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Objective: To propose Deep-GA-Net, a 3-dimensional (3D) deep learning network with 3D attention layer, for
the detection of geographic atrophy (GA) on spectral domain OCT (SD-OCT) scans, explain its decision making,
and compare it with existing methods.

Design: Deep learning model development.
Participants: Three hundred eleven participants from the Age-Related Eye Disease Study 2 Ancillary SD-

OCT Study.
Methods: A dataset of 1284 SD-OCT scans from 311 participants was used to develop Deep-GA-Net.

Cross-validation was used to evaluate Deep-GA-Net, where each testing set contained no participant from the
corresponding training set. En face heatmaps and important regions at the B-scan level were used to visualize
the outputs of Deep-GA-Net, and 3 ophthalmologists graded the presence or absence of GA in them to assess
the explainability (i.e., understandability and interpretability) of its detections.

Main Outcome Measures: Accuracy, area under receiver operating characteristic curve (AUC), area under
precision-recall curve (APR).

Results: Compared with other networks, Deep-GA-Net achieved the best metrics, with accuracy of 0.93,
AUC of 0.94, and APR of 0.91, and received the best gradings of 0.98 and 0.68 on the en face heatmap and
B-scan grading tasks, respectively.

Conclusions: Deep-GA-Net was able to detect GA accurately from SD-OCT scans. The visualizations of
Deep-GA-Net were more explainable, as suggested by 3 ophthalmologists. The code and pretrained models are
publicly available at https://github.com/ncbi/Deep-GA-Net.
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Age-related macular degeneration (AMD), the leading cause
of vision impairment and blindness in adults in industrial-
ized countries, is a degenerative disease of the retina pre-
dominantly affecting the macula.1 Geographic atrophy (GA)
is the defining lesion of the atrophic form of late AMD.2e4 It
is predicted that, by 2040, atrophic AMD will affect > 5
million people worldwide.5 The detection of GA has
important implications in both clinical practice and
research. Most cases of GA do not affect the central
macula at the onset; however, GA lesions enlarge
progressively with time. The median time to central
involvement, when visual acuity becomes severely
affected, is estimated at 3 years.2 The United States Food
and Drug Administration has recently approved the first
therapy to slow the rate of GA enlargement.6 Therefore,
early detection of GA, before the involvement of the
central macula, might provide an optimum therapeutic
ª 2023 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
window when treatments such as this could be initiated.7

Thus, rapid accurate identification of eyes with GA is an
important task.

Spectral domain OCT (SD-OCT)8 has become an
important imaging modality in ophthalmology, because it
can provide in vivo noninvasive high-resolution volumetric
(3-dimensional [3D]) images of the eye. Each SD-OCT
volumetric scan (or “cube”) consists of a series of 2-dimen-
sional (2D) grayscale imagesdthe B-scans. Detection of GA
from volumetric SD-OCT scans is considered superior than
that from 2D imaging modalities such as color fundus
photography because SD-OCT scans can provide detailed
characterization of the inner and outer retinal layers, with the
potential for quantitative assessment.3,9 Spectral domain OCT
has been proposed as the reference standard to diagnose GA,
in the form of complete retinal pigment epithelium (RPE) and
outer retinal atrophy.3 However, the detection of GA on OCT
1https://doi.org/10.1016/j.xops.2023.100311
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scans is time-consuming because of the large volume of OCT
data (i.e., many B-scans). It is also challenging because the
ophthalmologist or grader must ensure that each of several
criteria for GA is met (e.g., a region of hypertransmission of
� 250 mm in diameter in any lateral dimension and a zone of
attenuation or disruption of the RPE of � 250 mm in diam-
eter, together with overlying photoreceptor degeneration).10

Automated methods may be useful to improve the detection
of GA on SD-OCT scans.11e15

Deep learning has become the state-of-the-art method for
computer vision as well as medical image processing.16,17

Many deep learning methods for GA detection have been
proposed.15,18e30 Most of these methods require extensive
annotations, which is a very time-consuming and subjective
task. Of these methods, the Med-XAI-Net28 network uses
weak labeling of the SD-OCT scans, where only binary
labels have been provided (i.e., presence or absence of
GA at the macular cube level). This method uses
2D convolutional neural networks (CNNs) to process the
3D SD-OCT scans; features are extracted from each
B-scan individually and are then combined using attention
weights. This leads to longer processing time at testing.
Also, the 2D convolutions extract only 2D spatial features
from individual B-scans and cannot extract 3D spatial
features, so 2D convolutions are not robust and cannot
capture the order and adjacency of B-scans.

In this study, we propose the first 3D classification
network, named Deep-GA-Net, to detect GA on OCT scans.
Deep-GA-Net consists of a 3D backbone residual CNN with
a 3D loss-based attention layer. The purpose of the 3D
attention layer is to capture the context within B-scans (i.e.,
B-scan attention) as well as the context within each B-scan
(i.e., region attention). The difference between 2D networks
and 3D networks is demonstrated in Figure 1. Thus, it helps
to interpret the contribution of each voxel in determining
GA presence or absence in the OCT volume scan. We
compare Deep-GA-Net to the best performing network to
date, Med-XAI-Net, on the same dataset as described by Shi
et al.28 Also, as an ablation study, we compare Deep-GA-
Net to (1) its backbone CNN without the attention layer
and (2) its backbone CNN with a multiple-instance-learning
attention layer. We used a dataset of 1284 OCT scans from
311 participants from the Age-Related Eye Disease Study 2
(AREDS2) Ancillary SD-OCT Study. We used 10-fold
cross-validation with overlapping folds where the test fold
did not contain any participant from the training set and the
micro-average metrics were reported.
Methods

Datasets

We used data from the AREDS2 Ancillary SD-OCT study, as
described by Shi el. al.28 The details of the AREDS2 design and
protocol have been previously described.8,31 In brief, the
AREDS2 was a multicenter, phase 3, randomized controlled clin-
ical trial designed to study the effects of nutritional supplements in
people at moderate to high risk of progression to late AMD. At
baseline, the participants, aged between 50 and 85 years, had either
bilateral large drusen or large drusen in 1 eye and advanced AMD
2

in the fellow eye. At each study visit (baseline and yearly), the
participants received comprehensive eye examinations and
ophthalmic imaging performed by certified personnel using stan-
dardized protocols.

TheAREDS2SD-OCTStudy enrolledAREDS2participants from
theDevers Eye Institute, EmoryEyeCenter, DukeEyeCenter, and the
National Eye Institute. The study was approved by the institutional
review boards of the study sites and was registered at Clinical-
Trials.gov (identifier NCT00734487). The study adhered to the tenets
of the Declaration of Helsinki and complied with the Health Insurance
Portability and Accountability Act. Written informed consent was
obtained from all participants. The participants underwent imaging
using the Bioptigen Tabletop SD-OCT system at each annual study
visit.8 Spectral domain OCT scans with a volume of 6.7 � 6.7 mm
were captured (with 1000 A-scans per B-scan and 67-mm spacing
between each B-scan). The ground truth grading of the SD-OCT
scans for the presence or absence of GA was described
previously.3,32 In brief, the OCT scans were viewed using the Duke
OCT Retinal Analysis Program and were graded independently by 2
human experts, with any disagreement adjudicated by another
human expert. These grades (for the presence or absence of GA at
the level of each volume scan) provided the ground truth labels used
for training and testing purposes in this study.

The dataset consisted of 1284 SD-OCT scans from 311 par-
ticipants, such that participants contributed multiple OCT scans
from multiple study visits. This comprised 321 volume scans with
GA and 963 without GA. Similar to the approach described by Shi
et al28 to train Med-XAI-Net, we used 10-fold cross-validation
with overlapping folds, such that the test fold did not contain
any participant from the training set.

Image Preprocessing

We resized the OCT images in the AREDS2 dataset31 from 1024 �
1000 pixels to 128 � 128 pixels for graphical processing unit
memory considerations and interpolated the channel dimension
from 100 to 128, i.e., to be at a power of 2 to have proper
pooling. Thus, the final resized OCT scan size was set to 128 �
128 � 128. The whole scan values were normalized between e1
and 1. We augmented the scans during the training using random
rotation, flipping, and erasing for augmentation.

Deep-GA-Net

A high-level block diagram of the architecture of the proposed
Deep-GA-Net is shown in Figure 2. The proposed network
comprises a 3D input layer, a 3D backbone CNN, a 3D loss-
based attention layer, and a classifier. The details of Deep-GA-
Net architecture are summarized in Table S1 (available at
www.ophthalmologyscience.org). In short, the backbone CNN
contains an initial block of 2 3D convolutional layers with 64
filters followed by 3 blocks; each contains 2 3D residual
convolutional layers with filters 128, 256, and 512, respectively,
for each block. All convolution filters are of size 3 � 3 � 3.
Each block is followed by a 3D maximum pooling operation of
size 2 � 2 � 2. The classifier contains a fully connected layer of
length 256 with Rectified Linear Unit activation function and
preceded by a dropout layer with rate of 0.5. The fully
connected layer is followed by another dropout layer, then a
SoftMax layer of length 2 (i.e., binary classification). For the
attention layer, we extended the loss-based attention method in
the previously published paper by Shi et al33 to 3D settings.
Instance logits were obtained by sharing the classifier and
applying it to the instance-based convolutional features. The
auxiliary outputs were obtained by applying SoftMax layer to the
instance logits. The attention weights were derived from the
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Figure 1. The difference between the 2D and 3D approaches. With the 2D approach, each B-scan is processed individually using a shared 2D convolutional
network (CNN), region attention is performed at the 2D pixel level, and B-scan attention is performed at the axial location (i.e., point) level. With the 3D
approach, the OCT scan is processed in one go, and attention is performed at the 3D voxel level.

Elsawy et al � Deep-GA-Net for Detection of GA
instance logits using a custom layer named a-Layer (see Appendix
1 for more details). The loss functions are described in Appendix 2.

An ablation study was performed to evaluate the effectiveness
of using attention layers. For the ablation study, we developed
another 2 networks: (1) a 3D network with a backbone CNN and
classifier similar to that of Deep-GA-Net, but with the attention
layer replaced by global average pooling (GAP3D); (2) a 3D
network with a backbone CNN and classifier similar to that of
Deep-GA-Net, but with a 3D attention layer (MIL3D) derived from
the 2D multiple-instance-learning approach by Ilse et. al.34 The
attention layers were used to highlight the B-scans and B-scan
regions that contributed most to the GA classification for the
volume scan.

We also trained 2D networks (i.e., with similar architectures to
that of the 3D networks but with 3D layers replaced by 2D layers
as summarized in Table S2; available at www.ophthalmology
science.org) on the en face projections of the SD-OCT volumes
to explore the effectiveness of using 3D networks. They were
Figure 2. The architecture of the proposed Deep-GA-Net. CNN denotes the b
denotes pointwise multiplication. The size of output tensor is shown near each
named en face global average pooling 2D network (enGAP), en
face multiple-instance learning 2D network (enMIL), and en face
loss-based attention 2D network (enLBA).

For all networks, the SoftMax activation function was used to
generate the class likelihood probabilities; the binary predictions
were made using the class with the highest probability. To train
networks, we used Adam optimizer35 with learning rate of 0.0001,
batch size of 16, and maximum epoch number of 100 to avoid
overfitting (see Figure S3, available at www.ophthalmology
science.org). We used class weights to handle the imbalance in
class size in our dataset. All experiments were performed using
python 3.8 and a TensorFlow 2.3 deep learning library running
on a server with 48 Intel Xeon CPUs with 754 Gb RAM and an
NVIDIA GeForce GTX 1080 Ti 32-Gb graphical processing
unit. To train the networks, we used categorical cross-entropy loss
function, as given by equation 1 in Appendix 2. For Deep-GA-Net,
we added a term for the attention loss,33 as given by equation 2 in
Appendix 2.
ackbone 3D convolutional network, a denotes attention weights, and 1

block. The tensor sizes are enclosed between square brackets.
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Performance Evaluation and Comparison

We used accuracy, precision, recall, F1 score, kappa (k),36 area
under receiver operating characteristic curve (AUC) and area
under precision-recall curve (APR) to evaluate and compare all
networks. The 95% confidence intervals (CI) were computed for all
metrics. We evaluated the performance metrics on the 7 models:
(1) the 2D network with loss-based attention layer (Med-XAI-Net)
that was proposed by the study by Shi et al28; (2) the 2D CNN with
global average pooling (enGAP); (3) the 2D CNN with an
attention-based multiple-instance-learning layer (enMIL); (4) the
2D CNN with loss-based attention layer (enLBA); (5) the 3D CNN
with global average pooling (GAP3D); (6) the 3D CNN with an
attention-based multiple-instance-learning layer (MIL3D); and (7)
the proposed 3D CNN with loss-based attention layer (Deep-GA-
Net). We used pretrained Med-XAI-Net networks from Shi et al,28

which were trained using images with size of 224 � 224 pixels.
Our proposed networks (5e7) were trained on images with size
of 128 � 128 pixels because of memory considerations. All 2D
networks were trained on images with 224 � 224 pixels. We
compared the networks’ outputs using the 2 independent samples
test (ttest_ind) from the Scipy Python package.

Visualization of Deep-GA-Net

Gradient-weighted Class Activation Mappings37 were used to
visualize the features learned by GAP3D, MIL3D, and Deep-
GA-Net. The details are described in Appendix 3. In short, the
weighted features obtained from the Gradient-weighted Class
Activation Mappings were 3D. Therefore, to visualize and interpret
these 3D learned features, we converted them into 2D fundus
heatmaps by projecting the weighted features in the axial dimen-
sion. To determine the most relevant B-scans, we projected the
weighted features along the axial and transverse dimensions and
selected the location with maximum weight. To determine the most
relevant regions within the selected B-scans, we used the weights
corresponding to those selected B-scans. For Med-XAI-Net, we
used the attention weights to visualize the network.

Visualization Grading by Ophthalmologists

In addition, a masked test was conducted independently by 3
ophthalmologists (T.K., A.T., and S.B.) to grade the explainability
of all networks’ visualizations. A subset of 50 OCT scans labeled
with GA was selected randomly from the test set where all net-
works had the best performance. The ophthalmologists were
instructed to perform 2 tasks: to grade the heatmaps generated by
each network and to grade their detections at the B-scan level. In
the first task, the heatmaps were graded by the ophthalmologists as
positive if the heatmap corresponded well to the actual GA loca-
tion(s) on the en face image. In the second task, the B-scans were
graded as positive if the bounding box (with size of 32 � 32 pixels)
corresponded well to the actual GA location(s) on the B-scan. For
each task, the final score for each network was computed as the
average of the individual grades.

Results

Performance of Deep-GA-Net in Detecting GA

The performance metrics of Deep-GA-Net and the other 3
networks in correctly detecting GA from OCT scans are
summarized in Table 3. Deep-GA-Net achieved the best
overall performance scores over all the cross-validation
splits, where it achieved macro average performance



Figure 4. The micro-average ROC (A) and precision-recall curves (B) for all networks over all cross-validation sets. APR ¼ area under precision-recall
curve; AUC ¼ area under receiver operating characteristic curve; enGAP ¼ en face global average pooling; enLBA ¼ en face loss-based attention
network; enMIL ¼ en face multiple-instance learning network; GAP3D ¼ global average pooling; MIL3D ¼ multiple-instance-learning layer; ROC ¼
receiver operating characteristic.
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metrics of 0.93 (95% CI, 0.92e0.94), 0.90 (95% CI,
0.89e0.92), 0.90 (95% CI, 0.89e0.91), 0.80 (95% CI,
0.77e0.83), 0.94 (95% CI, 0.93e0.95), and 0.91 (95%
CI, 0.90e0.93) for accuracy, recall, F1 score, k, AUC, and
APR, respectively. For precision, it came second, with a
score of 0.90 (95% CI, 0.88e0.91). The receiver operating
characteristic and precision-recall curves are shown in
Figure 4 for all networks. The scores of Deep-GA-Net (i.e.,
except precision) were significantly different from all other
networks (P < 0.01). It had insignificant APR compared
with that of GAP3D (P ¼ 0.1048).

Explainability of the Visualizations of Deep-GA-
Net

The grading of the 3 ophthalmologists for the 2 tasks per-
formed on the 50 OCT scans labeled with GA is summa-
rized in Table 4. Deep-GA-Net achieved the best
performance in the 2 tasks, as suggested independently by
all 3 ophthalmologists.

Examples of the generated heatmaps from all networks
are shown in Figures 5 and 6. In Figure 5, the 3D networks
generated superior heatmaps to those of the Med-XAI-Net
(i.e., more meaningful to human ophthalmologists or
graders). In Figure 6, in the examples shown, Deep-GA-
Net demonstrated heatmaps that were superior to those
of GAP3D and MIL3D; on qualitative inspection, its areas
of high signal tended to correspond more closely with the
Table 4. The Grading of Ophthalm

Task Heatmaps

Method Ophth. #1 Ophth. #2 Opht

Med-XAI-Net 0.18 0.60 0.3
GAP3D 0.76 0.70 0.6
MIL3D 0.70 0.74 0.5
Deep-GA-Net 0.98 0.84 0.7

GAP3D ¼ global average pooling; MIL3D ¼ multiple-instance-learning layer.
regions of GA. The 2D networks highlighted smaller re-
gions compared with the 3D networks because they were
trained with the same network depth on larger image size,
so their receptive field (i.e., focus region) was smaller.
Examples of the detections at the B-scan level obtained
from Deep-GA-Net are shown in Figure 7 for the OCT
scan with the fundus image shown in the first row in
Figure 5.
Discussion

Main Findings and Interpretation

Deep-GA-Net achieved superior accuracy, AUC, and APR
compared with those of the other networks (see Table 3 and
Figure 4) in the detection of GA from OCT scans. Also,
Deep-GA-Net achieved the highest F1 score, which sug-
gests that it has the best balance between precision and
recall. In addition, the 3D networks achieved superior per-
formance compared with the 2D networks, which suggests
the utility of 3D networks in processing 3D volumetric OCT
scans.

On the subjective test, the manual grading by the oph-
thalmologists of the heatmaps and bounding boxes at the
B-scan level suggested that Deep-GA-Net was more
explainable, i.e., the visualizations that accompanied its
grading corresponded more closely to areas of actual GA, as
ologists on the 50 OCT Scans

Region

h. #3 Ophth. #1 Ophth. #2 Ophth. #3

4 0.26 0.11 0.09
2 0.59 0.33 0.30
6 0.50 0.42 0.33
2 0.68 0.55 0.41

Bold text denotes the highest scores.

5



Figure 5. Visualization of all networks on SD-OCT scans labeled with GA presence, which shows that all 3D networks performed better than Med-XAI-
Net. enGAP ¼ en face global average pooling; enLBA ¼ en face loss-based attention network; enMIL ¼ en face multiple-instance learning network;
GA ¼ geographic atrophy; GAP3D ¼ global average pooling; MIL3D ¼ multiple-instance-learning layer.
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determined by ophthalmologists. Overall, Deep-GA-Net
achieved superior performance compared with the other
networks in the 2 tasks (see Table 4). This also suggests that
Deep-GA-Net can be of great utility in detecting GA areas
from OCT scans.

Clinical Importance

Geographic atrophy is the defining lesion of the atrophic
form of late AMD,2e4 which is predicted to affect > 5
million people worldwide by 2040.5 Geographic atrophy
enlarges progressively with time; when central
involvement is not present at incidence, relentless
progression toward central involvement is expected within
several years, with severe effects on visual acuity.2

Because the first treatment to slow GA enlargement has
now been approved,6 and more are likely to follow in the
future, rapid, accurate detection of GA is very important
to identify individuals who may benefit. In this way,
automated approaches to GA detection could assist
ophthalmologists in clinical diagnosis and decision
making. They could also assist with clinical trials, both in
identifying individuals with GA for potential recruitment
and in helping detect GA as an outcome measure.

Comparison with Literature

Many automated methods for the detection of GA have been
proposed using fundus autofluorescence images,20 color
fundus photos,15 and SD-OCT scans.18,19,21e30 Most of
these methods are segmentation-based and require extensive
annotations in 2D or 3D, which are laborious and time-
6

consuming tasks. The feasibility of annotation depends on
many factors, including the level of annotation (i.e., image
level, en face level, or scan level), the number of examples
in the dataset, the image quality, which affects the bound-
aries of GA area, and the agreement on how GA appears on
the imaging modality (e.g., GA is difficult to highlight on en
face projections). In this study, we focus on deep learning
work performed on SD-OCT scans. Hu et al,25 Chen et al,26

and Niu et al27 segmented the choroidal region to create an
enhanced fundus image for GA detection. Xu et al23 trained
a deep neural network (DNN) to detect GA at the A-scan
level, then used an autoencoder to generate a GA map
based on the detected A-scans. This approach required
manual segmentation of GA area on the fundus projection
of the SD-OCT scans to label each A-scan based on the
segmentation. Ji et al24 trained many DNNs to detect GA
at the A-scan level from the input SD-OCT scan. The
output of each DNN was a binary map that showed the
GA area. Binary maps from all DNNs were combined
using a voting scheme. This approach required manual
delineation of the GA boundaries at the B-scan level for
some OCT scans. Also, it required manual segmentation
of GA area on fundus autofluorescence images, which
were then registered to the fundus projection of the OCT
scans to label the A-scans. Zhang et al29 used a 2D
segmentation U-Net to detect the horizontal extent of RPE
loss, overlying photoreceptor degeneration, and
hypertransmission from the input B-scan. Then, a binary
map of GA area was obtained based on these segmented
features. This approach required the demarcation of the
horizontal extent of RPE loss, overlying photoreceptor



Figure 6. Visualization of all networks on SD-OCT scans labeled with GA presence, which shows that Deep-GA-Net performed better than other net-
works. GA¼ geographic atrophy; SD ¼ spectral density; enGAP¼ en face global average pooling; enLBA¼ en face loss-based attention network; enMIL¼
en face multiple-instance learning network; GA ¼ geographic atrophy; GAP3D ¼ global average pooling; MIL3D ¼ multiple-instance-learning layer.
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degeneration, and hypertransmission. Xu et al21 used a 3D
segmentation CNN to segment GA in 3D where this
approach required creating 3D segmentation data. Shi
et al28 used a 2D shared backbone CNN to extract
features from one B-scan at a time. Then, the extracted
features were combined using 2 attention layers: B-scan
attention layer and region attention layer. This approach
achieved superior performance compared with other
approaches, using weak labels for the whole SD-OCT
scan (i.e., 1 binary label). However, this approach requires
a large time at testing because of processing each B-scan
individually. Also, it does account for the relationship
between the B-scans.

In this study, we proposed Deep-GA-Net, a 3D classifi-
cation CNN, to overcome the limitations in the study by Shi
et al.28 Training and evaluation was performed using a large
Figure 7. Examples of the highlighted B-scans by Deep-GA-Net for the OCT
mapped a 2 � 2 pixel window of maximum score from the final 8 � 8 heatmap t
224 � 224 pixels.
multicenter dataset obtained and curated from the AREDS2
Ancillary SD-OCT study. Deep-GA-Net consists of a 3D
backbone residual CNN with a loss-based attention layer. We
compared Deep-GA-Net to the Med-XAI-Net28 on the same
dataset. Also, we compared Deep-GA-Net to other 3D
baseline networks and 2D networks trained on en face im-
ages. Comparison with other methods was not feasible
because of the lack of annotations. All 3D CNNs out-
performed the 2D CNN in Shi et al28 as well as the 2D en
face networks. In particular, Deep-GA-Net significantly out-
performed all networks. The visualizations of all networks
were graded by 3 ophthalmologists, and their gradings sug-
gested that 3D CNNs generated better GA detections than
those of the 2D CNN, with Deep-GA-Net performing the
best. This suggests that Deep-GA-Net could detect GA with
better accuracy and more interpretable visualizations.
scans with en face image shown in the first row in Figure 3. For clarity, we
o a bounding box with size of 56 � 56 pixels on a B-scan image with size of
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Strengths, Limitations, and Future Work

The strengths of this work include the use of a large
multicenter dataset curated from the AREDS2, which rep-
resents an ideal dataset for training and testing. Also, the
strengths include detection of GA from volumetric OCT
scans with high accuracy as well as proposing and gener-
ating heatmaps that can provide interpretable decisions, as
suggested by the subjective test.

The limitations of this work include using SD-OCT scans
with relatively small size, because of memory limitations.
The GA hyperreflectivity appeared as quite large areas on
individual SD-OCT images. Therefore, GA detection was
feasible using SD-OCT scans with small size. However, the
detection of subtle features might be challenging. Another
limitation is that changing the input size would require a
new network design, so the input/network relationship needs
to be studied further. Moreover, GA detection is explained
by the generated heatmaps without precise demarcation or
quantification of the GA area, because area measurements
8

are not available in the OCT dataset (i.e., the network was
not trained to measure the GA area).

Conclusions

In conclusion, we proposed Deep-GA-Net, a 3D con-
volutional neural network with an attention layer, for the
detection of GA on SD-OCT scans. Deep-GA-Net was
able to detect GA from OCT scans with high accuracy,
compared with other networks. The visualizations of
Deep-GA-Net were more explainable, compared with
those of other networks, as suggested by 3 ophthalmolo-
gists. The visualizations could show 2D heatmaps of GA
areas in the fundus projection as well as detect the
hypertransmission areas related to GA at the B-scan level.
The code and pretrained models will be publicly available
at https://github.com/ncbi/Deep-GA-Net for the trans-
parency and reproducibility of this study work and to
provide a benchmark for further studies.
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