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Abstract

Single-molecule long-read sequencing has been used to improve mRNA isoform identification. However, not all
single-molecule long reads represent full transcripts due to incomplete cDNA synthesis and sequencing length limits.
This drives a need for long-read transcript assembly. By adding long-read-specific optimizations to Scallop, we
developed Scallop-LR, a reference-based long-read transcript assembler. Analyzing 26 PacBio samples, we quantified
the benefit of performing transcript assembly on long reads. We demonstrate Scallop-LR identifies more known
transcripts and potentially novel isoforms for the human transcriptome than Iso-Seq Analysis and StringTie, indicating
that long-read transcript assembly by Scallop-LR can reveal a more complete human transcriptome.
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Background
More than 95% of human genes are alternatively spliced to
generate multiple isoforms [1]. Gene regulation through
alternative splicing can create different functions for a
single gene and increase protein-coding capacity and
proteomic diversity. Thus, studying the full transcrip-
tome is crucial to understanding the functionality of the
genome. In the past decade, high-throughput, short-read
sequencing technologies have become powerful tools for
the characterization and quantification of the transcrip-
tome. However, due to limited read lengths, identify-
ing full-length transcripts from short reads and assem-
bling all spliced RNAs within a transcriptome remain
challenging problems. In recent years, third-generation
sequencing technologies offered by Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT) pro-
duce sequences of full cDNA or RNA molecules, promis-
ing to improve isoform identification and reducing ambi-
guity in mapping reads [2]. Long reads offer various
benefits such as covering the entire molecule in themajor-
ity of cases and determining the allele from which the
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RNA molecule originated by identifying single nucleotide
variations (SNVs) affecting each single RNA molecule
[3]. Long reads are also able to capture gene structures
accurately without annotation and identify novel splice
patterns that are not found by short reads [2]. Long reads
have been used for genome assembly and can be used to
identify functional elements in genomes that are missed
by short-read sequencing [4–6]. Hybrid sequencing com-
bining long reads and short reads can improve isoform
identification and transcriptome characterization [7, 8].
Hybrid genome assemblers taking advantages of both
short and long reads have also been developed [9–12].
Long reads are also useful in identifying novel long non-
coding RNAs and fusion transcripts [13] and in studying
specific disease-determinant genes [14].
A main challenge associated with long-read technolo-

gies is high error rates. PacBio produces reads with
average lengths up to 30 kb, and its error rate for “sub-
reads” (raw reads, which are original lower quality reads
as opposed to consensus reads) is ∼10–20%. Continu-
ous long read (CLR) is the original polymerase read (by
reading a template with the DNA polymerase), and sub-
reads are sequences generated by splitting the CLR by
the adapters (a full-pass subread is flanked on both ends
by adapters). However, PacBio’s “ROI” (“Read of Insert”,
consensus reads) displays a higher quality than subreads.
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Circular Consensus Sequence (CCS) reads are a type of
ROI and are generated by collapsing multiple subreads
when ≥ 2 full-pass subreads are present. ONT produces
longer reads with even higher error rates (error rates
for “1D” raw reads, > 25%; error rates for “2D” consen-
sus reads, 12-20%) [15]. Error-correction methods using
short reads (such as the error correction tool LSC [16])
have been created to correct the high rate of errors in
long reads; however, error correction may create artifacts
so that the corrected long reads may no longer be true
single-molecule reads [17].
We focus on transcript assembly of long reads, aiming to

discovermore novel isoforms. Although it is often thought
that long reads are full-length transcripts and isoforms
with no assembly required1, in fact the success rate of the
sequenced cDNA molecules containing all splice sites of
the original transcripts depends on the completeness of
cDNA synthesis [17]. Sharon et al. [17] found that a CCS
read could correspond to an incomplete transcript as a
consequence of incomplete cDNA synthesis, although a
CCS read represents the full cDNA molecule. They found
that, in their experiment, for transcripts > 2.5 kb, full-
length reads that represent the original transcripts are
less likely to be observed than those for transcripts < 2.5
kb. Tilgner et al. [3] also found that, in their experiment,
reads representing all splice sites of the original tran-
scripts are more likely to be observed for transcripts ≤ 3
kb. The cDNA synthesis methods impose limitations on
long reads [18] even though with increasing performance
the sequencing technologies can be capable of sequenc-
ing long full-length transcripts. In addition, long reads
may still be limited by the sequencing length limit of the
platform [19]. Thus, incomplete cDNA synthesis plus the
sequencing length limit could cause PacBio’s consensus
long reads to miss a substantial number of true transcripts
[19], especially longer transcripts. This suggests that the
transcript assembly of long reads is still needed, since it
is possible that those CCS reads corresponding to incom-
plete transcripts could be assembled together to recover
the original full transcripts.
Long read lengths and high error rates pose compu-

tational challenges to transcript assembly. No published
transcript assembler has been adapted and systematically
tested on the challenges of long-read transcript assem-
bly yet. Aiming to handle these challenges, we developed
a reference-based long-read transcript assembler called
Scallop-LR, evolved from Scallop, an accurate short-
read transcript assembler [20]. Scallop-LR is designed
for PacBio long reads. Scallop-LR’s algorithms are tai-
lored to long-read technologies, dealing with the long read
lengths and high error rates as well as taking advantage

1Pacific Biosciences. ARCHIVED: Intro to the Iso-Seq Method: Full-length
transcript sequencing. June 2, 2014. https://www.pacb.com/blog/intro-to-iso-
seq-method-full-leng

of long-read-specific features such as the read bound-
ary information to construct more accurate splice graphs.
A post-assembly clustering algorithm is also added in
Scallop-LR to reduce false negatives.
We analyzed 26 long-read datasets from NIH’s

Sequence Read Archive (SRA) [21] with Scallop-LR,
Iso-Seq Analysis2 and StringTie [22, 23]. Iso-Seq Anal-
ysis, also known as Iso-Seq informatics pipeline, is a
software system developed by PacBio that takes subreads
as input and outputs polished isoforms (transcripts)
through collapsing, clustering, consensus calling, etc.
Iso-Seq Analysis does not perform assembly per se. The
clustering algorithm in Iso-Seq Analysis clusters reads
based on their isoform of origin. An algorithm that
clusters long reads based on their gene family of origin
was recently proposed [24]. StringTie was originally
designed as a short-read transcript assembler but can also
assemble long reads. StringTie outperforms many leading
short-read transcript assemblers [22].
Through combined evaluation methods, we demon-

strate that Scallop-LR is able to find more known tran-
scripts and novel isoforms that are missed by Iso-Seq
Analysis. We show that Scallop-LR can identify 2100–
4000 more known transcripts (in each of 18 human
datasets) or 1100–2200 more known transcripts (in each
of eight mouse datasets) than Iso-Seq Analysis. The sen-
sitivity of Scallop-LR is 1.33–1.71 times higher (for the
human datasets) or 1.43–1.72 times higher (for the mouse
datasets) than that of Iso-Seq Analysis. Scallop-LR also
finds 2.53–4.23 times more (for the human datasets) or
2.38–4.36 times more (for the mouse datasets) potential
novel isoforms than Iso-Seq Analysis. Further, Scallop-LR
assembles 950–3770 more known transcripts and 1.37–
2.47 times more potential novel isoforms than StringTie
and has 1.14–1.42 times higher sensitivity than StringTie
for the human datasets.

Methods
Scallop-LR algorithms for long-read transcript assembly
Scallop-LR is a reference-based transcript assembler that
follows the standard paradigm of alignment and splice
graphs but has a computational formulation dealing with
“phasing paths.” “Phasing paths” are a set of paths that
carry the phasing information derived from the reads
spanning more than two exons. The reads are first aligned
to a reference genome and the alignments are transformed
into splice graphs, in which vertices are inferred (par-
tial) exons, edges are splice junctions, the coverage of
exon is taken as the vertex weight, and the abundance of
splice junction is used as the edge weight. We decom-
pose the splice graph to infer a small number of paths (i.e.,

2Pacific Biosciences. SMRT Tools Reference Guide v5.1.0. 2018. https://www.
pacb.com/wp-content/uploads/SMRT_Tools_Reference_Guide_v510.pdf
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predicted transcripts) that cover the topology and fit the
weights of the splice graph.

Scallop-LR represents long reads as long phasing paths,
preserved in assembly
Unlike short reads, most long reads span more than two
exons. Thus, if the multi-exon paths of long reads are bro-
ken when decomposing splice graphs (which is more likely
to occur since the majority of long reads span large num-
bers of exons), many long reads would not be correctly
covered by assembled transcripts. Thus, Scallop-LR rep-
resents long reads as long phasing paths and preserves
phasing paths in assembly. This is particularly impor-
tant since we want every phasing path (and thus every
long read) to be covered by some transcript so that the
assembly can represent the original mRNAs. Scallop-LR
adapted the phasing-path preservation algorithm from
Scallop when decomposing splice graphs into transcripts.
The Scallop algorithm uses an iterative strategy to grad-
ually decompose the splice graph while achieving three
objectives simultaneously:

a) Preserving all phasing paths in assembled transcripts
when decomposing the splice graph,

b) Minimizing the read coverage deviation using linear
programming, and

c) Minimizing the number of predicted transcripts by
reducing an upper bound on the number of required
paths.

Figure 1 shows a simple example of a splice graph by
representing long reads as phasing paths and its decom-
position without and with preservation of long reads’
phasing paths. The example illustrates that when decom-
posing the splice graph without preserving long reads’
phasing paths, themulti-exon paths of some long reads are
broken, and thus not all long reads are correctly covered
by assembled transcripts. When decomposing the splice
graph by preserving long reads’ phasing paths, all long
reads are correctly covered by assembled transcripts.
By representing long reads as long phasing paths,

Scallop-LR makes full use of the information in long reads
through phasing-path preservation, so that assembled
transcripts can best represent the input long reads.

Additional Scallop-LR algorithms
To improve long-read assembly accuracy, Scallop-LR
extracts the boundary information from long reads and
identifies transcript boundaries to build a more accu-
rate splice graph. In single-molecule sequencing, there
are two types of long reads produced: full-length reads
and non-full-length reads. Full-length reads are the reads
that have a 5′ primer, 3′ primer, and polyA tail, which
are the reads that represent full-length transcripts they
originated from. Non-full-length reads do not represent

Fig. 1 Example of a splice graph by representing long reads as
phasing paths and its decomposition with and without preservation
of long reads’ phasing paths. a Alignment of reads to the reference
genome. Inferred (partial) exons are marked with letters. Green and
blue colored reads are long reads spanning more than two exons.
Scallop-LR represents these long reads as a set of phasing paths:
{(a, c, e), (b, c, d)}. b The corresponding splice graph (with weights for
all edges) and associated phasing paths (in green and blue). c
Decomposition of the splice graph without preservation of long
reads’ phasing paths. Although all weights are perfectly matched,
both phasing paths are “broken” (none of the three decomposed
paths contains (b, c, d) or (a, c, e)). d Decomposition of the splice
graph with preservation of long reads’ phasing paths. All phasing
paths are correctly covered by assembled transcripts

full-length transcripts. We further classify non-full-length
reads into two types: non-full-length boundary reads and
non-full-length internal reads. Non-full-length bound-
ary reads are the reads that either have a 5′ primer but
not the 3′ primer, or have a 3′ primer but not the 5′
primer (i.e., reads that come from either the 5′ or 3′
end but do not reach the other end). Non-full-length
internal reads are the reads that have neither of the
5′ primer and 3′ primer (i.e., reads that do not come
from either end). Scallop-LR treats non-full-length inter-
nal reads like short reads when constructing the splice
graph.
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We refer to non-full-length boundary reads (with one
side boundary) and full-length reads (with two side
boundaries) as “boundary reads” for the side they have
a boundary. We use the Classify tool in Iso-Seq Analy-
sis to obtain full-length and non-full-length CCS reads.
The Scallop-LR algorithm extracts the boundary infor-
mation of each read from the Classify results and uses it
to deduce starting/ending boundaries in the splice graph.
Specifically, when there are a certain number of bound-
ary reads whose boundaries align within an exonic region
in the genome with very similar boundary positions (the
default minimum number is 3), the algorithm defines it as
a starting or ending boundary:
Suppose there are some 5′ end boundary reads aligned

to the genome at positions [ a + δ1, x1], [ a + δ2, x2], [ a +
δ3, x3], etc., where |δ1|, |δ2|, |δ3|, . . . are within a predefined
allowance of difference for matching positions and x1, x2,
x3, . . . are the ending positions of the aligned genomic
regions of these reads, then this is a signal that position a
corresponds to a starting position of a transcript. Thus, in
the splice graph, we add an edge connecting the source s
to the vertex corresponding to the exonic region [ a, c] in
the genome (where c is the ending position of this exonic
region).
Similarly, suppose there are some 3′ end boundary reads

aligned to the genome at positions [ x1, b + δ1], [ x2, b +
δ2], [ x3, b + δ3], etc., where |δ1|, |δ2|, |δ3|, . . . are within
a predefined allowance of difference for matching posi-
tions and x1, x2, x3, . . . are the starting positions of the
aligned genomic regions of these reads, then this is a sig-
nal that position b corresponds to an ending position of
a transcript. Thus, in the splice graph, we add an edge
connecting the vertex corresponding to the exonic region
[ d, b] in the genome (where d is the starting position of
this exonic region) to the target t.
This is for the forward strand. For the reverse strand, the

situation is opposite. Specifically, the algorithm first sorts
all boundary positions from boundary reads together with
splice positions. The algorithm identifies a new transcript
boundary if the number of closely adjacent boundary posi-
tions of the same type (i.e., not separated by any different
type of boundary or splice position in the sorted list)
reaches a threshold (by default 3). For these closely adja-
cent boundary positions of the same type in the sorted list,
if they are 5′ boundary positions, the algorithm reports
the leftmost one as the 5′ transcript boundary coordinate.
Similarly, if they are 3′ boundary positions, the algorithm
reports the rightmost one as the 3′ transcript boundary
coordinate.
To increase the precision of long-read assembly,

Scallop-LR uses a post-assembly clustering algorithm to
reduce the false negatives in the final predicted tran-
scripts. For transcripts with very similar splice positions,
the algorithm clusters them into a single transcript. “Very

similar splice positions” means (a) these transcripts have
the same number of splice positions and (b) for each splice
position, their position differences are within a predefined
allowance (the default allowance is 10 bp; the allowance
can be set in a parameter). This allowance is for the sum
of the difference (absolute value) of starting position and
the difference of ending position for a splice position.
We use a single-linkage clustering method to group the
assembled transcripts. Specifically, we first build an undi-
rected graph in which vertices represent all assembled
transcripts.We iterate through all pairs of assembled tran-
scripts, and if any two transcripts are “very similar” (i.e.,
all their splice positions’ differences are less than a pre-
defined allowance), we add an edge between these two
transcripts (i.e., vertices).We then find all connected com-
ponents in this graph; each connected component is a
cluster. For each cluster, we identify the transcript with
the highest (predicted) abundance and use this transcript
to represent this cluster. The abundance of this consensus
transcript is then set to the sum of the abundances of all
transcripts in this cluster. We modify this consensus tran-
script so it spans the transcripts in the cluster by extending
the boundary positions of its two end-exons as needed:
its left position is set to the leftmost position among all
transcripts in the cluster; its right position is set to the
rightmost position among all transcripts in the cluster.
This clustering collapses “nearly redundant” transcripts
and thus increases the precision of assembly.
The Scallop-LR algorithm deals with the high error rates

in long reads when building the splice graph. Errors in
long reads are mostly insertions and deletions, which may
lead to mis-alignments around splice positions. When
identifying splice positions from long-read alignments
during the construction of the splice graph, the algorithm
takes into account that a single insertion or deletion in
the middle of the alignment may be caused by sequenc-
ing errors in long reads and therefore ignore these small
indels (by treating them as alignment match and count-
ing towards to the coverage of the corresponding ver-
tex) when determining the splice positions. Moreover,
long deletions due to sequencing errors may be falsely
marked as splice junctions by aligners. Thus, Scallop-LR
introduces a parameter (by default 50) as the minimum
size of introns to filter out such false-negative splice
junctions.

Combined evaluation methods
We use multiple transcript evaluation methods to exam-
ine the quality of predicted transcripts from transcript
assemblers (i.e., Scallop-LR and StringTie) and Iso-Seq
Analysis. The combined evaluation methods allow us
to assess predicted transcripts using various metrics as
well as cross-verify the findings obtained from different
methods.
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Gffcompare3 is used to identify correctly predicted
transcripts and the resulting sensitivity and precision by
comparing the intron chains of predicted transcripts to
the reference annotation for matching intron-exon struc-
tures. A correctly predicted known transcript has an exact
intron-chain matching with a reference transcript. Sen-
sitivity is the ratio of the number of correctly predicted
known transcripts over the total number of known tran-
scripts, and precision is the ratio of the number of cor-
rectly predicted known transcripts over the total number
of predicted transcripts. We generate the precision-recall
curve (PR curve) based on the results of Gffcompare by
varying the set of predicted transcripts sorted with cov-
erage and compute the metric PR-AUC (area under the
PR curve) which measures the overall performance. Gff-
compare also reports “potential novel isoforms” that are
predicted transcripts sharing at least one splice junction
with reference transcripts, though this criterion for poten-
tial novel isoforms is weak when transcripts contain many
splice junctions.
To further examine novel isoforms, we use the evalua-

tion method SQANTI [25] that classifies novel isoforms
into Novel in Catalog (NIC) and Novel Not in Catalog
(NNC). A transcript classified as NIC either contains new
combinations of known splice junctions or contains novel
splice junctions formed from known donors and accep-
tors. NNC contains novel splice junctions formed from
novel donors and/or novel acceptors. The criterion for
NIC is stronger compared with that of potential novel iso-
forms in Gffcompare, and we conjecture that NICs may
be more likely to be true novel isoforms than wrongly
assembled transcripts. SQANTI also reports Full Splice
Match (FSM) that is a predicted transcript matching a ref-
erence transcript at all splice junctions and Incomplete
Splice Match (ISM) that is a predicted transcript match-
ing consecutive, but not all, splice junctions of a reference
transcript.
Gffcompare and SQANTI report transcripts that fully

match, partially match, or do not match reference tran-
scripts, but do not report how many transcripts, for
example, have 75–95% or 50–75% of bases matching a
reference transcript. These ranges of matched fractions
would give us a more detailed view of the overall quality
of assembly. Thus, we use rnaQUAST [26] that measures
the fraction of a predicted transcript matching a ref-
erence transcript. rnaQUAST maps predicted transcript
sequences to the reference genome using GMAP [27] and
matches the alignments to the reference transcripts’ coor-
dinates from the gene annotation database. rnaQUAST
measures the fraction of a reference transcript that is cov-
ered by a single predicted transcript, and the fraction of

3The Center for Computational Biology at Johns Hopkins University.
GffCompare: Program for processing GTF/GFF files. https://ccb.jhu.edu/
software/stringtie/gffcompare.shtml

a predicted transcript that matches a reference transcript.
Based on the results of rnaQUAST, we compute the dis-
tribution of predicted transcripts in different ranges of
fractions matching reference transcripts, and the distribu-
tion of reference transcripts in different ranges of fractions
covered by predicted transcripts. rnaQUAST also reports
unaligned transcripts (transcripts without any significant
alignments), misassembled transcripts (transcripts that
have discordant best-scored alignments, i.e., partial align-
ments that are mapped to different strands, different
chromosomes, in reverse order, or too far away), and
unannotated transcripts (predicted transcripts that do not
cover any reference transcript).
We use Transrate [28] for sequence-based evaluation to

obtain statistics of predicted transcripts such as the mini-
mum, maximum, and mean lengths; the number of bases
in the assembly; and numbers of transcripts in different
size ranges.
The reference annotations we use in Gffcompare,

rnaQUAST, and SQANTI are Ensembl Homo sapiens
GRCh38.90 and Mus musculus GRCm38.92. The refer-
ence genomes we use are Ensembl GRCh38 for human
and GRCm38 for mouse when running rnaQUAST and
SQANTI or aligning long reads to the genome (“Analysis
workflow for analyzing the SRA PacBio datasets” section).

Data acquisition and preprocessing
We obtained PacBio datasets for Homo sapiens and
Mus musculus from SRA [4, 21, 29–32]. In most of
the PacBio datasets in SRA, one BioSample has multi-
ple SRA Runs because the experimenters used multiple
“movies” to increase the coverage so that low-abundance,
long isoforms can be captured in analysis. The exper-
imenters also used a size selection sequencing strat-
egy, and thus, different SRA Runs are designated for
different size ranges. Therefore, we use one BioSam-
ple instead of one SRA Run to represent one dataset
in our analysis, and we merge multiple SRA Runs that
belong to the same BioSample into that dataset (see Addi-
tional file 1: Section 1 about “movies” and size selection
strategy).
We collected the SRA PacBio datasets that meet the

following conditions: (a) The datasets should be tran-
scriptomic and use the cDNA library preparation. (b) The
datasets should have the hdf5 raw data uploaded. This
is because if using fastq-dump in SRA Toolkit to extract
the sequences from SRA, the output sequences lose the
original PacBio sequence names even using the sequence-
name preserving option. The original PacBio sequence
name is critical since it contains information such as the
movie and the identification of subreads or CCS reads. (c)
The datasets should not be “targeted sequencing” focus-
ing on a specific gene or a small genomic region. (d) The
datasets should use the Iso-Seq2-supported sequencing-

https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
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Fig. 2Workflow for analyzing the SRA PacBio datasets, combining the long-read transcript assembly pipeline (right) with the Iso-Seq Analysis
pipeline (left)

chemistry combinations. (e) For a BioSample, the number
of SRA Runs should be ≤ 50. This is because a huge
dataset is very computationally expensive for Iso-Seq
Analysis. With the above conditions, we identified and
extracted 18 human datasets and eight mouse datasets—a
total of 26 PacBio datasets from SRA. These 26 datasets
are sequenced using RS II or RS platform, and their SRA
information is in Additional file 1: Table S9.
We convert the PacBio raw data to subreads and merge

the subreads from multiple movies belonging to the same
BioSample into a large dataset for analysis.

Analysis workflow for analyzing the SRA PacBio datasets
Combining our long-read transcript assembly pipeline
with the Iso-Seq Analysis pipeline (Iso-Seq2), we build an
analysis workflow to analyze the SRA datasets, as shown
in Fig. 2.
After obtaining subreads and creating the merged

dataset, we generate CCS reads from subreads. After
classifying the CCS reads into full-length and non-
full-length reads, the full-length CCS reads are clus-
tered—they are run through the ICE (Iterative Clustering
and Error correction) algorithm to generate clusters of
isoforms. Afterwards, the non-full-length CCS reads are
attributed to the clusters, and the clusters are polished
using Quiver or Arrow. Quiver is an algorithm for calling
accurate consensus from multiple reads, using a pair-

HMM exploiting the basecalls and QV (quality values)
metrics to infer the true underlying sequence.4 Quiver
is used for RS and RS II data (for data from the Sequel
platform, an improved consensus model Arrow is used).
Finally, the polished consensus isoforms are mapped to
the genome using GMAP to remove the redundancy,
and the final polished isoform sequences and annotated
isoforms are generated.
The right side of the analysis workflow in Fig. 2 is our

long-read transcript assembly pipeline. We chose Min-
imap2 [33] and GMAP as the long-read aligners. GMAP
has been shown to outperform RNA-seq aligners STAR
[34], TopHat2 [35], HISAT2 [36], and BBMap [37] in
aligning long reads [15]. The recently published RNA-
seq aligner Minimap2 is specifically designed for long
reads. Minimap2 outperforms GMAP, STAR, and SpAln
in junction accuracy, and is 40× faster than GMAP [33].
We did a pre-assessment on the accuracy of Minimap2
vs. GMAP on a set of datasets which are either error-
corrected or not error-corrected (results are not shown).
Comparing the assembly results, we found that Min-
imap2 is more accurate than GMAP for long reads with-
out error corrections, and Minimap2 and GMAP have

4Pacific Biosciences. Understanding accuracy in SMRT sequencing. https://
www.pacb.com/wp-content/uploads/2015/09/Perspective_
UnderstandingAccuracySMRTSequencing.pdf

https://www.pacb.com/wp-content/uploads/2015/09/Perspective_UnderstandingAccuracySMRTSequencing.pdf
https://www.pacb.com/wp-content/uploads/2015/09/Perspective_UnderstandingAccuracySMRTSequencing.pdf
https://www.pacb.com/wp-content/uploads/2015/09/Perspective_UnderstandingAccuracySMRTSequencing.pdf
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nearly the same accuracy for long reads with error cor-
rections. Thus, we use Minimap2 to align CCS reads
(which are not error-corrected), while in the Iso-Seq
Analysis pipeline, GMAP is used to align polished iso-
forms (which are error-corrected). For assembly perfor-
mance comparison, we choose StringTie as a counterpart,
as StringTie outperforms leading transcript assemblers
Cufflinks, IsoLasso, Scripture, and Traph in short-read
assembly [22, 23].
We use the full-length CCS and non-full-length CCS

reads as the input of our long-read transcript assembly
pipeline for Scallop-LR (v0.9.1) and StringTie (v1.3.2d)
to assemble those CCS reads. We first align those CCS
reads to the reference genome using Minimap2, and then
the alignments are assembled by the transcript assem-
blers. In addition to taking the alignments as input,
Scallop-LR also extracts the boundary information (see
the “Additional Scallop-LR algorithms” section) fromCCS
reads.
The software versions and options used in this analysis

workflow are summarized in Additional file 1: Section 2.
The code to reproduce the analysis is available at Scallop-
LR: https://github.com/Kingsford-Group/scallop/tree/
isoseq; long-read transcript assembly analysis: https://
github.com/Kingsford-Group/lrassemblyanalysis.

Results
Scallop-LR and StringTie predict more known transcripts
than Iso-Seq Analysis
From the Gffcompare results for the human data, Scallop-
LR and StringTie consistently predict more known tran-
scripts than Iso-Seq Analysis and thus consistently have
higher sensitivity than Iso-Seq Analysis. Scallop-LR finds
2100–4000 more known transcripts than Iso-Seq Analy-
sis, and the sensitivity of Scallop-LR is 1.33–1.71 times
higher than that of Iso-Seq Analysis (Figs. 3 and 4, Addi-
tional file 1: Tables S1 and S2). StringTie finds 350–1960
more known transcripts than Iso-Seq Analysis, and the
sensitivity of StringTie is 1.05–1.4 times higher than that
of Iso-Seq Analysis. Scallop-LR and StringTie have higher
sensitivity than Iso-Seq Analysis because Scallop-LR and
StringTie do assembly but Iso-Seq Analysis does not. This
supports the idea that the transcript assembly of long
reads is needed. Assembly is likely useful because the suc-
cess level of transcriptomic long-read sequencing depends
on the completeness of cDNA synthesis, and also long
readsmay not cover those transcripts longer than a certain
length limit [19].
In the human data, Scallop-LR also consistently assem-

bles more known transcripts correctly than StringTie and
thus consistently has higher sensitivity than StringTie.
Scallop-LR finds 950–3770 more known transcripts than
StringTie, and the sensitivity of Scallop-LR is 1.14–
1.42 times higher than that of StringTie (Figs. 3 and 4,

Additional file 1: Tables S1 and S2). Scallop-LR’s higher
sensitivity is likely due to its phasing path preservation
and its transcript boundary identification in the splice
graph based on the boundary information extracted from
long reads.
Scallop-LR has higher precision than StringTie for the

majority of the datasets. For the first 12 datasets in Fig. 3
and Additional file 1: Table S1, Scallop-LR has both higher
sensitivity and higher precision than StringTie. Scallop-
LR’s higher precision is partially contributed by its post-
assembly clustering. However, for the last six datasets
in Fig. 3 and Additional file 1: Table S1, Scallop-LR has
lower precision than StringTie. The last six datasets in
Fig. 3 (each has 11, 12, 24, or 27 movies) are signifi-
cantly larger than the first 12 datasets (each has 7 or 8
movies). Scallop-LR’s precision decreases in the six larger
datasets as it assembles significantly more transcripts in
total in these larger datasets (Additional file 1: Table S2),
while StringTie’s precision does not seem to change much
with the size of the sample. As the sequencing depth goes
up in larger datasets, more lowly expressed transcripts
can be captured by RNA-seq reads. Thus, Scallop-LR is
able to identify more lowly expressed transcripts (Addi-
tional file 1: Tables S2 and S5 show that Scallop-LR
finds many more potential novel isoforms in these six
much larger datasets), as its core algorithm can preserve
all phasing paths (the Scallop paper illustrated the sig-
nificant improvement of Scallop over other methods in
assembling lowly expressed transcripts). However, over-
all lowly expressed transcripts are harder to assemble (as
transcripts may not be fully covered by reads), which
may lead to the relatively lower precision on these six
larger datasets. Assembling more potential novel isoforms
would also lower the precision on these larger datasets as
the precision is computed based on the predicted known
transcripts.
When two assemblers have opposite trends on sensitiv-

ity and precision on a dataset (e.g., the last six datasets in
Fig. 3 and Additional file 1: Table S1), we compare their
sensitivity and precision on the same footing. That is, for
the assembler with a higher sensitivity, we find the pre-
cision on its PR curve by matching the sensitivity of the
other assembler, and this precision is called adjusted pre-
cision. Similarly, we find the sensitivity on its PR curve
by matching the precision of the other assembler, and this
sensitivity is called adjusted sensitivity. The adjusted sen-
sitivity and precision are needed only when the datasets
have opposite trends on sensitivity and precision between
assemblers. These adjusted values are shown inside the
parentheses on Additional file 1: Table S1. Scallop-LR’s
adjusted sensitivity and adjusted precision are consistently
higher than StringTie’s sensitivity and precision, indicat-
ing that Scallop-LR has consistently better performance
than StringTie.

https://github.com/Kingsford-Group/scallop/tree/isoseq
https://github.com/Kingsford-Group/scallop/tree/isoseq
https://github.com/Kingsford-Group/lrassemblyanalysis
https://github.com/Kingsford-Group/lrassemblyanalysis
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Fig. 3 Human data: a sensitivity, b precision, and c PR-AUC of Scallop-LR, StringTie, and Iso-Seq Analysis. Evaluations were on 18 human PacBio
datasets from SRA, each corresponding to one BioSample and named by the BioSample ID (except that the last four datasets are four replicates for
one BioSample). The first nine datasets were sequenced using the RS, and the last nine datasets were sequenced using the RS II. Sensitivity,
precision, and PR-AUC are as described in the “Combined evaluation methods” section

On the other hand, Iso-Seq Analysis consistently has
higher precision than Scallop-LR and StringTie (Fig. 3,
Additional file 1: Table S1). Iso-Seq Analysis has higher
precision partially because the full-length CCS reads are
run through the ICE (Iterative Clustering and Error cor-
rection) algorithm and the isoforms are also polished with
Quiver to achieve higher accuracy.
Scallop-LR consistently has higher PR-AUC than Iso-

Seq Analysis and StringTie, indicating better overall per-
formance of Scallop-LR. The PR-AUC of Scallop-LR is
1.62–2.07 times higher than that of Iso-Seq Analysis,

and 1.1–1.4 times higher than that of StringTie (Fig. 3,
Additional file 1: Table S1).

Scallop-LR and StringTie find more potential novel
isoforms than Iso-Seq Analysis
Scallop-LR and StringTie find more potential novel iso-
forms (i.e., novel transcripts containing at least one anno-
tated splice junction) than Iso-Seq Analysis in the human
data. Scallop-LR also consistently finds more potential
novel isoforms than StringTie in the human data. Scallop-
LR finds 2.53–4.23 times more potential novel isoforms
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Fig. 4 Human data: a correctly predicted known transcripts and b potential novel isoforms of Scallop-LR, StringTie, and Iso-Seq Analysis. The same
18 human PacBio datasets as described in Fig. 3 are evaluated. A correctly predicted known transcript has the exact intron-chain matching with a
transcript in the reference annotation. A potential novel isoform is a predicted transcript that shares at least one splice junction with a reference
transcript

than Iso-Seq Analysis, and 1.37–2.47 times more poten-
tial novel isoforms than StringTie (Fig. 4, Additional file 1:
Table S2). This is likely due to the same reasons that led to
the higher sensitivity of Scallop-LR. This shows the poten-
tial benefit that long-read transcript assembly could offer
in discovering novel isoforms.

Scallop-LR finds more novel isoforms in catalog than
Iso-Seq Analysis
Weuse SQANTI to evaluate Scallop-LR and Iso-Seq Anal-
ysis (SQANTI does not work for the transcripts assembled
by StringTie). Figure 5 and Additional file 1: Table S5 show
the SQANTI evaluation results for Scallop-LR and Iso-Seq
Analysis on the 18 human datasets.
The NIC (transcripts containing either new combina-

tions of known splice junctions or novel splice junctions
with annotated donors and acceptors) results show that
Scallop-LR finds more novel isoforms in catalog than Iso-
Seq Analysis consistently. Scallop-LR finds 2.2–4.02 times
more NIC than Iso-Seq Analysis (Fig. 5, Additional file 1:
Table S5). This is an important indication of Scallop-LR’s
ability to find more new transcripts that are not yet anno-
tated, as we conjecture that the novel isoforms in catalog
may be more likely to be new transcripts than wrongly
assembled transcripts since the novel splice junctions are

formed from annotated donors and acceptors. This find-
ing further supports the advantage of assembly of long
reads.
The NNC (transcripts containing novel splice junctions

with novel donors and/or acceptors) results indicate that
Scallop-LR also finds more novel isoforms not in catalog
than Iso-Seq Analysis consistently (Fig. 5, Additional file 1:
Table S5). The novel isoforms not in catalog could be
either new transcripts or wrongly assembled transcripts.
SQANTI’s results on novel isoforms are roughly consis-

tent with Gffcompare’s results on novel isoforms. Com-
paring Additional file 1: Table S5 with Additional file 1:
Table S2, we can see that the sums of NIC and NNC
from SQANTI are similar to the numbers of potential
novel isoforms reported by Gffcompare, except that for
the last four datasets in Additional file 1: Table S5, for
Iso-Seq Analysis, the sums of NIC and NNC are notably
larger than the corresponding numbers of potential novel
isoforms in Additional file 1: Table S2 (this may be
because some NIC or NNCmay not contain an annotated
splice junction although they contain an annotated donor
and/or acceptor).
The FSM (Full Splice Match) results from SQANTI

support the trend we found from Gffcompare that
Scallop-LR consistently predicts more known transcripts
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Fig. 5 Human data: numbers of a NIC, b NNC, c FSM, and d ISM transcripts of Scallop-LR and Iso-Seq Analysis based on SQANTI evaluations. The
same 18 human PacBio datasets as described in Fig. 3 are evaluated. NIC, NNC, FSM, and ISM are as described in the “Combined evaluation
methods” section

correctly than Iso-Seq Analysis. Comparing Addi-
tional file 1: Table S5 with Additional file 1: Table S2,
we can see that the numbers of FSM from SQANTI are
very close to the numbers of correctly predicted known
transcripts from Gffcompare for these datasets.
The ISM (Incomplete Splice Match) results show that

Scallop-LR also yields more partially matched transcripts
than Iso-Seq Analysis (Fig. 5, Additional file 1: Table S5).
The NNC and ISM results support the trend we found
from Gffcompare that Iso-Seq Analysis has higher preci-
sion than Scallop-LR.
The mouse data exhibit the same trends as the human

data as summarized above, which can be seen from Fig. 6

and Additional file 1: Table S6 and by comparing Addi-
tional file 1: Table S6 with Additional file 1: Table S4. In
the mouse data, Scallop-LR finds significantly more novel
isoforms in catalog (2.43–3.5 times more) than Iso-Seq
Analysis consistently (Fig. 6, Additional file 1: Table S6).
This further supports our finding on Scallop-LR’s abil-
ity to discover more new transcripts that are not yet
annotated.

Assessment of predicted transcripts that partially match
known transcripts
In rnaQUAST, “isoforms” refer to reference transcripts
from the gene annotation database, and “transcripts” refer
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Fig. 6Mouse data: numbers of a NIC, b NNC, c FSM, and d ISM transcripts of Scallop-LR and Iso-Seq Analysis based on SQANTI evaluations.
Evaluations were on eight mouse PacBio datasets from SRA, each corresponding to one BioSample and named by the BioSample ID. All eight
datasets were sequenced using the RS. Metrics descriptions are the same as in Fig. 5

to predicted transcripts by the tools being evaluated. Here,
we inherit these terminologies. Figures 7, 8, and 9 show
box-whisker plots of matched transcripts in matched
fraction bins, assembled isoforms in assembled fraction
bins, “mean isoform assembly,” and “mean fraction of
transcriptmatched” for Scallop-LR, StringTie, and Iso-Seq
Analysis on the 18 human datasets based on rnaQUAST
evaluations. Full results are shown in Additional file 1:
Tables S7.1–S7.18.
Scallop-LR predicts more transcripts that have a high

fraction of their bases matching reference transcripts than
both Iso-Seq Analysis and StringTie. The metric “x–y%
matched transcripts” is the number of transcripts that
have at least x% and at most y% of their bases matching
an isoform from the annotation database. We report

this measure in four different bins to examine how well
predicted transcripts match reference transcripts. From
Additional file 1: Tables S7.1–S7.18, in the high % bins
of the “x–y% matched transcripts” (75–95% and 95–100%
matched), Scallop-LR predicts more x–y% matched tran-
scripts than both Iso-Seq Analysis and StringTie (with one
exception compared with StringTie). This trend is visu-
alized in Fig. 7 (75–95% and 95–100% matched bins). In
the high % bins, StringTie mostly has more x–y%matched
transcripts than Iso-Seq Analysis. These further support
the advantage of transcript assembly on long reads.
On average, Scallop-LR transcripts match reference

transcripts much better than StringTie transcripts. The
metric “Mean fraction of transcript matched” is the
average value of matched fractions, where the matched
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Fig. 7 Human data: box-whisker plots of matched transcripts in four matched fraction bins for Scallop-LR, StringTie, and Iso-Seq Analysis, based on
rnaQUAST evaluations. This is to compare numbers of x–y%matched transcripts. The same 18 human PacBio datasets as described in Fig. 3 are
evaluated. “Number of x–y%matched transcripts” is as described in the “Assessment of predicted transcripts that partially match known transcripts”
section. The four bins of matched fraction (x–y%) of transcript are 0–50%, 50–75%, 75–95%, and 95–100%
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Fig. 8 Human data: box-whisker plots of assembled isoforms in four assembled fraction bins for Scallop-LR, StringTie, and Iso-Seq Analysis, based on
rnaQUAST evaluations. This is to compare numbers of x–y% assembled isoforms. The same 18 human PacBio datasets as described in Fig. 3 are
evaluated. “Number of x–y% assembled isoforms” is as described in the “Assessment of predicted transcripts that partially match known transcripts”
section. The four bins of assembled fraction (x–y%) of isoform are 0–50%, 50–75%, 75–95%, and 95–100%
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Fig. 9 Human data: box-whisker plots of mean isoform assembly and mean fraction of transcript matched for Scallop-LR, StringTie, and Iso-Seq
Analysis, based on rnaQUAST evaluations. The same 18 human PacBio datasets as described in Fig. 3 are evaluated. “Mean isoform assembly” and
“mean fraction of transcript matched” are as described in the “Assessment of predicted transcripts that partially match known transcripts” section

fraction of a transcript is computed as the number of
its bases covering an isoform divided by the transcript
length. This measure indicates on average how well pre-
dicted transcripts match reference transcripts. In Addi-
tional file 1: Tables S7.1–S7.18, Scallop-LR consistently
has much higher values of “Mean fraction of transcript
matched” than StringTie, indicating its better assembly
quality than StringTie. Scallop-LR performs slightly bet-
ter than Iso-Seq Analysis on this measure. These trends
are visualized in Fig. 9 (right: “Mean fraction of transcript
matched”).
There are more reference transcripts that have a high

fraction of their bases being captured/covered by Scallop-
LR transcripts than by Iso-Seq Analysis predicted tran-
scripts. The metric “x–y% assembled isoforms” is the
number of isoforms from the annotation database that
have at least x% and at most y% of their bases captured
by a single predicted transcript. We report this mea-
sure in four different bins to examine how well reference
transcripts are captured/covered by predicted transcripts.
From Additional file 1: Tables S7.1–S7.18, in the high
% bins of the “x–y% assembled isoforms” (75–95% and
95–100% assembled), Scallop-LR consistently has more
x–y% assembled isoforms than Iso-SeqAnalysis. However,
Scallop-LR mostly (with six exceptions in the 75–95%
bin and two exceptions in the 95–100% bin) has fewer
x–y% assembled isoforms than StringTie in the high %

bins. These trends are visualized in Fig. 8 (75–95% and
95–100% assembled bins).
However, on average, reference transcripts are bet-

ter captured/covered by Scallop-LR transcripts than by
StringTie transcripts and Iso-Seq Analysis transcripts.
The metric “Mean isoform assembly” is the average value
of assembled fractions, where the assembled fraction of
an isoform is computed as the largest number of its bases
captured by a single predicted transcript divided by its
length. This measure shows on average how well refer-
ence transcripts are captured by predicted transcripts. In
Additional file 1: Tables S7.1–S7.18, Scallop-LR consis-
tently has higher values of “Mean isoform assembly” than
both StringTie and Iso-Seq Analysis. This trend is visual-
ized in Fig. 9 (left: “Mean isoform assembly”). This trend
is consistent with the higher sensitivity of Scallop-LR in
the Gffcompare results.
Scallop-LR consistently has fewer unannotated, mis-

assembled, and unaligned transcripts than StringTie
(Additional file 1: Tables S7.1–S7.18). This further indi-
cates Scallop-LR’s better assembly quality than StringTie.
Scallop-LR mostly (with three exceptions) produces fewer
unannotated transcripts than Iso-Seq Analysis as well. An
unannotated transcript reported by rnaQUAST denotes
an assembled transcript mapped to intergenic space and
thus does not relate to the novel isoforms identified by
Gffcompare or SQANTI.
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There are a few notable findings regarding StringTie
transcripts. First, StringTie consistently has significantly
more unannotated transcripts than both Scallop-LR and
Iso-Seq Analysis (Additional file 1: Tables S7.1–S7.18).
Second, in Fig. 7, in the 0–50% matched bin, StringTie
has significantly higher numbers of transcripts than
Scallop-LR and Iso-Seq Analysis. This indicates that
StringTie assembled many more lower quality transcripts
than Scallop-LR and Iso-Seq Analysis, consistent with
StringTie predicting many more unannotated transcripts.
Lastly, in Fig. 8, in the 0–50% assembled bin, StringTie has
significantly higher numbers of isoforms than Scallop-LR
and Iso-Seq Analysis. This indicates that, compared with
Scallop-LR and Iso-Seq Analysis, there are many more
isoforms from the annotation which are just marginally
covered by StringTie transcripts.

The mouse data exhibit trends partially similar to those
of the human data for the rnaQUAST results, and the
quality of StringTie transcripts in the mouse data is
somewhat improved compared to that in the human data.
The detailed discussions on the rnaQUAST results for the
mouse data are in Additional file 1: Section 3.
We also evaluated Scallop-LR and StringTie on a sim-

ulated human dataset from Liu et al. [38]. The results
and discussions for the simulated dataset are in Addi-
tional file 1: Section 4.

Scallop-LR and StringTie predict more known transcripts
and potential novel isoforms than Iso-Seq Analysis in
mouse data
From the Gffcompare evaluation for the mouse data
(Fig.10, Additional file 1: Tables S3 and S4), Scallop-
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Fig. 10Mouse data: a sensitivity, b precision, and c PR-AUC of Scallop-LR, StringTie, and Iso-Seq Analysis. The same eight mouse PacBio datasets as
described in Fig. 6 are evaluated. Metrics descriptions are the same as in Fig. 3
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LR and StringTie consistently predict more known tran-
scripts (Scallop-LR predicts 1100–2200 more) correctly
than Iso-Seq Analysis and thus consistently have higher
sensitivity (Scallop-LR’s is 1.43–1.72 times higher) than
Iso-Seq Analysis. Scallop-LR and StringTie also find
more potential novel isoforms (Scallop-LR finds 2.38–
4.36 times more) than Iso-Seq Analysis (Additional file 1:
Table S4). Scallop-LR and StringTie consistently have
higher PR-AUC than Iso-Seq Analysis (Fig. 10, Addi-
tional file 1: Table S3).
We also found some trends different from those in the

human data. In the mouse data, Scallop-LR consistently
has higher precision than StringTie, but consistently has
lower sensitivity than StringTie (Fig. 10, Additional file 1:
Table S3). Thus, for StringTie, we computed the adjusted
sensitivity by matching Scallop-LR’s precision and the
adjusted precision by matching Scallop-LR’s sensitivity.
These adjusted values are shown inside the parentheses
on Additional file 1: Table S3. Scallop-LR’s sensitivity and
precision are consistently higher than StringTie’s adjusted
sensitivity and adjusted precision, indicating that when
comparing on the same footing, Scallop-LR does better on
these measures than StringTie.
In the mouse data, the trend of PR-AUC between

Scallop-LR and StringTie is mixed (Fig. 10, Addi-
tional file 1: Table S3). Scallop-LR also finds fewer poten-
tial novel isoforms than StringTie (Additional file 1:
Table S4).
Before this work, Scallop was never systematically eval-

uated on organisms besides human, for either short reads
or long reads. In fact, Scallop’s parameters were opti-
mized by targeting the human transcriptome. The current
annotated mouse transcriptome is relatively less com-
plex than the annotated human transcriptome although
they share many similarities. It may be possible that some
of Scallop-LR’s advantages (such as preserving phasing
paths) become less significant in a relatively less complex
transcriptome.

Discussion
The combined evaluations using Gffcompare, SQANTI,
and rnaQUAST yield consistent observations that
Scallop-LR not only correctly assembles more known
transcripts but also finds more possible novel isoforms
than Iso-Seq Analysis, which does not do assembly.
Scallop-LR finding more NIC especially shows its ability
to discover new transcripts. These observations further
support the idea that transcript assembly of long reads
is needed, and demonstrate that long-read assembly
by Scallop-LR can help reveal a more complete human
transcriptome using long reads.
Two factors may limit the CCS read length: the read

length of the platform and the cDNA template sizes. In
many cases, the primary limiting factor for CCS read

lengths is the cDNA template sizes [17]. When a cDNA is
very long so that the continuous polymerase read is unable
to get through at least two full passes of the template,
the CCS read is not generated for that cDNA. Thus, the
maximum possible CCS read length is limited by the
read length of the platform. The read lengths of sequenc-
ing platforms have been increasing; however, there are
limitations imposed by the cDNA synthesis methods.
cDNA synthesis can be incomplete with respect to the

original mRNAs [17]. A CCS read represents the entire
cDNAmolecule; however, the CCS read could correspond
to a partial transcript as a result of incomplete cDNAs
[17]. The longer the transcripts are, the lower the fraction
of CCS reads that can represent the entire splice struc-
tures of mRNAs is [17]. This is likely a reason that Scallop-
LR is able to find more true transcripts through assembly:
a fraction of CCS reads can be partial sequences of those
long transcripts, and Scallop-LR is able to assemble them
together to reconstruct the original transcripts.
Iso-SeqAnalysis may also sacrifice some true transcripts

in order to achieve a higher quality (i.e., less affected by
the sequencing errors) in final isoforms. The “polish” step
in Iso-Seq Analysis keeps only the isoforms with at least
two full-length reads to support them. This increases the
isoform quality and gives Iso-Seq Analysis a higher preci-
sion than Scallop-LR, but may cause Iso-Seq Analysis to
miss those low-abundance, long transcripts with only one
full-length read.
Although StringTie was designed for assembling short

reads, it also exhibits the advantage of assembly of long
reads compared to Iso-Seq Analysis. StringTie finds more
known transcripts and potential novel isoforms than
Iso-Seq Analysis. In the rnaQUAST results, StringTie
produces large numbers of unannotated transcripts (in
a range of 7600–113000 for the human datasets), sig-
nificantly more than those of Scallop-LR and Iso-Seq
Analysis (differing by orders of magnitude). Unanno-
tated transcripts are the transcripts that do not have a
fraction matching a reference transcript in the annota-
tion database. StringTie also outputs large numbers of
single-exon transcripts, significantly more than those of
Scallop-LR and Iso-Seq Analysis (differing by orders of
magnitude). We found that about 70% of the unanno-
tated transcripts from StringTie are those single-exon
transcripts. StringTie produces large numbers of single-
exon transcripts most likely because StringTie discards
the spliced read alignments that do not have the tran-
script strand information. There is a fraction of read
alignments by Minimap2 which have no transcript strand
information, since Minimap2 looks for the canonical
splicing signal to infer the transcript strand and for
some reads the transcript strands are undetermined
by Minimap2. When those spliced alignments that do
not have the transcript strand information are ignored
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by StringTie, the single-exon alignments that overlap
those spliced alignments turn into single-exon tran-
scripts by themselves, although they could have been
represented by the spliced multi-exon transcripts dur-
ing the assembly if those spliced alignments they overlap
were not ignored. Unlike StringTie, Scallop-LR attempts
both strands if a read alignment has no transcript strand
information.
Scallop-LR eliminates nearly redundant transcripts

through post-assembly clustering. For reference-based
assembly, clustering the transcripts with very similar
splice positions into a single transcript could have a side
effect that some true transcripts may also be eliminated
by the clustering since some real transcripts may have
very similar splice positions. Therefore, we investigated
this effect by comparing the results of Scallop-LR without
post-assembly clustering with the results of Scallop-LR
with post-assembly clustering and computing the per-
centages of correctly assembled known transcripts that
are missing because of the clustering and the percent-
ages of nearly redundant transcripts that are removed by
the clustering (Additional file 1: Table S11). For the 18
human datasets, we found that the percentages of cor-
rectly assembled known transcripts missing due to clus-
tering are between 1.43% and 2.38% (this percentage <
2% for all datasets except for two) and the percentages
of nearly redundant transcripts removed by clustering are
between 9.22% and 15.52% (this percentage > 10% for all
datasets except for four). These results indicate that the
effect of missing correctly assembled known transcripts
by the post-assembly clustering is relatively minor, while
the post-assembly clustering substantially removes nearly
redundant transcripts and significantly improves the pre-
cision. Decreasing the allowance for splice positions’ dif-
ferences (the parameter “--max_cluster_intron_distance”;
the default is 10 bp) could further reduce the side effect of
missing correctly assembled known transcripts due to the
clustering.
We also compared the performance of Scallop-LR

(v0.9.1) with the performance of the short-read assem-
bler Scallop (v0.10.3) for the 18 human datasets using
the Gffcompare evaluation (Additional file 1: Table S10).
We adjusted the parameters of Scallop so that it can
also assemble long reads (by setting “--max_num_cigar
1000” and “--min_num_hits_in_bundle 1”). The precision
of Scallop-LR increases compared with that of Scal-
lop: on all 18 datasets, Scallop-LR gives higher preci-
sion, and the average precision are 39.63% and 34.18%
respectively for Scallop-LR and Scallop. The sensitivity
of Scallop-LR also increases compared with that of Scal-
lop (except for two datasets, Scallop has slightly higher
sensitivity than Scallop-LR, and for another two datasets,
there is a tie): the average numbers of correctly pre-
dicted known transcripts are 9543 and 9421 respectively

for Scallop-LR and Scallop. These results show the ben-
efits of the long-read-specific optimizations added in
Scallop-LR.
A direction for future work is developing a hybrid tran-

script assembler that combines short and long reads.
Recently, two de novo transcript assembly methods using
hybrid sequencing were developed: IDP-denovo [39] and
a new version of Trinity [40]. However, both Trin-
ity and IDP-denovo do not assemble long reads; they
assemble short reads and use long reads to extend,
supplement, or improve the assembly of short reads.
A reference-based hybrid transcript assembler that can
assemble both short reads and long reads simultane-
ously, thus combining the advantages of short reads
(low error rates, high throughput) and long reads
(long read lengths), is an interesting direction for
future work.

Conclusion
The sensitivity of the Iso-Seq method is limited by the
factor that not all CCS reads represent full transcripts
[19]. We demonstrate that our developed long-read tran-
script assembler Scallop-LR can improve this situation by
identifying more true transcripts and potential novel iso-
forms through transcript assembly. Analyzing 26 PacBio
datasets and using multiple evaluation methods, we quan-
tified the amount by which transcript assembly improved
the Iso-Seq results, demonstrating the advantage of long-
read transcript assembly. Adding long-read-specific opti-
mizations in Scallop-LR increases the advantage of assem-
bling long reads, thus providing benefit to transcriptome
studies.
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