZS
∣∣ = mS (that is,∣∣∣L(Xn) ∩ L

(
X̂n̂

(
ZS

mS

))∣∣∣/∣∣∣L(Xn) ∪ L
(

X̂n̂

(
ZS

mS

))∣∣∣), Jn̂,n,mS(`) is the L× L FIM for a single-target state

with the label ` given
∣∣∣X̂(ZS

mS

)∣∣∣ = n̂,
∣∣∣X∣∣∣= n,

∣∣ZS
∣∣ = mS ,

[
Jn̂,n,mS(`)

]i,j
= − 1

Ψ2
n̂,n,mS

∫
ZS

n̂,mS

∫
X1

Φn

(
x, `, ZS

mS

)
dxdzS

1:mS i, j = 1, . . . , L (42)

where the integral region ZS
n̂,mS for measurement is given by (30), Jn̂,n,mS(`) = ∞ if ZS

n̂,mS = ∅, the

integrand Φn

(
x, `, ZS

mS

)
is

Φn

(
x, `, ZS

mS

)
= qn

(
x, `, ZS

mS

) ∂2 log qn

(
x,`,ZS

mS

)
∂xi∂xj

= − 1
qn

(
x,`,ZS

mS

) · ∂qn

(
x,`,ZS

mS

)
∂xi ·

∂qn

(
x,`,ZS

mS

)
∂xj +

∂2qn

(
x,`,ZS

mS

)
∂xi∂xj

(43)

where qn

(
x, `, ZS

mS

)
is given in (27).

See Appendix B for proof of Theorem 1.

Remark 2. The number of estimated targets is assumed to be unknown in the derivation of the proposed bound.
Only the MAP rule, rather than the specific (or exact) number of estimated targets, is required to obtain the
bound. The symbol n̂ used for calculating the bound in Theorem 1 is just an index for all possible (or unknown)
number of estimated targets. This is similar with the symbols `, k, n and mS in Theorem 1, which are just the
indices for the labels, the number of common labels in true targets and their estimates, the number of true targets
and the number of sensor measurements, respectively.

Furthermore, the reason for imposing the MAP rule has been explained in A2. (30) has also shown
that the measurement space ZS

mS can be divided into ZS
0,mS ,ZS

1,mS , . . . ,ZS
∞,mS according to the MAP rule.

It is very helpful for the proof of Theorem 1.

Remark 3. In general, the maximum number of targets and measurements can be presented by prior knowledge.
Moreover, the label space L1 = L′1 ∪B1, where L′1 and B1 are the label spaces for the last time and new-born
targets. In general, B1 can also be preseted by prior knowledge. According to these presets, the sum of infinite
terms in (40) becomes the sum of finite terms.
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Remark 4. Once the specific forms of pI,+(x), pd(x) and gs( zs|x) are given, ∂qn

(
x, `, ZS

mS

)
/∂xi and

∂2qn

(
x, `, ZS

mS

)
/∂xi∂xj in Φn

(
x, `, ZS

mS

)
can be obtained from (27) and (28).

Remark 5. The formulas of Ψn̂,n,mS and Jn̂,n,mS(`) contain the integral over the measurement subspace ZS
n̂,mS ,

which is calculated via MC integration [45]. To improve computational efficiency, the samples of MC integration
are selected as predicted ideal measurement sets (PIMS) [31]. The calculation steps are shown in Algorithm 2.

Algorithm 2. Steps for calculating Ψn̂,n,mS and Jn̂,n,mS (`).

1. Prediction sampling: Generate M samples X̃(1)
n,+, . . . , X̃(M)

n,+ of multi-target state sets from the predicted
density π+(X);

2. PIMS generating: For j = 1, . . . , M, generate PIMS Z̃S,(j)
mS of the SN set S based on X̃(j)

n,+ [31];

3. PIMS partitioning: Divide PIMS
{

Z̃S,(j)
mS

}M

j=1
into the measurement subspace ZS

n̂,mS (n̂ = 0, 1, . . . , ∞)

according to (30);
4. MC integration: Given the PIMS assigned to ZS

n̂,mS , Ψn̂,n,mS and Jn̂,n,mS (`) are obtained by applying MC
integral formula [45] to (39) and (42).

4.2. SMC and GM Implementations for the Bound

In order to derive the SMC implementation of the bound in Theorem 1, it is assumed that
A3: Each pI,+(x) involved in the predicted Mδ-GLMB density π+ = {(ωI,+, pI,+)}I∈F (L) is

described by a set of weighted particles
{(

υ̃i
I,+(`), x̃i

I,+(`)
)}G̃I,+(`)

i=1
,

pI,+(x) =
G̃I,+(`)

∑
i=1

υ̃i
I,+(`)δx̃i

I,+(`)
(x) (44)

Substituting (44) into (22), (28), (29), (33) and (38), ϕI(S), qI

(
x, ZS

mS ; θS
)

, ηI,ZS
mS

(
`, θS), β I,ZS

mS

(
θS)

and φI,n̂(S) are rewritten as

ϕI(S) =

∑
Y⊆S

∑
G̃I,+(`)
i=1 υ̃i

I,+(`)pY,S
d

(
x̃i

I,+(`), `
)

∏s∈Y λs


I

(45)

qI

(
x, ZS

mS ; θS
)
= ∑

Y⊆S

G̃I,+(`)

∑
i=1

υ̃i
I,+(`)pY,S

d

(
x̃i

I,+(`), `
)
∏
s∈Y

gs
(

zs
θs(`)

∣∣∣x̃i
I,+(`), `

)
(46)

ηI,ZS
mS

(
`, θS

)
=

G̃I,+(`
′)

∑
i=1

υ̃i
I,+(`

′)∏
s∈S

ψs
Zs

ms

(
x̃i

I,+(`
′), `′; θs − θs(`)

)I−`

(47)

β I,ZS
mS

(
θS
)
=

G̃I,+(`)

∑
i=1

υ̃i
I,+(`)∏

s∈S
ψs

Zs
ms

(
x̃i

I,+(`), `; θs
)I

(48)

φI,n̂(S) =

∑
Y⊆S

∑
G̃I,+(`)
i=1 υ̃i

I,+(`)pY,S
d

(
x̃i

I,+(`), `
)

∏s∈Y
∫
Zs

n̂,1
gs
(

zs|x̃i
I,+(`), `

)
dzs

∏s∈Y λs
n̂


I

(49)
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Finally, the SMC forms of Ωn,mS , qn

(
x, ZS

mS

)
, Ψn̂,n,mS and Φn

(
x, `, ZS

mS

)
are respectively

obtained by substituting (45)–(49) into (24), (27), (39) and (43), where ∂qn

(
x, `, ZS

mS

)
/∂xi and

∂2qn

(
x, `, ZS

mS

)
/∂xi∂xj involved in Φn

(
x, `, ZS

mS

)
are



∂qn

(
x,`,ZS

mS

)
∂xi =

G̃I,+(`)

∑
i′=1

υ̃i′
I,+(`)

∂qn

(
x,`,ZS

mS

)
∂xi

∣∣∣∣∣
x=x̃i′

I,+(`)

∂2qn

(
x,`,ZS

mS

)
∂xi∂xj =

G̃I,+(`)

∑
i′=1

υ̃i′
I,+(`)

∂2qn

(
x,`,ZS

mS

)
∂xi∂xj

∣∣∣∣∣
x=x̃i′

I,+(`)

(50)

In order to derive the GM implementation of the bound in Theorem 1, it is assumed that
A4: Each pI,+(x) involved in the predicted Mδ-GLMB density π+ = {(ωI,+, pI,+)}I∈F (L) is

described by the GM form of

pI,+(x) =
GI,+(`)

∑
i=1

υi
I,+(`)N

(
x; µi

I,+(`), Σi
I,+(`)

)
, with

GI,+(`)

∑
i=1

υi
I,+(`) = 1 (51)

where N
(
·; µi

I,+(`), Σi
I,+(`)

)
denotes the Gaussian density with mean µi

I,+(`) and covariance matrix

Σi
I,+(`), υi

I,+(`) and GI,+(`) are the weights and number of GM terms.
A5: The detection probability ps

d(x) is independent of x and the likelihood function gs( zs|x) is
linear Gaussian,

ps
d(x) = ps

d, gs( zs|x) = N (zs; Hsx, Rs) (52)

where Hs and Rs are the observation function and covariance matrix for measurement noise.
From A5 and (23), we have

pY,S
d = ∏

s∈Y
ps

d ∏
s′∈(S−Y)

(
1− ps′

d

)
(53)

∏
s∈Y

gs( zs|x) = N
(

zY; HYx, RY
)

(54)

where

zY =

 zs1

...
zs|Y|

; HY =

 Hs1

...
Hs|Y|

; RY =

 Rs1

. . .
Rs|Y|

 (55)

Substituting (53) into (22), ϕI(S) is rewritten as

ϕI(S) =

(
∑

Y⊆S

pY,S
d

∏s∈Y λs

)|I|
(56)

Substituting (51), (53) and (54) into (28) as well as using Lemma 2 in [11], qI

(
x, ZS

mS ; θS
)

is
rewritten as

qI

(
x, ZS

mS ; θS
)

= ∑
Y⊆S

GI,+(`)

∑
i=1

pY,S
d υi

I,+(`)N
(

x; µi
I,+(`), Σi

I,+(`)
)
N
(

zY
θY(`)

; HYx, RY
)

= ∑
Y⊆S

GI,+(`)

∑
i=1

pY,S
d υi

I,+(`)N
(

zY
θY(`)

; HYµi
I,+(`), Ξi,Y

I,+(`)
)
N
(

x; µi
I,ZY

mY

(
`; θY), Σi

I(`; Y)
) (57)
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where 
Ξi,Y

I,+(`) = HYΣi
I,+(`)

[
HY]T + RY

µi
I,ZY

mY

(
`; θY) = µi

I,+(`) + Σi
I,+(`)

[
HY]T[Ξi,Y

I,+(`)
]−1(

zY
θY(`)

− HYµi
I,+(`)

)
Σi

I(`; Y) = Σi
I,+(`)− Σi

I,+(`)
[
HY]T[Ξi,Y

I,+(`)
]−1

HYΣi
I,+(`)

(58)

Similarly, substituting (51), (53) and (54) into (29), (33) and (38), ηI,ZS
mS

(
`; θS), β I,ZS

mS

(
θS) and

φI,n̂(S) are rewritten as

ηI,ZS
mS

(
`; θS

)
=

∑
Y⊆S

GI,+(`
′)

∑
i=1

pY,S
d υi

I,+(`)

∏s∈Y κs
(

zs
[θs−θs(`)](`′)

)N(zY
[θY−θY(`)](`′); HYµi

I,+(`), Ξi,Y
I,+(`)

)I−`

(59)

β I,ZS
mS

(
θS
)
=

∑
Y⊆S

GI,+(`)

∑
i=1

pY,S
d υi

I,+(`)

∏s∈Y κs
(

zs
θs(`)

)N(zY
θY(`); HYµi

I,+(`), Ξi,Y
I,+(`)

)I

(60)

φI,n̂(S) =

∑
Y⊆S

GI,+(`)

∑
i=1

pY,S
d υi

I,+(`)

∏s∈Y λs
n̂

∫
ZY

n̂,1

N
(

zY; HYµi
I,+(`), Ξi,Y

I,+(`)
)

dzY

I

(61)

Finally, the GM forms of Ωn,mS , qn

(
x, ZS

mS

)
, Ψn̂,n,mS and Φn

(
x, `, ZS

mS

)
are respectively

obtained by substituting (56)–(61) into (24), (27), (39) and (43). Obviously, they no
longer contain integrals of state x and have analytic forms except for Ψn̂,n,mS . Here

∂qn

(
x, `, ZS

mS

)
/∂xi and ∂2qn

(
x, `, ZS

mS

)
/∂xi∂xj in Φn

(
x, `, ZS

mS

)
are both linear functions of

∂N
(

x; µi
I,ZY

mY

(
`; θY), Σi

I(`; Y)
)

/∂xi and ∂2N
(

x; µi
I,ZY

mY

(
`; θY), Σi

I(`; Y)
)

/∂xi∂xj, which can be

obtained by the following formulas:
∂N (x;µ,Σ)

∂xi = −
[
Σ−1(x− µ)

]iN (x; µ, Σ)
∂2N (x;µ,Σ)

∂xi∂xj =
[
Σ−1(x− µ)(x− µ)T[Σ−1]T − Σ−1

]i,j
N (x; µ, Σ)

(62)

If the observation model is non-linear, that is,

gs( zs|x) = N (zs; hs(x), Rs) (63)

where hs(x) is the nonlinear observation function of state x. In this case, the extended Kalman (EK) or
unscented Kalman (UK) filter can be used to calculate the mean and covariance matrix of each GM
term [46,47].

4.3. Sub-Optimization Based on Coordinate Descent

The computational cost of this method is composed of three parts: sensor selection, Mδ-GLMB
filtering and weighted KLA fusion. The latter two have been analyzed in Reference [22,23]. This paper
only studies the computational cost of sensor selection and its approximate algorithm. When the
number of SNs is large, it has a much more significant effect on the total amount of computation than
the last two.

As shown in (15) and (17), sensor selection is actually a constrained combinatorial optimization
problem. To find the optimal solution by the exhaustive search method, the objective function needs
to be repeatedly calculated for C|S||N| = |N|! /(|S|!(|N|−|S|)! ) times. Obviously, its computational
cost increases with the SN number |N| in the form of combination explosion. In order to reduce the
computational cost, some heuristic optimization algorithms, such as genetic algorithm [39] and so
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forth, is used to tackle this problem. However, the convergence speed of the heuristic algorithms will
become rather show when the objective function is relatively complex. As a result, to further improve
the computational speed, coordinate descent method [37] is proposed to find a sub-optimal solution of
(17). Its computational cost increases with the SN number |N| in an approximate polynomial form.

Set a binary switch variable ςs ∈ {0, 1}, s = 1, . . . , |N|, for each SN. ςs = 1 indicates s ∈ S while
ςs = 0 indicates s /∈ S. The vector ς =

[
ς1, . . . , ς|N|

]
is composed of the switch variables of all SNs

belonging to the same LFC. Clearly, the set S is completely determined by ς. Then, (17) is relaxed to an
unconstrained optimization problem by the augmented objective function

F(ς, r) = σ2
ς + v

l

∑
i=1

γ−1
i (ς) +

1√
v

m

∑
j=1

ν2
j (ς) (64)

where v > 0 is a barrier factor, ∑l
i=1 γ−1

i (ς) and ∑m
j=1 ν2

j (ς) are inequality and equality penalty terms.
Algorithm 3 presents the iteration steps for handling the relaxed problem by using the coordinate

descent method.

Algorithm 3. Coordinate descent method.

Step 1: Set initial iteration number i = 0, initial SN switch vector ς(0), initial barrier factor v and its reduction
coefficient 0 < C < 1;

Step 2: From s = 1 to s =|N|, calculate ςs
(i+1) = argmin

ςs∈{0,1}
F
(

ς1
(i+1), . . . , ςs−1

(i+1), ςs, ςs+1
(i) , . . . , ς

|N|
(i) , r

)
, where

ς1
(i+1), . . . , ςs−1

(i+1), ςs+1
(i) , . . . , ς

|N|
(i) are treated as constants;

Step 3: If ς(i+1) = ς(i), then go to Step 4; Otherwise, set i = i + 1, go to Step 2;
Step 4: If ς(i+1) = ς(0), then output ς(i+1) as the solution of (17); Otherwise, set v = Cv, ς(0) = ς(i+1), i = 0
and then go to Step 2.

In order to improve the probability to converge to the global optimum and accelerate the
convergence speed for the coordinate descent method, the initial barrier factor v and its reduction
coefficient C can be appropriately selected by the methods in Reference [48], the initial SN switch
vector is set as ς(0) = ς′∗, where ς′∗ is the outputted switch vector at the last time.

4.4. Weighted KLA Fusion

A1 indicates that the posterior density of each LFC is a Mδ-GLMB form of πi
(

X|ZSi
)

={(
ωi

I

(
ZSi
)

, pi
I

(
x, `|ZSi

))}
I∈F (L)

, i ∈ C. Then, for the LFC j ∈ C, given the LFC subset Cj connected

to it and the normalized nonnegative fusion weights αj,i (i ∈ Cj), its fused density obtained by the
weighted KLA rule is still a Mδ-GLMB form of π j(X) =

{(
ω

j
L, pj

L(x, `)
)}

L∈F (L)
[23],

ω
j
L =

∏i∈Cj

(
ωi

L

(
ZSi
))αj,i[∫

∏i∈Cj

(
pi

L

(
x, ·|ZSi

))αj,i

dx
]L

∑L′⊆L ∏i′∈Cj

(
ωi′

L′

(
ZSi′

))αj,i′
[∫

∏i′∈Cj

(
pi′

L′

(
x, ·|ZSi′

))αj,i′

dx

]L′ (65)

pj
L(x, `) =

∏i∈Cj

(
pi

L

(
x, `|ZSi

))αj,i

∫
∏i′∈Cj

(
pi′

L

(
x, `|ZSi′

))αj,i′

dx
(66)
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where the weight αj,i reflects the effect of local posterior density πi
(

X|ZSi
)

on the fusion of the LFC j.
The larger the weight is, the greater the impact it has on the KLA fusion.

The bound in Theorem 1 reflects the optimal MTT accuracy that is potentially achieved by a LFC
after sensor selection. The larger the proposed bound of a LFC is, the worse the precision limit that
it can achieve is. Therefore, the normalized weight αj,i in the KLA fusion of the LFC j should be set

inversely proportional to the proposed bound
(

σi
Si

)2
,

αj,i =

(
σi

Si

)−2

∑i′∈Cj

(
σi′

Si′
)−2 , i ∈ Cj (67)

which indicates that the larger the proposed bound of the LFC is, the smaller the proportion of its
posterior density in the KLA fusion should be; and vice versa.

5. Simulations

The main goal of the simulations is to verify the following two points under different SNR
conditions. First, our method conducts the sensor selection more effectively than the CS divergence
based methods for the decentralized large-scale MTT network. This case is much more obvious
when the sensors have different observation performance. Second, the coordinate descent method
significantly shortens the calculation time of genetic algorithm at the expense of slight loss in tracking
accuracy. To highlight these, the specific scenarios, including the multi-target dynamic model, sensor
network architecture, observation model for SNs and so forth, are designed as follows.

Multiple targets move in a constant velocity (CV) model [49] over a two-dimensional region
A = [0, 50]× [0, 50]km2 and the number of targets is unknown and changes over time. The label of
state x is noted as ` =

(
kb, ib

)
, where kb is the birth time and ib is the index to distinguish the birth

targets at the same time. The unlabeled state is noted as x =
[

px,
.
px, py,

.
py

]T
, where

(
px, py

)
and( .

px,
.
py

)
are the positions and velocities in the X and Y directions. The single-target transition density

is in the Gaussian form of
f
(

x, `|x′, `′
)
= N

(
x; FCVx′, Q

)
δ`′(`) (68)

where FCV and Q are the transition matrix and process noise covariance matrix for unlabeled state,

FCV =


1 ∆

1
1 ∆

1

, Q = q2
Q


∆4

4
∆3

2
∆3

2 ∆2

∆4

4
∆3

2
∆3

2 ∆2

 (69)

where ∆ is the sampling interval, qQ is the process noise standard deviation. In this example, ∆ = 10 s,
qQ = 0.002 km/s2 and survival probability ps(x) = 0.95.

The target birth is modeled as an LMB RFS with density πb =
(
ωb
` , pb

`

)
`∈{1,...,12}, where ωb

` and

pb
` (x) are the existing probability and density of the new-birth target with label `,

pb
` (x) = N

(
x; xb

` , Qb
)

(70)

where in this example, ωb
` = 0.05, Qb = diag

(
25, 10−2, 25, 10−2) and xb

1~xb
12 are [10, 0.15, 40,−0.15]T,

[20, 0.1, 40,−0.15]T, [30,−0.1, 40,−0.15]T, [40,−0.15, 40,−0.15]T, [40,−0.15, 30,−0.1]T,
[40,−0.15, 20, 0.1]T, [40,−0.15, 10, 0.15]T, [30,−0.1, 10, 0.15]T, [20, 0.1, 10, 0.15]T, [10, 0.15, 10, 0.15]T,
[10, 0.15, 20, 0.1]T, [10, 0.15, 30,−0.1]T in turn, where the units of position and speed are km and km/s.

The decentralized sensor network is composed of |C|= 8 LFCs, which are noted as LFC1~LFC8.
The positions (unit: km) of the LFCs are [10, 40]T, [25, 40]T, [40, 40]T, [40, 25]T, [40, 10]T, [25, 10]T,
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[10, 10]T, [10, 25]T in turn. Each LFC has
∣∣N j
∣∣ = 50 subordinate SNs (j = 1, . . . , 8). So there are in total

|N|= . . . SNs in the entire network. Each LFC can communicate with other LFCs within 25 km apart
away from it. Finally, the directed connection set A for the LFCs and the locations for all SNs are
shown in Figure 2.
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Figure 2. Locations of LFCs and SNs in the decentralized sensor network. � denotes LFC, denotes
SN, different colors correspond to different LFCs and their subordinate SNs. Solid line with directed
arrow indicates a communication connection between two LFCs. Each SN is 2.4 km apart away from
other one.

The clutter is a uniformly distributed Poisson RFS over the region A. In this example, the clutter
rate and detection probability of each SN are firstly set as λs = λ = 20 and ps

d(x) = pd = 0.95,
s = 1, . . . , 400.

To embody the performance variation of sensor observation, the network is assumed to consist of
different types of SNs with distinctive observation function and noise covariance. The single-target
likelihoods of the SNs are all Gaussian distributed as shown in (63). Each SN of LFC1 and LFC5
receives the distance and angle measurements of target, so its observation function hs(x) is

hs(x) =
[
‖x− us‖, arctan

py − us
y

px − us
x

]T

, s ∈ N1 or s ∈ N5 (71)

where us =
[
us

x, us
y

]T
is the known position of the SN s, ‖x− us‖ =

√
(px − us

x)
2 +

(
py − us

y

)2
is the

distance between the SN s and target. The measurement noise covariance matrix is also modeled as a
nonlinear function of state x,

Rs(x) =

 diag
(
([0.2 + 0.05‖x− us‖]km)2, ([0.02 + 0.001‖x− us‖]rad)2

)
s ∈ N1

diag
(
([0.4 + 0.04‖x− us‖]km)2, ([0.04 + 0.0005‖x− us‖]rad)2

)
s ∈ N5

(72)

Each SN of LFC2 and LFC6 only receives the distance measurement of target. Its hs(x) and
Rs(x) are

hs(x) = ‖x− us‖, s ∈ N2 or s ∈ N6 (73)

Rs(x) =

{
([0.1 + 0.02‖x− us‖]km)2 s ∈ N2

([0.2 + 0.01‖x− us‖]km)2 s ∈ N6 (74)
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Each SN of LFC3 and LFC7 only receives the angle measurement of target. Its hs(x) and Rs(x) are

hs(x) = arctan
py − us

y

px − us
x

, s ∈ N3 or s ∈ N7 (75)

Rs(x) =

{
([0.01 + 0.001‖x− us‖]rad)2 s ∈ N3

([0.02 + 0.0005‖x− us‖]rad)2 s ∈ N7 (76)

Each SN of LFC4 and LFC8 receives distance and Doppler measurements of target. Its hs(x) and
Rs(x) are

hs(x) =

‖x− us‖,
(px − us

x)
.
px +

(
py − us

y

) .
py

‖x− us‖

T

, s ∈ N4 or s ∈ N8 (77)

Rs(x) =

 diag
(
([0.2 + 0.05‖x− us‖]km)2, ([0.02 + 0.001‖x− us‖]km/s)2

)
s ∈ N4

diag
(
([0.4 + 0.04‖x− us‖]km)2, ([0.04 + 0.0005‖x− us‖]km/s)2

)
s ∈ N8

(78)

In this example, there are three constraints for the sensor selection optimization of (17), which are
C1: Due to the limitations of communication bandwidth, energy consumption, computation

capacity and storage space, the LFC j can only select Kj SNs at each scan (Kj ≤
∣∣N j
∣∣),

Kj −
∣∣∣Sj
∣∣∣ = 0 (79)

In this example, if j = 1, 4, 5, 8, then Kj = 5; otherwise Kj = 8.
C2: The field of view (FoV) of the SN s is modeled as a circular area with the center us and radius

ρs, As(ρs) =
{

ps ∈ A : ‖ps − us‖ ≤ ρs
}

, As ⊆ A. The FoVs of different SNs can be overlapped.

To ensure that the FoVs of the SN set Sj can totally cover the region A, it is required that

A− ∪
s∈Sj
As(ρs) = 0 (80)

In this example, if j = 1, 4, 5, 8, then ρs = 30 km; otherwise ρs = 20 km.
C3: To avoid mutual interference between the homogeneous SNs belonging to the same LFC, the

distance between any two SNs in Sj must be not smaller than the threshold Dj,

min
s,s′∈Sj

‖us − us′‖ −Dj ≥ 0 (81)

In this example, Dj = 5 km for j = 1, . . . , 8.
According to the objective function and calculation method used for sensor selection, our

algorithm is abbreviated as LA bound with coordinate descent. It is firstly implemented by the
SMC technique and coded by MATLAB R2018a. Each pI(·, `) involved in the Mδ-GLMB density is
approximated by 500 particles on average. In this example, the maximum numbers of targets and
measurements of each SN per scan are set as 25 and 200, the cut-off is set as c = 1000 m. The algorithm
is testing on a desktop with the CPU of AMD Ryzen 7 2700X and 64 GB RAM. We conduct 500 MC
simulations, each of which includes T = 25 scans (a total of 250 s). In these simulations, the target
tracks (including the instants of birth and death), clutter and measurements originating from targets
are generated independently according to the aforementioned models.

We firstly present the result of sensor selection obtained by the algorithm in one simulation.
Figure 3 shows the target trajectories in the simulation, where a total of 15 targets are generated
at different instants and locations. For easy description, the targets are named as T1~T15 in turn.
The name and survival period of each target are marked at the start point of the target. During the
surveillance period, the number of targets at the initial time is the least (3 targets). The number of
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targets at the 15th~18th scans is the most (13 targets). The target T1 intersects with the target T10 at the
15th scan.
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Figure 3. Target trajectories in a simulation. #,4 andF are the start point, end point and rest positions
of a target, the solid line is the track of a target, different colors correspond to different targets.

Figure 4a~f show the results of sensor selection at the 1st, 5th, 10th, 15th, 20th and 25th scans. It
can be seen that the SNs selected by each LFC will change adaptively with the multi-target movement
versus time. Specifically, in order to minimize the bound in Theorem 1, most of the selected SNs locate
in the regions closer to the survival targets at each scan. A few SNs which are far from the survival
targets are selected to satisfy Constraint C2. Moreover, due to Constraint C3, the homogeneous SNs of
each LFC cannot be excessively concentrated in a small region.
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Figure 4. Sensor selection using LA bound with coordinate descend at (a) the 1st scan; (b) the 5th scan;
(c) the 10th scan; (d) the 15th scan; (e) the 20th scan; (f) the 25th scan. F and � denote the targets and
selected SNs, different colors correspond to different targets and SNs of different LFCs.

In order to further verify the performance of this method in tracking accuracy and computational
time, it is compared with the methods of LA bound with genetic algorithm, CS divergence with
genetic algorithm and Random selection under the same test platform. In the genetic algorithm, the
population size is 50, crossing rate is 0.9, mutation rate is 0.001, elite rate is 0.04 and the maximum
number of iterations is 500. In the CS divergence method, the objective function of the LFC j is[

Sj
]∗

= argmax
Sj⊆N j

E
[

DCS

(
π

j
+, π j

(
·|ZSj

))]
(82)

where DCS(φ, ϕ) denotes the CS divergence between the densities φ and ϕ. [31] presents the specific
form of the CS divergence when φ and ϕ are both GLMB densities. Since the posterior density
π j
(

X|ZSj
)

is unknown before sensor selection, the expected value rather than real value of the CS
divergence is applied in (82). In order to calculate the expected value, the MC integration based on
PIMS also needs to be used here.

For comparison, both the OSPA and LA metrics are used to measure the error of multi-target
position estimates.
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Figure 5a,b present the 500 MC averages of the OSPA and LA errors for the four methods. Note
that the error here is selected as the average of all LFCs because of Remark 1.
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Figure 5. 500 MC averages of (a) OSPA and (b) LA errors versus time with c = 1000 m.

Figure 5 shows that both the averaged OSPA and LA errors from all the four methods decrease
with time. Furthermore, the LA errors are always larger than the relevant OSPA errors. The reason for
this has been explained in Section 2.3. In both of Figure 5a,b, the errors from Random selection are
always the largest. The next is the errors from CS divergence with genetic algorithm. The errors from
LA bound with genetic algorithm are always the smallest. The errors from LA bound with coordinate
descent are slightly larger than those of LA bound with genetic algorithm. Compared with Random
selection, the errors of the other three algorithms are approximately reduced by 40%, 60% and 55%,
respectively. Obviously, the two LA bound based methods outperform the CS divergence based
method in MTT accuracy. There are three reasons for this:

1) The LA bound has a clearer physical meaning than the CS divergence. This is because that the
former indicates the achievable optimal MTT accuracy with labeled RFS state. In contrast, the latter is
not directly related to the MTT accuracy since maximizing the CS divergence in (82) cannot guarantee
to minimize the OSPA or LA error.

2) The CS divergence cannot provide a basis for setting the weights of KLA rule as the LA bound.
Therefore, in the CS divergence based method, the KLA weights can only be set to the same by
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convention [32]. However, in this example the MTT accuracy of different LFCs is probably not the
same because of the distinguishing observation performance of the diverse SNs. If the KLA weights
are set to the same without discrimination, the fusion efficiency will decline dramatically in this case.

3) In the step of sensor selection optimization, the coordinate descent method may trap in one
of local optimums. In contrast, the genetic algorithm may jump out of local optimums with certain
probability by its randomness. This leads that the MTT accuracy of the former is a litter worse than
the latter.

On the other hand, the computational cost of a method is in general measured by its CPU run time.
Then, the averaged CPU run time per scan for LA bound with coordinate descent, LA bound with
genetic algorithm and CS divergence with genetic algorithm are 0.62s, 6.18s and 5.69s, respectively.
Note that the run time here is also selected as the average of all LFCs because of Remark 1. Random
selection obviously does not need the optimization for sensor selection, so it has no time consumption
of this step. It can be seen from this that although the coordinate descent method is slightly worse
than the genetic algorithm in tracking accuracy, it significantly shortens the calculation time of sensor
selection optimization. In addition, the time consumption of CS divergence with genetic algorithm is
slightly less than that of LA bound with genetic algorithm. This case indicates that the computational
cost of the proposed bound is a little larger than that of the CS divergence expectation in (82).

In order to show the influence of different SNR on our method, the clutter rate and detection
probability of each SN are changed into (λ = 40, pd = 0.85), (λ = 60, pd = 0.75), (λ = 80, pd = 0.65)
and (λ = 100, pd = 0.55). Tables 1 and 2 present the final values of the OSPA and LA errors for the
four methods in each scenario after 500 MC run average.

Table 1. Final value of OSPA error (Unit: m).

Sensor Selection Method

Clutter rate and Detection Probability

λ = 20
pd = 0.95

λ = 40
pd = 0.85

λ = 60
pd = 0.75

λ = 80
pd = 0.65

λ = 100
pd = 0.55

LA bound with coordinate descent 171.3 193.0 218.9 249.1 283.7
LA bound with genetic algorithm 151.9 170.8 193.6 220.5 251.6

CS divergence with genetic algorithm 238.6 278.5 333.7 405.3 494.4
Random selection 386.7 436.0 490.5 550.1 615.2

Table 2. Final value of LA error (Unit: m).

Sensor Selection Method

Clutter rate and Detection Probability

λ = 20
pd = 0.95

λ = 40
pd = 0.85

λ = 60
pd = 0.75

λ = 80
pd = 0.65

λ = 100
pd = 0.55

LA bound with coordinate descent 188.8 223.9 255.0 288.6 323.9
LA bound with genetic algorithm 165.7 199.6 229.5 262.9 292.3

CS divergence with genetic algorithm 260.1 321.2 383.9 463.9 562.8
Random selection 426.7 500.5 564.3 634.2 710.9

Moreover, the CPU times consumed by the sensor selection optimization for the first three
methods are nearly the same for all the SNR scenarios. This is because that the sensor selection is
irrelevant to the specific measurement realizations since it must be completed before the measurements
are received.

It can be seen from Algorithm 1 and 2 that as clutter density increases and detection
probability decreases,

1) The OSPA and LA errors of all the four methods increase in different degrees but the size order
of them is always the same as that of Scenario 1;

2) Taking the error of Random selection as the benchmark, the improvement ratio of CS
divergence with genetic algorithm is gradually reduced from about 40% to about 20%. Meanwhile, the
improvement ratios of the two LA bound based methods are, respectively, maintained at about 60%
and 55%.
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The two points reflect that the lower the SNR is, the worse the sensor selection efficiency and
tracking accuracy of the CS divergence based methods become. By contrast, the tracking accuracy of
the LA bound based methods always maintains a good improvement ratio for all the SNR scenarios.

Assuming that the simulation scenarios remain unchanged, the above four methods are
re-implemented by the GM technique where the non-linear likelihood of each SN is approximated by
the EK filter,

Ĥs≈ ∂hs(x)
∂x

∣∣∣∣
x=x̂+

; R̂s ≈ Rs(x̂+) (83)

The pruning and merging technology [11] are used to manage the GM terms. Let the number
of the GM terms approximating to each pI(·, `) be no more than 30. The thresholds for merging,
pruning and state extraction are set to 4, 10−4 and 0.5, respectively. The simulation results of the GM
implementation are basically consistent with those of the SMC implementation, except that the OSPA
or LA error increases by about 8%. But the calculation time for sensor selection decreases by about 70%.

6. Conclusions and Future Work

A sensor selection optimization algorithm is proposed for the decentralized large-scale MTT
network under the labeled RFS framework. The LA metric defined in this paper is used to measure the
error between the labeled multi-target states and their estimates. The lower bound of the LA metric
based MSE is taken as the cost function of sensor selection. The bound is derived by the information
inequality and then, implemented by the SMC or GM technique. Then, the coordinate descent method
is used to reduce the computational cost of sensor selection. Simulation results show that when the
sensors of the decentralized network have different observation performance, our method outperforms
the CS divergence based sensor selection algorithm in MTT accuracy.

Our future work will focus on the following two aspects:
1) Extend the proposed method to the cases of asynchronous measurement or correlated

measurement noise;
2) Reference [50] has presented a very efficient implementation of the GLMB filter with linear

complexity in the number of measurements and this filter has been demonstrated to handle over 1
million tracks simultaneously [51]. Therefore, it would be very helpful to improve our current study
by the use of the methods proposed in Reference [50,51].
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Appendix A

Proof that d
(c)
p (X, Y) is a metric

A mapping d : X× X → [0, ∞) is called a metric if it obeys the following three properties
1) Identity: d(x, y) = 0 if and only if x = y;
2) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X;
3) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

It can be obtained easily from the definition of d
(c)
p (X, Y) in (9) that 0 ≤ d

(c)
p (X, Y) ≤ c and

d
(c)
p (X, Y) obeys the properties of identity and symmetry. Next, we will prove the triangle inequality

d
(c)
p (X, Y) ≤ d

(c)
p (X, Z) + d

(c)
p (Z, Y) (A1)
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Let x, y, z and L(X),L(Y),L(Z) denote the individual elements and label sets of X, Y, Z,
respectively. We firstly set

x` := u` for` ∈ L(X) ∪ L(Y) ∪ L(Z)−L(X) (A2)

y` := v` for` ∈ L(X) ∪ L(Y) ∪ L(Z)−L(Y) (A3){
z` := u` for` ∈ L(X) ∪ L(Y) ∪ L(Z)−L(X) ∪ L(Z)
z` := v` for` ∈ L(X) ∪ L(Z)−L(Z)

(A4)

where u` and v` satisfy

‖u` − w‖ ≥ c, ‖v` − w‖ ≥ c and ‖u` − v`′‖ ≥ c (A5)

for all w ∈ X∪ Y∪ Z and all `, `′ ∈ L(X) ∪ L(Y) ∪ L(Z).
Based on the setting of (A2)–(A5), the definition of d

(c)
p (X, Y) in (9) is rewritten as

d
(c)
p (X, Y) =

(
∑`∈L(X)∪L(Y) d(c)(x`, y`)

p

|L(X) ∪ L(Y)|

) 1
p

(A6)

We will prove that the triangle inequality of (A1) holds for all six possible ranks of |L(X) ∪ L(Y)|,
|L(X) ∪ L(Z)| and |L(Z) ∪ L(Y)|.

Case 1 (|L(X) ∪ L(Y)| ≤ |L(X) ∪ L(Z)| ≤ |L(Y) ∪ L(Z)|): Since the cut-off distance
d(c)(x`, y`) ≤ c for all ` ∈ L(X) ∪ L(Y) ∪ L(Z) and |L(X) ∪ L(Y)| ≤ |L(X) ∪ L(Z)|, (A6) can be
amplified to

d
(c)
p (X, Y) ≤

(
∑`∈L(X)∪L(Z) d(c)(x`,y`)

p

|L(X)∪L(Z)|

) 1
p

≤
(

∑`∈L(X)∪L(Z)(d(c)(x`,z`)+d(c)(z`,y`))
p

|L(X)∪L(Z)|

) 1
p

(A7)

where the last line holds because d(c)(x`, y`) obeys the triangle inequality.
Applying Minkowski’s inequality to (A7), we get

d
(c)
p (X, Y) ≤

(
∑`∈L(X)∪L(Z) d(c)(x`,z`)

p

|L(X)∪L(Z)|

) 1
p
+

(
∑`∈L(X)∪L(Z) d(c)(z`,y`)

p

|L(X)∪L(Z)|

) 1
p

= d
(c)
p (X, Z) +

(
∑`∈L(X)∪L(Z) d(c)(z`,y`)

p

|L(X)∪L(Z)|

) 1
p

(A8)

Similar with the derivation of the first line in (A7), the second term on the right-hand side of ‘=’ in
(A8) can be amplified to

(
∑`∈L(X)∪L(Z) d(c)(z`,y`)

p

|L(X)∪L(Z)|

) 1
p
≤
(

∑`∈L(Y)∪L(Z) d(c)(z`,y`)
p

|L(Y)∪L(Z)|

) 1
p

= d
(c)
p (Y, Z)

(A9)

because of d(c)(x`, y`) ≤ c and |L(X) ∪ L(Z)| ≤ |L(Y) ∪ L(Z)|.
Finally, the triangle inequality of (A1) for Case 1 is obtained by substituting (A9) into (A8).
Case 2 (|L(X) ∪ L(Y)| ≤ |L(Y) ∪ L(Z)| ≤ |L(X) ∪ L(Z)|):
The proof of Case 2 is similar with that of Case 1 except that its first amplification is completed by

using |L(X) ∪ L(Y)| ≤ |L(Y) ∪ L(Z)| and its last amplification is completed by using |L(Y) ∪ L(Z)| ≤
|L(X) ∪ L(Z)|.

Case 3 (|L(X) ∪ L(Z)| ≤ |L(Y) ∪ L(Z)| ≤ |L(X) ∪ L(Y)|):
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Using the triangle inequality of d(c)(x`, y`), (A6) can be amplified to

d
(c)
p (X, Y) ≤

(
∑`∈L(X)∪L(Y)(d(c)(x`,z`)+d(c)(z`,y`))

p

|L(X)∪L(Y)|

) 1
p

≤
(

∑`∈L(X)∪L(Y)(d(c)(x`,z`))
p

|L(X)∪L(Y)|

) 1
p
+

(
∑`∈L(X)∪L(Y)(d(c)(z`,y`))

p

|L(X)∪L(Y)|

) 1
p

(A10)

where the last line is derived from Minkowski’s inequality.
Because of |L(X) ∪ L(Z)| ≤ |L(Y) ∪ L(Z)| ≤ |L(X) ∪ L(Y)|, (A10) can be amplified to

d
(c)
p (X, Y) ≤

∑`∈L(X)∪L(Y)

(
d(c)(x`, z`)

)p

|L(X) ∪ L(Z)|


1
p

+

∑`∈L(X)∪L(Y)

(
d(c)(z`, y`)

)p

|L(Z) ∪ L(Y)|


1
p

(A11)

Then, based on the setting of (A2)–(A5), we have
∑

`∈L(X)∪L(Y)

(
d(c)(x`, z`)

)p
≤ ∑

`∈L(X)∪L(Z)

(
d(c)(x`, z`)

)p

∑
`∈L(X)∪L(Y)

(
d(c)(z`, y`)

)p
≤ ∑

`∈L(Z)∪L(Y)

(
d(c)(z`, y`)

)p (A12)

Substituting (A12) into (A11), (A11) can be amplified to

d
(c)
p (X, Y) ≤

(
∑`∈L(X)∪L(Z)(d(c)(x`,z`))

p

|L(X)∪L(Z)|

) 1
p
+

(
∑`∈L(Z)∪L(Y)(d(c)(z`,y`))

p

|L(Z)∪L(Y)|

) 1
p

= d
(c)
p (X, Z) + d

(c)
p (Z, Y)

(A13)

which is just the triangle inequality of (A1) for Case 3.
Case 4 (|L(Y) ∪ L(Z)| ≤ |L(X) ∪ L(Z)| ≤ |L(X) ∪ L(Y)|):
The proof of Case 4 is exactly the same as that of Case 3.
Case 5 (|L(Y) ∪ L(Z)| ≤ |L(X) ∪ L(Y)| ≤ |L(X) ∪ L(Z)|):
First, (A10) still holds for Case 5 depending on the triangle inequality of d(c)(x`, y`) and

Minkowski’s inequality.
Since d(c)(x`, y`) ≤ c for all ` ∈ L(X) ∪ L(Y) ∪ L(Z) and |L(X) ∪ L(Y)| ≤ |L(X) ∪ L(Z)|,

we have (
∑`∈L(X)∪L(Y)(d(c)(x`,z`))

p

|L(X)∪L(Y)|

) 1
p
≤
(

∑`∈L(X)∪L(Z)(d(c)(x`,z`))
p

|L(X)∪L(Z)|

) 1
p

= d
(c)
p (X, Z)

(A14)

From |L(Y) ∪ L(Z)| ≤ |L(X) ∪ L(Y)|, we have

(
∑`∈L(X)∪L(Y)(d(c)(z`,y`))

p

|L(X)∪L(Y)|

) 1
p
≤
(

∑`∈L(X)∪L(Y)(d(c)(z`,y`))
p

|L(Z)∪L(Y)|

) 1
p

≤
(

∑`∈L(Z)∪L(Y)(d(c)(z`,y`))
p

|L(Z)∪L(Y)|

) 1
p

= d
(c)
p (Z, Y)

(A15)

where the second line is obtained due to (A12).
Substituting (A14) and (A15) into (A10), we finally obtain the triangle inequality of (A1) for Case 5.
Case 6 (|L(X) ∪ L(Z)| ≤ |L(X) ∪ L(Y)| ≤ |L(Y) ∪ L(Z)|):
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The proof of Case 6 is similar with that of Case 5, except that (A14) is derived from
|L(X) ∪ L(Z)| ≤ |L(X) ∪ L(Y)| and (A12) while (A15) is derived from d(c)(x`, y`) ≤ c and
|L(X) ∪ L(Y)| ≤ |L(Y) ∪ L(Z)|.

Above all, the proof that d
(c)
p (X, Y) in (9) is a metric has been completed. �

Appendix B

Proof of Theorem 1
From (4) and (18), σ2

S in (16) is written as

σ2
S =

∞

∑
mS=0

∞

∑
n=0

Ωn,mS

mS!n! ∑
`1:n∈Ln

∫
ZS

mS

∫
Xn

q
(

Xn, ZS
mS

)
e2
(

Xn, X̂
(

ZS
mS

))
dx1:ndzS

1:mS (A16)

where q
(

Xn, ZS
mS

)
and Ωn,mS are defined in (18) and (19), Ωn,mS is finally obtained as (24).

Dividing the integral region ZS
mS of (A16) into ZS

0,mS ,ZS
1,mS , . . . ,ZS

∞,mS according to (30), σ2
S is

rewritten as

σ2
S =

∞

∑
mS=0

∞

∑
n=0

Ωn,mS

mS!n!

∞

∑̂
n=0

∑
`1:n∈Ln

∫
ZS

n̂,mS

∫
Xn

q
(

Xn, ZS
mS

)
e2
(

Xn, X̂n̂

(
ZS

mS

))
dx1:ndzS

1:mS (A17)

where the error e
(

Xn, X̂n̂

(
ZS

mS

))
is measured by the 2nd-order LA metric d

(c)
2

(
Xn, X̂n̂

(
ZS

mS

))
defined in (9). Substituting d

(c)
2

(
Xn, X̂n̂

(
ZS

mS

))
into (A17) and then using the identical equation

|L(X) ∪ L(Y)| = |L(X)|+ |L(Y)| − |L(X) ∩ L(Y)|, we get

σ2
S =

∞
∑

mS=0

∞
∑

n=0

Ωn,mS

mS !n!

∞
∑

n̂=0,n+n̂>0
∑

`1:n∈Ln

1
n+n̂−

∣∣∣L(Xn)∩L
(

X̂n̂

(
ZS

mS

))∣∣∣
∫
ZS

n̂,mS

∫
Xn

q
(

Xn, ZS
mS

)
·

 ∑
`′∈L(Xn)∩L(X̂n̂(ZS

mS ))

min
(

c2,
∥∥∥x`′ − x̂`′

(
ZS

mS

)∥∥∥2
)
+ c2

(
n + n̂− 2

∣∣∣L(Xn) ∩ L
(

X̂n̂

(
ZS

mS

))∣∣∣)
dx1:ndzS

1:mS

(A18)

where `1:n are the labels of Xn. It is obvious that L(Xn) ∩ L
(

X̂n̂

(
ZS

mS

))
⊆ {`1:n}.

Let k =
∣∣∣L(Xn) ∩ L

(
X̂n̂

(
ZS

mS

))∣∣∣. 0 ≤ k ≤ min(n, n̂). Given k and `1:n, there are

Ck
n = n!/(k!(n− k)!) possible choices from `1:n for the elements of {`′1:k} = L(Xn) ∩ L

(
X̂n̂

(
ZS

mS

))
.

Then, (A18) can be rewritten as

σ2
S =

∞
∑

mS=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0
∑

`1:n∈Ln

min(n,n̂)
∑

k=0
∑

{`′1:k}∈{`1:n}

Ωn,mS

mS !n! ·
1

n+n̂−k

∫
ZS

n̂,mS

∫
Xn

q
(

Xn, ZS
mS

)
·
(

∑
`′∈{`′1:k}

min
(

c2,
∥∥∥x`′ − x̂`′

(
ZS

mS

)∥∥∥2
)
+ c2(n + n̂− 2k)

)
dx1:ndzS

1:mS

=
∞
∑

mS=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

min(n,n̂)
∑

k=0
∑

`′1:k∈Lk

Ωn,mS Ψn̂,n,mS

mS !k!(n−k)! ·
1

n+n̂−k

·
(

∑
`′∈{`′1:k}

min

(
c2, 1

Ψn̂,n,mS
∑

(`1:n−`′)∈Ln−1

∫
ZS

n̂,mS

∫
Xn

q
(

Xn, ZS
mS

)∥∥∥x`′ − x̂`′
(

ZS
mS

)∥∥∥2
dx1:ndzS

1:mS

)
+ c2(n + n̂− 2k)

)
(A19)

where Ψn̂,n,mS is defined in (34) and finally obtained as (39), `1:n− `′ denotes the residual label sequence
of `1:n after the label `′ is separately excluded from `1:n.
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Note that the estimate x̂`′
(

ZS
mS

)
involved in (A19) is independent of Xn. So, the integral term in

the last line of (A19) is obtained as

∑
(`1:n−`′)∈Ln−1

∫
ZS

n̂,mS

∫
Xn

q
(

Xn, ZS
mS

)∥∥∥x`′ − x̂`′
(

ZS
mS

)∥∥∥2
dx1:ndzS

1:mS

=
∫
ZS

n̂,mS

∫
X1

[
∑

(`1:n−`′)∈Ln−1

∫
Xn−1

q
(

Xn, ZS
mS

)
d(x1:n − x`′)

]
‖x`′ − x̂`′

(
ZS

mS

)
‖

2
dx`′dzS

1:mS

=
∫
ZS

n̂,mS

∫
X1

qn

(
x, `′, ZS

mS

) L
∑

l=1

(
xl
`′ − x̂l

`′

(
ZS

mS

))2
dx`′dzS

1:mS

(A20)

where the last line is obtained according to the marginal density qn

(
x, ZS

mS

)
of (25) and the definition

of 2-norm, L is the dimension of x,
∫
Xn−1
·d(x1:n − x`′) denotes the residual integral of

∫
Xn
·dx1:n after

the term
∫
X1
·dx`′ is separately excluded from

∫
Xn
·dx1:n.

Since A2 has shown that the estimator x̂`′
(

ZS
mS

)
is unbiased, the information inequality of (7) can

be applied to (A20),∫
ZS

n̂,mS

∫
X1

qn

(
x, `′, ZS

mS

)(
xl
`′ − x̂l

`′

(
ZS

mS

))2
dx`′dzS

1:mS ≥
[

J−1
n̂,n,mS(`

′)
]l,l

l = 1, . . . , L (A21)

where the FIM Jn̂,n,mS(`′) is shown in (42). (A21) holds with equality if and only if qn

(
x, `′, ZS

mS

)
satisfies the distribution of exponential family.

Substituting (A21) into (A20) and then (A19), we get

σ2
S ≥

∞
∑

mS=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

min(n,n̂)
∑

k=0
∑

`′1:k∈Lk

Ωn,mS Ψn̂,n,mS

mS !k!(n−k)! ·
1

n+n̂−k

(
∑

`′∈{`′1:k}
min

(
c2, 1

Ψn̂,n,mS

L
∑

l=1

[
J−1
n̂,n,mS(`

′)
]l,l
)
+ c2(n + n̂− 2k)

)

=
∞
∑

mS=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

min(n,n̂)
∑

k=0
∑

`′∈L1

Ωn,mS Ψn̂,n,mS

mS !(n−k)! ·
1

n+n̂−k

(
k · min

(
c2, 1

Ψn̂,n,mS

L
∑

l=1

[
J−1
n̂,n,mS(`

′)
]l,l
)
+ c2(n + n̂− 2k)

) (A22)

where the second line is derived from the fact that the FIM Jn̂,n,mS(`′) is the same for all `′ ∈ {`′1:k}
given `′1:k ∈ Lk.

Finally, (40) can be obtained by substituting the notation εk,n̂,n defined in (41) into (A22). �.

References

1. Blackman, S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Artech House: Norwood, MA,
USA, 1999.

2. Hero, A.O.; Castanón, D.A.; Cochran, D.; Kastella, K. Foundations and Applications of Sensor Management;
Springler: New York, NY, USA, 2008.

3. Tharmarasa, R.; Kirubarajan, T.; Hernandez, M.L.; Sinha, A. PCRLB-based multisensor array management
for multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 539–555. [CrossRef]

4. Tharmarasa, R.; Kirubarajan, T.; Sinha, A.; Lang, T. Decentralized sensor selection for large-scale
multisensor-multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1307–1324. [CrossRef]

5. Fu, Y.; Ling, Q.; Tian, Z. Distributed sensor allocation for multi-target tracking in wireless sensor networks.
IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3538–3553. [CrossRef]

6. Mohammadi, A.; Asif, A. Decentralized computation of the conditional posterior Cramér-Rao lower bound:
Application to adaptive sensor selection. In Proceedings of the 38th IEEE International Conference on
Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013.

7. Herath, S.C.K.; Pathirana, P.N. Optimal sensor arrangements in angle of arrival (AoA) and range based
localization with linear sensor arrays. Sensors 2013, 13, 12277–12294. [CrossRef] [PubMed]

8. Wang, Z.; Shen, X.; Wang, P.; Zhu, Y. The Cramér-Rao bounds and sensor selection for nonlinear systems
with uncertain observations. Sensors 2018, 18, 1103. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TAES.2007.4285352
http://dx.doi.org/10.1109/TAES.2011.5751260
http://dx.doi.org/10.1109/TAES.2012.6324736
http://dx.doi.org/10.3390/s130912277
http://www.ncbi.nlm.nih.gov/pubmed/24036585
http://dx.doi.org/10.3390/s18041103
http://www.ncbi.nlm.nih.gov/pubmed/29621158


Sensors 2018, 18, 4115 28 of 29

9. Mahler, R. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA,
USA, 2014.

10. Vo, B.N.; Singh, S.; Doucet, A. Sequential Monte Carlo methods for multi-target filtering with random finite
sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245.

11. Vo, B.N.; Ma, W.K. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process.
2006, 54, 4091–4104. [CrossRef]

12. Zhang, Q.; Song, T.L. Improved bearings-only multi-target tracking with GM-PHD filtering. Sensors 2016, 16,
1469. [CrossRef] [PubMed]

13. Vo, B.T.; Vo, B.N.; Cantoni, A. Analytic implementations of the cardinalized probability hypothesis density
filter. IEEE Trans. Signal Process. 2007, 55, 3553–3567. [CrossRef]

14. Si, W.; Wang, L.; Qu, Z. Multi-target tracking using an improved Gaussian mixture CPHD filter. Sensors 2016,
16, 1964. [CrossRef] [PubMed]

15. Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its
implementations. IEEE Trans. Signal Process. 2009, 57, 409–423.

16. He, X.; Liu, G. Cardinality balanced multi-target multi-Bernoulli filter with error compensation. Sensors 2016,
16, 1399. [CrossRef] [PubMed]

17. Vo, B.T.; Vo, B.N. Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Process.
2013, 61, 3460–3475. [CrossRef]

18. Vo, B.N.; Vo, B.T.; Phung, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans.
Signal Process. 2014, 62, 6554–6567. [CrossRef]

19. Liu, C.; Sun, J.; Lei, P.; Qi, Y. δ-generalized labeled multi-Bernoulli filter using amplitude information of
neighboring cells. Sensors 2018, 18, 1153.

20. Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014,
62, 3246–3260.

21. Papi, F.; Vo, B.N.; Vo, B.T.; Fantacci, C.; Beard, M. Generalized labeled multi-Bernoulli approximation of
multi-object densities. IEEE Trans. Signal Process. 2015, 63, 5487–5497. [CrossRef]

22. Fantacci, C.; Papi, F. Scalable multisensor multitarget tracking using the marginalized δ-GLMB density.
IEEE Signal Process Lett. 2016, 23, 863–867. [CrossRef]

23. Fantacci, C.; Vo, B.N.; Vo, B.T.; Battistelli, G.; Chisci, L. Robust fusion for multisensor multiobject tracking.
IEEE Signal Process Lett. 2018, 25, 640–644. [CrossRef]

24. Williams, J.L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer.
IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1664–1687. [CrossRef]

25. García-Fernández Á, F.; Williams, J.L.; Granström, K.; Svensson, L. Poisson multi-Bernoulli mixture filter:
Direct derivation and implementation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1883–1901. [CrossRef]

26. Granström, K.; Svensson, L.; Xia, Y.; Williams, J.; García-Femández Á, F. Poisson multi-Bernoulli mixture
trackers: Continuity through random finite sets of trajectories. In Proceedings of the 21st International
Conference on Information Fusion, Cambridge, UK, 10–13 July 2018.

27. Ristic, B.; Vo, B.N. Sensor control for multi-object state-space estimation using random finite sets. Automatica
2010, 46, 1812–1818. [CrossRef]

28. Ristic, B.; Vo, B.N.; Clark, D. A note on the reward function for PHD filters with sensor control. IEEE Trans.
Aerosp. Electron. Syst. 2011, 47, 1521–1529. [CrossRef]

29. Hoang, H.G.; Vo, B.T. Sensor management for multi-target tracking via multi-Bernoulli filtering. Automatica
2014, 50, 1135–1142. [CrossRef]

30. Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A. Multi-Bernoulli sensor control via minimization of
expected estimation errors. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1762–1773. [CrossRef]

31. Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Sensor control for multi-target tracking using Cauchy-Schwarz
divergence. In Proceedings of the 18th International Conference on Information Fusion, Washington, DC,
USA, 6–9 July 2015.

32. Jiang, M.; Yi, W.; Kong, L. Multi-sensor control for multi-target tracking using Cauchy-Schwarz divergence. In
Proceedings of the 19th International Conference on Information Fusion, Heidelberg, Germany, 5–8 July 2016.

33. Gostar, A.K.; Hoseinnezhad, R.; Rathnayake, T.; Wang, X.; Bab-Hadiashar, A. Constrained sensor control for
labeled multi-Bernoulli filter using Cauchy-Schwarz divergence. IEEE Signal Process Lett. 2017, 24, 1313–1317.
[CrossRef]

http://dx.doi.org/10.1109/TSP.2006.881190
http://dx.doi.org/10.3390/s16091469
http://www.ncbi.nlm.nih.gov/pubmed/27626423
http://dx.doi.org/10.1109/TSP.2007.894241
http://dx.doi.org/10.3390/s16111964
http://www.ncbi.nlm.nih.gov/pubmed/27886106
http://dx.doi.org/10.3390/s16091399
http://www.ncbi.nlm.nih.gov/pubmed/27589764
http://dx.doi.org/10.1109/TSP.2013.2259822
http://dx.doi.org/10.1109/TSP.2014.2364014
http://dx.doi.org/10.1109/TSP.2015.2454478
http://dx.doi.org/10.1109/LSP.2016.2557078
http://dx.doi.org/10.1109/LSP.2018.2811750
http://dx.doi.org/10.1109/TAES.2015.130550
http://dx.doi.org/10.1109/TAES.2018.2805153
http://dx.doi.org/10.1016/j.automatica.2010.06.045
http://dx.doi.org/10.1109/TAES.2011.5751278
http://dx.doi.org/10.1016/j.automatica.2014.02.007
http://dx.doi.org/10.1109/TAES.2015.140211
http://dx.doi.org/10.1109/LSP.2017.2723924


Sensors 2018, 18, 4115 29 of 29

34. Wang, X.; Hoseinnezhad, R.; Gostar, A.K.; Rathnayake, T.; Xu, B.; Bab-Hadiashar, A. Multi-sensor control for
multi-object Bayes filters. Signal Process. 2018, 14, 260–270. [CrossRef]

35. Rezaeian, M.; Vo, B.N. Error bounds for joint detection and estimation of a single object with random finite
set observation. IEEE Trans. Signal Process. 2010, 58, 1493–1506. [CrossRef]

36. Arulampalam, S.; Maskell, S.; Gordon, N.J.; Clapp, T. A tutorial on particle filters for on-line
non-linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]

37. Wright, S.J. Coordinate descent algorithms. Math. Program. 2015, 151, 3–34. [CrossRef]
38. Hristakeva, M.; Shrestha, D. Solving the 0-1 knapsack problem with genetic algorithms. In Proceedings of

the 37th Midwest Instruction and Computing Symposium, Morris, MN, USA, 16–17 April 2004.
39. Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters.

IEEE Trans. Signal Process. 2008, 56, 3447–3457. [CrossRef]
40. Ristic, B.; Vo, B.N.; Clark, D.; Vo, B.T. A metric for performance evaluation of multi-target tracking algorithms.

IEEE Trans. Signal Process. 2011, 59, 3452–3457. [CrossRef]
41. Rahmathullah, A.S.; Garcia-Fernandez, A.F.; Svensson, L. Generalized optimal sub-pattern assignment metric.

In Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, 10–13 July 2017.
42. Zhou, B.; Bose, N.K. Multitarget tracking in clutter: Fast algorithms for data association. IEEE Trans. Aerosp.

Electron. Syst. 1993, 29, 352–363. [CrossRef]
43. Battistelli, G.; Chisci, L.; Fantacci, C.; Farina, A.; Graziano, A. Consensus CPHD filter for distributed

multitarget tracking. IEEE J. Sel. Top. Sign. Proces. 2013, 7, 508–520. [CrossRef]
44. Battistelli, G.; Chisci, L. Kullback-Leibler average, consensus on probability densities and distributed state

estimation with guaranteed stability. Automatica 2014, 50, 707–718. [CrossRef]
45. Davis, P.J.; Rabinowitz, P.; Rheinbolt, W. Methods of Numerical Integration, 2nd ed.; Mineola; Dover

Publications: New York, NY, USA, 2007.
46. Anderson, B.D.; Moore, J.B. Optimal Filtering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979.
47. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422.

[CrossRef]
48. Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming, 4th ed.; Springer: New Yeak, NY, USA, 2015.
49. Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking, part V: Multiple-model methods. IEEE Trans.

Aerosp. Electron. Syst. 2005, 41, 1255–1321.
50. Vo, B.N.; Vo, B.T.; Hoang, H.G. An efficient implementation of the generalized labeled multi-Bernoulli filter.

IEEE Trans. Signal Process. 2017, 65, 1975–1987. [CrossRef]
51. Beard, M.; Vo, B.T.; Vo, B.N. A solution for large-scale multi-object tracking. arXiv. 2018. Available online:

https://arxiv.org/abs/1804.06622 (accessed on 22 November 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sigpro.2017.07.031
http://dx.doi.org/10.1109/TSP.2009.2037665
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1109/TSP.2008.920469
http://dx.doi.org/10.1109/TSP.2011.2140111
http://dx.doi.org/10.1109/7.210074
http://dx.doi.org/10.1109/JSTSP.2013.2250911
http://dx.doi.org/10.1016/j.automatica.2013.11.042
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1109/TSP.2016.2641392
https://arxiv.org/abs/1804.06622
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Background 
	Labeled RFS and M-GLMB 
	Information Inequality to RFS Measurement 
	A New Metric for Labeled RFS 

	Problem Formulation 
	Lower Bound For LA Metric Based MSE and Sub-Optimization For Sensor Selection 
	Derivation of LA Bound 
	SMC and GM Implementations for the Bound 
	Sub-Optimization Based on Coordinate Descent 
	Weighted KLA Fusion 

	Simulations 
	Conclusions and Future Work 
	
	
	References

