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Abstract: Concrete carbonation is known as a stochastic process. Its uncertainties mainly result
from parameters that are not considered in prediction models. Parameter selection, therefore, is
important. In this paper, based on 8204 sets of data, statistical methods and machine learning
techniques were applied to choose appropriate influence factors in terms of three aspects: (1) the
correlation between factors and concrete carbonation; (2) factors’ influence on the uncertainties of
carbonation depth; and (3) the correlation between factors. Both single parameters and parameter
groups were evaluated quantitatively. The results showed that compressive strength had the highest
correlation with carbonation depth and that using the aggregate–cement ratio as the parameter
significantly reduced the dispersion of carbonation depth to a low level. Machine learning models
manifested that selected parameter groups had a large potential in improving the performance of
models with fewer parameters. This paper also developed machine learning carbonation models and
simplified them to propose a practical model. The results showed that this concise model had a high
accuracy on both accelerated and natural carbonation test datasets. For natural carbonation datasets,
the mean absolute error of the practical model was 1.56 mm.

Keywords: concrete carbonation; data mining; feature selection; machine learning; carbonation model

1. Introduction

It is a well-known fact that carbonation does not normally cause damage to concrete
directly [1]. However, the chemical reaction slowly destroys the alkalinity environment.
CO2 diffuses into the concrete through interconnected pores and reacts with calcium
hydroxide (CH) and hydrated calcium silicate (C-S-H) [2,3]. Consequently, it destroys the
passive oxide layer of the rebar and ultimately initiates corrosion [4].

Many models, including theoretical formulas [5,6], numerical models [7–9], and ma-
chine learning models [10,11], have been developed over the last few decades to evaluate
the carbonation status of concrete. Parameter research plays an important role in the
modeling process. Previous parameter research focused on the mechanism of influence
factors. Many experimental tests [12–15] have been performed to qualitatively analyze the
effects that factors have on concrete carbonation and investigate the mechanism in terms of
chemical reactions.

For example, Papadakis et al. [16] suggested that replacing cement with fly ash would
increase the porosity, while replacing aggregate with fly ash would decrease the porosity.
Experiments in [17–19] suggest that replacing cement with silica fume reduces porosity since
silica fume has very fine particles and a high amorphous silicon dioxide content. Large
amounts of active alumina and amorphous SiO2 in fly ash consume the CH, but the ferrous
phase in crystalline form does not participate in the pozzolanic reactions [16]. Qiang et al. [20]
pointed out that steel slag had a weak reactivity. Han et al. [21] further pointed out that the
main active components in steel slag were only C2S and C3S. Li et al. [22] demonstrated that
the compressive strength, porosity, and permeability of concrete changed significantly during
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carbonation. Jiang et al. [23] explored the influence of various binder types and geometrical
parameters (i.e., concrete cover thickness) on concrete carbonation and steel corrosion. The
effects of supplementary cementitious materials and environmental factors such as relative
humidity have been studied by many experimental tests [24,25].

However, present carbonation models have not involved enough work on parameter
research. Some models choose parameters subjectively. For example, some empirical
models take the water–cement ratio as the main parameter, while others choose concrete
strength, but few studies can explain the reasons quantitatively. Currently, judging whether
or not a variate can affect concrete carbonation is easy, but putting all possible factors in a
model is also superfluous. Therefore, it is important to quantitatively analyze these factors.

Moreover, in terms of concrete mix design, quantitative parameter research is also
necessary, since standards are needed for specifying the limitation of several indicators
to control the durability of concrete. For instance, the new European Standard EN 206-1
specifies the minimum binder content and maximum water–binder ratio to guarantee
the performance of concrete [26]; Chinese code GB 50010-2010 specifies the maximum
water–binder ratio and the minimum strength level.

The residual of carbonation models and the uncertainties in controlling the durability
mainly result from factors that are not considered in models and concrete mix design.
These uncertainties can be decreased by selecting appropriate parameters. For example,
Figure 1 illustrates how parameter selection affects the residual of models. The dataset
was generated by y = ex1+x2 . The model in Figure 1b has the best performance as it has
the smallest residuals. Moreover, it is better to use x1×2 (Figure 1d) rather than x1 or x2
(Figure 1a,c) to establish a model, as the former can significantly reduce the uncertainty of
the prediction. Therefore, it is important to find appropriate parameters in modeling.
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Quantitative analysis requires a large amount of test data, which is difficult to find
in previous studies. In this project, many studies were consulted and a dataset including
8204 samples was established. Statistical methods were used for data-driven analysis, as
well as machine learning techniques. This paper quantitatively studied influence factors
in terms of three aspects: (1) the correlation between factors and concrete carbonation;
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(2) factors’ influence on the fluctuation of carbonation depth; and (3) the correlation between
factors, which reflects the redundancy [27]. A total of 29 material-related parameters were
involved. Then, we selected some parameter groups in terms of these three aspects and
developed several machine learning models to verify the effectiveness. After that, one
machine learning model involving a few factors was established and a practical model
was proposed by simplifying it. The effectiveness of the practical model was verified via
accelerated and natural carbonation datasets.

2. Data-Driven Parameter Selection
2.1. Data Collection and Description

It is necessary first to provide a concise introduction to the dataset. To make the results
more reliable, 8204 sets of data, including 161 papers in Web of Science, CNKI, and WAN
FANG DATA, were collected in this paper, as shown in Table 1. All concrete samples used in
this study were cured for 28 days before the accelerated carbonation tests, and carbonation
depth was determined by phenolphthalein. The experimental environment conditions of
all the referred studies were constant. Generally, empirical models based on accelerated
carbonation datasets are not appropriate for predicting actual concrete carbonation as they
are often obtained under a high CO2 concentration. However, in terms of the relationship
between factors and carbonation depth, accelerated carbonation tests are still appropriate. It
is noted that the degree of the correlation is important in this part, regardless of whether this
influence is positive or negative for carbonation. This implies that short-term accelerated
carbonation datasets can work in this research, as some parameters such as fly ash develop
a significant proportion of concrete’s strength and durability after 28 days. Parameters
pi
(
i = C, S, A, F, or S, i.e., CaO, SiO2, Al2O3, Fe2O3, or SO3

)
can be calculated by:

pi = ∑ pi,k·pk + ∑ pi,Cemj·pCemj (1)

where pi is the weight of i used per unit volume of concrete; pk is the weight of material
k (k = FA, FS, SA, or SS, i.e., fly ash, furnace slag, silica ash, or steel slag) used per unit
volume of concrete; pi,k is the content of i in material k; pCemj is the weight of cement of
class j; pi,Cemj is the content of i in class j cement, as is explained in Table 1. In addition,
furnace slag and fly ash were classified by their fineness and specific surface area according
to ground granulated blast-furnace slag used for cement, mortar, and concrete GB/T 18046-
2017 and fly ash used for cement and concrete GB/T 1596-2017, respectively. Table 1
exhibits detailed information about the dataset.

Table 1. Details of the dataset.

Factors Unit Histogram Min Max Mean Valid Explanation

pCem kg/m3
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Weight of furnace slag used per unit volume of con-

crete 

80 456 176 7351 Weight of water used per unit volume
of concrete
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2.2. Parameter Evaluation and Selection

Parameter selection is always a hot topic in data science, and it has recently been
applied in civil engineering. Some studies [28,29] adopted conventional parameter selection
methods for solving energy issues in buildings. Conventional selection methods aim to
remove irrelevant and redundant information from the dataset according to two criteria:
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the correlation between the parameters and the object (i.e., remove irrelevant information),
and the correlation between the parameters (i.e., find redundant information) [30].

Correlation analysis methods mainly include Pearson’s correlation coefficient, Spear-
man’s correlation coefficient, Kendall’s correlation coefficient, maximal information coeffi-
cient (MIC) [31,32], etc. Selection methods based on them are called filter methods [33]. In
addition, wrappers and embedded methods are also widely used for selection [27]. Deci-
sion trees, naive Bayes, and support vector machines [34,35] are several popular predictors.
For these predictors, the criterion essentially depends on the loss function of the predictors.
The selection of approaches for correlation analyses is based on the statistical characteristics
of data and the target of the study.

In terms of statistics, the dataset used in this study was not appropriate for some
methods, which require the dataset to comply with the Gaussian distribution. In addition,
some new attributes should be included:

• Parameter performance in controlling and predicting the durability of concrete under
the impact of uncertainties of carbonation depth needs to be evaluated.

• Parameters should reduce the dispersion of carbonation depth.

2.2.1. Method

Except for the correlation analysis, a quantitative analysis of a parameter’s effects on
the dispersion of carbonation depth is needed.

For the first aspect, CORRk was used to denote the correlation between parameter
k and carbonation depth. A high CORRk represented a strong correlation. Spearman’s
correlation coefficient, Pearson’s correlation coefficient, and Kendall’s correlation coefficient
are common correlation analysis indices. Spearman’s correlation coefficient and Kendall’s
correlation coefficient are copula-based random variable dependency measurement indices.
Compared with Pearson’s correlation coefficient, they do not require that datasets conform
to a special distribution. Generally, Spearman’s correlation coefficient is the Pearson
correlation coefficient calculated from the vectors of ranks [36]. The Pearson correlation
coefficient of vectors X and Y can be calculated by [33]:

ρ(X, Y) =
1

N − 1 ∑N
i=1

( Xi − X√
1

(N−1) ∑N
j=1
(
Xj − X

)2

)( Yi −Y√
1

(N−1) ∑N
j=1
(
Yj −Y

)2

)
(2)

where N is the number of samples and X is the average value. Then, the Spearman
correlation coefficient of vectors X and Y can be calculated by replacing the values in each
vector with their ranks.

For the second aspect, VARRk depicted k’s effect on the dispersion of carbonation
depth. The uncertainties of an observed value such as carbonation depth are usually
described by its variance. A high variance means a large dispersion; predicting the carbon-
ation depth with its average value is thus unreliable. Therefore, VARRk was defined as the
reduction degree of uncertainties of the observed carbonation depth data after parameter k
was used, which can be written as:

VARRk =
Var− Ṽark

Var
(3)

where Var represents the standard deviation of carbonation depth x when no parameter is
considered. If the usage of parameter k does not affect the dispersion of carbonation depth, Var
will be equal to Ṽark and VARR will be equal to zero. Var can be obtained by Equation (4):

Var =

√
1

(N − 1) ∑N
i=1

(
Xi − X

)2 (4)
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where N is the number of samples in the original dataset D, Xi is the carbonation depth of
the ith sample, and X is the average value. The uncertainties of x after adopting parameter
k can be obtained by Equation (5):

Ṽark = ∑t
i=1

Ni
N

Ṽari,k (5)

where Ṽari,k denotes the standard deviation of x at k = ki and ki is one of the values of
k. Ni is the number of samples at k = ki. Assume the dataset including Ni samples named
Di, and Ni/N represents the weight of Di. Suppose that k has t values (k = k1, k2, . . . , kt),
and Ṽari,k can be calculated by Equation (6):

Ṽari,k =

√
1

(N − 1) ∑Ni
j=1

(
Xij − Xi

)2, (i = 1, . . . , t) (6)

where Xij is the carbonation depth of the jth sample in Di and Xi is the mean of x in Di.
According to Equation (6), if k does not affect the distribution of carbonation depth, D and
Di have the same distribution (i.e., Var = Ṽari,k). This can be verified by linking an irrele-
vant variate k′ produced by random sampling to carbonation depth, and calculating the
value of Ṽari,k′ . Therefore, the importance of parameter k can be evaluated by Equation (7):

Ik =
VARRk

maxVARR
· CORRk
maxCORR

(7)

where Ik is the importance coefficient of parameter k, maxVARR is the max value of VARR,
and maxCORR is the max value of CORR. As shown in Equation (7), parameters that have
a weak correlation with carbonation or that do not reduce the uncertainties will make Ik be
equal to zero.

In addition, it is noted that there is still one possible issue in the calculation of Ṽari,k:
Ṽari,k’s sensitivity to the outlier. This was handled by identifying and excluding outliers.
IQR is a common index for finding outliers in statistics. IQR can be calculated by:

IQR = Q3 −Q1 (8)

where Q1 is the 25th percentile and Q3 is the 75th percentile. Moreover, x is considered an
outlier if it meets:

x〈 Q1 − 1.5(IQR) or x〉 Q3 + 1.5(IQR) (9)

Deleting outliers changes the dataset used for calculating VARRk. To maintain the
consistency of the dataset, the calculation of CORRk and VARRk used the same dataset. In
addition, to improve the stability of evaluation results, the original dataset, D, was split
into three child datasets Dl (l = 1, 2, 3). Simple random sampling without replacement
was used for splitting. For dataset Dl , about 2000~2600 sets of valid data were included in
it. The final results of the evaluation are the mean of the results of the three child datasets,
as shown in Figure 2.
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2.2.2. Results and Discussions

Based on the above discussions, for parameter k, its CORRk, VARRk and Ik can be
calculated, as shown in Figure 3. It is noted that these parameters can be divided into
three parts (Parts A, B, and C) by the blue and red dash lines according to their Ik. The
compressive strength f was most important in comparison with other factors. In addition,
Figure 3 exhibits the CORRk and VARRk of the parameters. The compressive strength f had
the highest CORRk and a high VARRk, which implied that its correlation with carbonation
depth was the highest and that it could also largely reduce the uncertainty of carbonation
depth. The aggregate–cement ratio pa/pCem had the highest VARRk and could thus reduce
the uncertainty to the lowest value, while it only had a medium CORRk.

Materials 2022, 15, x FOR PEER REVIEW 7 of 18 
 

 

2.2.2. Results and Discussions 
Based on the above discussions, for parameter 𝑘, its 𝐶𝑂𝑅𝑅௞, 𝑉𝐴𝑅𝑅௞ and 𝐼௞ can be 

calculated, as shown in Figure 3. It is noted that these parameters can be divided into three 
parts (Parts A, B, and C) by the blue and red dash lines according to their 𝐼௞. The com-
pressive strength f was most important in comparison with other factors. In addition, Fig-
ure 3 exhibits the 𝐶𝑂𝑅𝑅௞ and 𝑉𝐴𝑅𝑅௞ of the parameters. The compressive strength f had 
the highest 𝐶𝑂𝑅𝑅௞ and a high 𝑉𝐴𝑅𝑅௞, which implied that its correlation with carbona-
tion depth was the highest and that it could also largely reduce the uncertainty of carbon-
ation depth. The aggregate–cement ratio 𝑝௔/𝑝஼௘௠ had the highest 𝑉𝐴𝑅𝑅௞ and could thus 
reduce the uncertainty to the lowest value, while it only had a medium 𝐶𝑂𝑅𝑅௞.  

The parameters in Part A had a high 𝐼௞  and also had a high 𝐶𝑂𝑅𝑅௞  and 𝑉𝐴𝑅𝑅௞ 
(Figure 3). In Part B, parameters that had a high 𝐶𝑂𝑅𝑅௞ usually had a low 𝑉𝐴𝑅𝑅௞, which 
implied that indices 𝐶𝑂𝑅𝑅௞ and 𝑉𝐴𝑅𝑅௞ revealed different aspects of the influence of the 
factors. 

 
Figure 3. Analysis results of each factor. 

In terms of mechanism, it is easy to understand that the compressive strength f had 
the highest 𝐶𝑂𝑅𝑅௞. For example, Papadakis et al. [37] proposed a function to calculate the 
compressive strength of fly ash concrete in terms of chemical reactions: 

𝑓 = 38.8 ൥௣಴೐೘ାయ೛ಷಲమ೛ಳ ൬ଵିబ.ఱ೛ೈ೛಴೐೘ ൰௣ೈ − 0.5൩  (10) 

Equation (10) shows that the water content 𝑝ௐ is negative in relation to the concrete 
strength f. Moreover, 𝑝ௐ is negative in relation to carbonation depth. Further, it is be-
lieved that the effects of 𝑝ௐ on porosity are also the main reason for its influence on f. In 
addition, Equation (10) also demonstrates that replacing cement with fly ash (assume 𝑝஻ 
is a constant) causes a low strength, but replacing the aggregate with fly ash (𝑝஻ is not a 
constant) increases the strength. This might not comply with some situations as fly ash 
mainly affects the early strength. Fly ash and other supplementary cementitious materials 
also have a similar correlation with carbonation depth. In sum, compressive strength f 
shows a strong uniformity with carbonation depth 𝑥.  

The results also showed that 𝑝௔/𝑝஼௘௠ had the highest 𝑉𝐴𝑅𝑅௞. The performance of 
the aggregate–cement ratio 𝑝௔/𝑝஼௘௠  in reducing the uncertainty of carbonation depth 

0.0

0.2

0.4

0.6

0.8

1.0
 VARRk
 CORRk
 Ik/Imax

p S
dp Bf

p a
/p
C
em p C

p C
em

p a
/p
B p a

p W
/p
C
em

p W
/p
B

p F
A/
p B

p F
S/p

B

p S
S/p

B

p S
A/
p B

p S
d/p

a p Ap F p S
A

p S
P

p F
Sp Sp F
A

p W p Gp S
 ̅

p S
S

FA
_C
L

FS
_C
L

f C
em

Part A

Part B

Part C

Figure 3. Analysis results of each factor.

The parameters in Part A had a high Ik and also had a high CORRk and VARRk
(Figure 3). In Part B, parameters that had a high CORRk usually had a low VARRk, which
implied that indices CORRk and VARRk revealed different aspects of the influence of
the factors.

In terms of mechanism, it is easy to understand that the compressive strength f had
the highest CORRk. For example, Papadakis et al. [37] proposed a function to calculate the
compressive strength of fly ash concrete in terms of chemical reactions:

f = 38.8

 pCem + 3pFA
2pB

(
1− 0.5pW

pCem

)
pW

− 0.5

 (10)

Equation (10) shows that the water content pW is negative in relation to the concrete
strength f. Moreover, pW is negative in relation to carbonation depth. Further, it is believed
that the effects of pW on porosity are also the main reason for its influence on f. In addition,
Equation (10) also demonstrates that replacing cement with fly ash (assume pB is a constant)
causes a low strength, but replacing the aggregate with fly ash (pB is not a constant)
increases the strength. This might not comply with some situations as fly ash mainly affects
the early strength. Fly ash and other supplementary cementitious materials also have a
similar correlation with carbonation depth. In sum, compressive strength f shows a strong
uniformity with carbonation depth x.

The results also showed that pa/pCem had the highest VARRk. The performance of
the aggregate–cement ratio pa/pCem in reducing the uncertainty of carbonation depth
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mainly resulted from two aspects: its influence on the distribution of carbonation depth
and the number of its values. However, only increasing the number of values cannot
reduce dispersion.

3. Parameter Combinations and Verification
3.1. Evaluation of Factor Groups

This part aims to provide some combinations for developing prediction models and
concrete mix design. Although Section 2 provides the evaluation results of single factors,
combinations should make a further selection, since some parameters have high Ik simply
because they share the same attribute. For example, CaO content, cement content, and
binder content all have high Ik since they all reflect the content of reactants such as Ca(OH)2;
i.e., they are interrelated. Groups containing interrelated parameters will have much
redundant information [27]. Table 2 provides a reference for evaluating the relationship
between parameters.

Table 2. Spearman’s correlation coefficient of top parameters.

pW /pB pB pW pCem pW /pCem pFA pS pC pS f pFA/pB pSd pG pa pa/pB pa /pCem

pW /pB 1 −0.69 0.47 −0.22 0.4 −0.16 −0.54 −0.35 −0.47 −0.47 −0.1 0.29 0.29 0.51 0.66 0.28
pB −0.69 1 0.22 0.43 −0.26 0.19 0.75 0.61 0.76 0.49 0.09 −0.5 −0.3 −0.7 −0.98 −0.52
pW 0.47 0.22 1 0.19 0.22 0.03 0.15 0.21 0.23 −0.15 −0.01 −0.18 −0.05 −0.19 −0.21 −0.21

pCem −0.22 0.43 0.19 1 −0.87 −0.44 −0.15 0.89 0.84 0.25 −0.5 −0.33 0.01 −0.27 −0.44 −0.99
pW /pCem 0.4 −0.26 0.22 −0.87 1 0.46 0.28 −0.73 −0.66 −0.3 0.49 0.23 0 0.2 0.28 0.86

pFA −0.16 0.19 0.03 −0.44 0.46 1 0.69 −0.53 −0.32 −0.05 0.99 −0.03 −0.24 −0.25 −0.18 0.37
pS −0.54 0.75 0.15 −0.15 0.28 0.69 1 0 0.22 0.32 0.61 −0.33 −0.34 −0.58 −0.74 0.07
pC −0.35 0.61 0.21 0.89 −0.73 −0.53 0 1 0.95 0.39 −0.61 −0.36 −0.05 −0.33 −0.59 −0.89
pS −0.47 0.76 0.23 0.84 −0.66 −0.32 0.22 0.95 1 0.42 −0.42 −0.42 −0.14 −0.46 −0.74 −0.86
f −0.47 0.49 −0.15 0.25 −0.3 −0.05 0.32 0.39 0.42 1 −0.11 −0.2 0 −0.2 −0.42 −0.27

pFA/pB −0.1 0.09 −0.01 −0.5 0.49 0.99 0.61 −0.61 −0.42 −0.11 1 0.01 −0.2 −0.18 −0.08 0.44
pSd 0.29 −0.5 −0.18 −0.33 0.23 −0.03 −0.33 −0.36 −0.42 −0.2 0.01 1 −0.22 0.65 0.56 0.4
pG 0.29 −0.3 −0.05 0.01 0 −0.24 −0.34 −0.05 −0.14 0 −0.2 −0.22 1 0.51 0.36 0.06
pa 0.51 −0.7 −0.19 −0.27 0.2 −0.25 −0.58 −0.33 −0.46 −0.2 −0.18 0.65 0.51 1 0.8 0.39

pa/pB 0.66 −0.98 −0.21 −0.44 0.28 −0.18 −0.74 −0.59 −0.74 −0.42 −0.08 0.56 0.36 0.8 1 0.52
pa /pCem 0.28 −0.52 −0.21 −0.99 0.86 0.37 0.07 −0.89 −0.86 −0.27 0.44 0.4 0.06 0.39 0.52 1

As the correlation between factors reflects the possibility that one factor can be replaced
by others and Ik denotes the importance, the performance of different factor groups can be
estimated through the following steps:

1. Determine the number of parameters included in the group;
2. Assume that one group consists of m factors, sort all factors from largest to smallest

according to their Ik, and calculate Sm;

Sm = ∑m
i=1 Ri·Ii (11)

where Ri implies the possibility that factor i cannot be replaced by previous factors
and Ii denotes the Ik of factor i. Ri can be calculated by:

Ri = ∑i−1
j=1 Rj·

(
1−

∣∣ri,j
∣∣)·H (12)

where ri,j denotes Spearman’s correlation coefficient between i and j, and H is used to
make sure that 1−

∣∣ri,j
∣∣ ≥ 0; i.e., if 1 <

∣∣ri,j
∣∣, H = 0; otherwise, H = 1. It is noted that

R1 should be equal to one.
3. Sort all groups from largest to smallest according to their Sm.

As shown in Table 3, several combinations were provided and groups containing
the same number of factors have similar Sm. In the next part, this paper discusses the
effectiveness of these combinations via machine learning methods.

3.2. Validation of Suggested Parameters

To verify the validity of the parameter combinations listed in Table 3, machine learning
(ML) methods were used in this section. It is noted that environmental factors such as
temperature were also included in machine learning models.
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Table 3. Parameter groups.

Number of Factors No. Groups

3 factors
3-1 f , pa/pCem, pW
3-2 f , pa/pCem, pSd
3-3 f , pa/pCem, pa

4 factors
4-1 f , pa/pCem, pa, pw
4-2 f , pa/pCem, pa, pFA
4-3 f , pa/pCem, pa, pFA/pB

5 factors
5-1 f , pa/pCem, pa, pw, pFA
5-2 f , pa/pCem, pa, pw, pSd

To improve the reliability, three ML approaches were used: support vector regres-
sion (SVR), XGboost, and deep neural networks (DNN). Current ML techniques combine
datasets and algorithms to find the relationship between parameters and the target. Once
appropriate parameters are selected, models usually have very a high accuracy [38]. There-
fore, ML models were used in this study to investigate whether or not the suggested
combinations had significant advantages in predicting carbonation depth. Considering that
readers might be unfamiliar with these ML methods, some brief introductions were given.

3.2.1. ML Methods

Conventional regression or fitting algorithms such as linear regression first assume a
formula with undetermined coefficients. For example, x′ = w·t + b. Then, this approach
uses optimization algorithms to adjust the values of undetermined coefficients (w and b)
to reduce the error between the true carbonation depth x and the predicted value x′ (e.g.,
minimize loss = (x− x′)2) to the minimum. These methods generate linear models. For
complex issues, researchers need to guess the basic form of fitted curves.

SVR uses the kernel function K(t1·t2) = φ(t1)·φ(t2) to convert a low-dimensional
space into a high-dimensional space [38]. Therefore, nonlinear curves in the low-dimensional
space can be fitted by a hyperplane. In addition, the loss function SVR used has high ro-
bustness due to the addition of relaxation coefficient ε. If the gap between x and x′ is lower
than ε, the error is ignored. Detailed discussions and tutorials of SVR can be found in [39].
The expression can be written as:

x′ = w·φ(t) + b (13)

where w = ([â]− [a])·φ(t̂). t̂ is the vector of the parameters of the dataset; [â] and [a] are
the diagonal matrices of undetermined coefficients. φ(t̂)·φ(t) denotes the kernel function.
In this study, the radial basis kernel function K(t1·t2) = e−γ(t1−t2)

2
was used. For the

widely noted overfitting problem in ML models, SVR also has one important characteristic:
‖w2‖ in its regularized risk function can help it avoid overfitting.

Different from SVR, XGboost is one kind of boosting algorithm [40]. XGboost first
develops a weak regression model. For example, in this paper, the regression tree model
F0(t) was used. Then, the next weak model F1(t) is built to reduce the error between x
and x′ of the tree model. This step cycles many times, and for the mth time, the predicted
carbonation depth x′ is:

x′m(t) = x′m−1(t) + αmFm(t) (14)

Mean square error (MSE) was used to evaluate the error between x and x′, and MSE
can be calculated by:

MSE
(
x, x′

)
=

1
N ∑N−1

i=0

(
xi − x′i

)2 (15)

To avoid overfitting, the regularization item L2 was used in the training of the XGboost
models. Detailed information on XGboost is listed in [40].
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DNN is similar to the human nervous system, composed of many neurons. Those
neurons are stored in different layers and neurons in different layers are connected. Every
neuron in the neural network receives signals from neurons that are linked to it. Processed
by the activation function in the neuron, signals are passed to later neurons, as shown in
Figure 4. The hyperbolic tangent activation function was used in this study. DNN can
simulate the most complex function due to the combination of many neurons and the
process of the activation function [41]. Figure 5 shows the structure of a DNN with six
parameters. To avoid overfitting, the dropout approach was used [42]. Dropout randomly
makes some neurons invalid at a probability of p during each period of training, and all
neurons are used for final models. Of course, to maintain the scale of the predicted value,
the weight of the neurons in the final models will multiply p. In this study, p = 0.3, meaning
that, for each layer, 30% of the neurons were randomly set as invalid during each period of
training. In addition, the regularization item L2 was also used to avoid overfitting.
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3.2.2. Verification and Discussions

In this part, 1825 sets of data were used for verification. For each group, ML models
were built to compute the MSE of given combinations. Combinations with low MSE were
believed to be effective. To improve the stability, five-fold cross-validation was used. The
dataset was evenly divided into five subsets. Four subsets were used to train a model and
one subset was used to test the model. This process cycles five times and uses different
subsets as the testing data each time. The final results were based on the mean results
of five models, as is shown in Figure 6. In addition, data normalization was used for
preprocessing. Table 4 shows the MSE results of the models. As is shown in Table 4, Group
17-1 used all parameters. Parameters in Group 5-3 reflected the mix design of concrete.
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Table 4. Verification of combinations.

No. Groups SVR-MSE XGB-MSE DNN-MSE

3-1 [CO2], RH, T, t, f , pa/pCem, pW 21.62 14.04 18.68
3-2 [CO2], RH, T, t, f , pa/pCem, pSd 22.64 15.46 17.85
3-3 [CO2], RH, T, t, f , pa/pCem, pa 20.96 14.20 16.62
4-1 [CO2], RH, T, t, f , pa/pCem, pa, pw 19.41 12.01 15.16
4-2 [CO2], RH, T, t, f , pa/pCem, pa, pFA 20.11 13.09 17.01
4-3 [CO2], RH, T, t, f , pa/pCem, pa, pFA/pB 20.89 13.33 16.21
5-1 [CO2], RH, T, t, f , pa/pCem, pa, pw, pFA 19.36 12.16 12.77
5-2 [CO2], RH, T, t, f , pa/pCem, pa, pw, pSd 18.70 11.01 14.39
5-3 [CO2], RH, T, t, pCem, pW , pFA, pG, pSd 42.37 17.67 42.27
17-1 [CO2], RH, T, t, all parameters in Table 2 17.48 11.61 14.05

For groups listed in Table 3, results showed that the MSE of models decreased with the
addition of new parameters. However, with the appending of new parameters, this effect
declined. Compared with Group 17-1, Groups 5-1 and 5-2 had similar MSEs. In this study,
five parameters can finely approximate the performance of all parameters. Furthermore,
as using too many parameters would increase the complexity of the models, Group 5-2
showed a better accuracy than Group 17-1. Compared with Group 5-3, which reflected the
mix design of concrete, Groups 3-1~3-3 showed a similar accuracy. All ML models showed
that the method proposed in this paper can choose appropriate parameters and reduce the
demand for the number of parameters.

4. Practical Carbonation Models for Existing Concrete Structures

In previous sections, factor groups were proposed and several ML models were
developed. For existing concrete structures, it is very difficult to obtain parameters, as
some original design information may be unavailable. According to Sections 2 and 3,
this paper developed a prediction model containing necessary environmental factors and
two concrete-related factors (compressive strength and aggregate–cement ratio) via neural
network methods.

Neural network methods and the settings of the models were discussed in Section 3.2.
This model included six input parameters (humidity, temperature, the concentration of CO2,
compressive strength, aggregate–cement ratio, and time), four hidden layers containing
25 units in each layer, and one output value (Figure 5). The dataset used for training and
testing was the dataset described in Table 1. A total of 90% of the dataset was used for
training and 10% was used for testing the model. It is noted that the concentration of CO2
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ranged from 1% to 50%, the temperature ranged from 10 ◦C to 60 ◦C, the relative humidity
ranged from 35% to 95%, and the carbonation time ranged from 1 day to 364 days. The
results are shown in Figure 7. Most points were located in the blue area (±2.65 mm), and
the mean error was 2.5 mm. It is not necessary to compare ML models with other empirical
models or theoretical models, as ML models always perform better on the testing dataset,
as has been demonstrated by many studies [43,44].
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Figure 7. Illustration of 5-fold cross-validation.

To make the model more convenient, this part also aims to propose a practical model
for the carbonation prediction of existing structures based on the ML model.

4.1. Establishment of the Practical Model

According to the ML model, six parameters were used to predict the carbonation
depth; the function of the practical model can thus be written as:

x = f1(RH) f2(T) f3([CO2]) f4( f , a/c)
√

t (16)

where RH is the relative humidity, T denotes the temperature, [CO2] is the concentration
of CO2, f is the compressive strength, a/c denotes the aggregate–cement ratio, and t is the
carbonation time. A dataset was created to explore the relationship between carbonation
depth and parameters contained in the ML model. The results are shown in Figure 8.
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Figure 8. Relationship between carbonation depth and factors contained in the ML model: (a) the
relationship between carbonation depth and relative humidity; (b) the relationship between carbona-
tion depth and temperature; (c) the relationship between carbonation depth and CO2 concentration;
(d) the relationship between carbonation depth and compressive strength; (e) the relationship between
carbonation depth and aggregate–cement ratio.

Figure 8a shows the influence of relative humidity, where f denotes the compressive
strength and a/c is the aggregate–cement ratio. The influence of the relative humidity
had a peak value for two reasons: (1) carbonation reactions occurred in the pore solution,
and water was thus needed; (2) water can form water films on the pore surface and then
impede the diffusion of CO2 in pores. Since the data whose relative humidity was below
50% was insufficient in comparison with the data whose relative humidity was greater
than 50%, only samples whose relative humidity was greater than 50% were involved, and
f1(RH) can be assumed to be linear with an insignificant loss of accuracy. This also largely
simplifies the calculation.

Figure 8b shows the influence of temperature on carbonation. High temperatures
can raise the rate of diffusion of CO2 gas and accelerate chemical reactions. Arrhenius
formulas are usually used to depict the temperature’s effects on chemical reactions. By the
same token, a linear function was assumed to simplify the calculation and the approximate
temperature’s effects on carbonation with an insignificant loss of accuracy.

Figure 8c shows the influence of CO2 concentration on carbonation. In the early
stages of carbonation, with the increase in CO2 concentration, the carbonation reaction rate
increases. However, CaCO3 generated by CO2 concentrations that are too high will fill pores
and impede the contact between Ca(OH)2 and CO2, which finally hinders carbonation.
f3([CO2]) was assumed to be a square root function.

Figure 8d shows the relationship between concrete strength and carbonation depth.
The influence of compressive strength has been widely discussed in many studies, and a
power function is usually used. Figure 8e shows that the influence of the aggregate–cement
ratio can be approximated as a linear function. Considering that both the aggregate–
cement ratio and the concrete strength are concrete-related parameters, the relationship
between them in f4( f , a/c) can be further divided into the linear combination form
(Ag1( f ) + Bg2(a/c) + C) or the product form (g1( f )g2(a/c)). Figure 8e shows that with
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the increase in concrete strength, the effects of the aggregate–cement ratio on carbonation
are weakened, which indicates that g1( f )g2(a/c) can better depict this change.

The testing dataset and the training dataset used to determine the values of the
coefficients were split from the same dataset given in Table 1, and the testing dataset
constituted 10% of the total dataset. Finally, the function can be written as:

f1(RH) = (−0.49RH + 0.49)

f2(T) = 0.26T − 0.02

f3([CO2]) = 0.275
√
[CO2]

f4
(

f , a
c
)
=

(
24.48√

f
− 2.74

)(
0.04a

c + 1.26
) (17)

4.2. Verification of Models

To verify the accuracy of the practical model, the testing dataset was used. Other
carbonation models [6,45–48] were also applied to the testing dataset, as shown in Table 5.
This practical model had lower errors in comparison with other models. Monteiro’s
model [45], Niu’s model [47], and this practical model take concrete strength as the main
parameter, which showed significant advantages in accuracy compared with other models
and also corroborated the results in Section 2.

Table 5. Results of different models.

Models Papadakis [6] Morinaga [6] Monteiro [45] Zhang [46] Niu [47] Gong [48] This Paper

Error (mm) AVG 1 M 1 AVG M AVG M AVG M AVG M AVG M AVG M

3 days 15.8 11.3 36.6 30.4 2.7 2.1 3.3 2.7 2.2 1.7 8.2 4.5 2.0 1.4
7 days 22.4 17 55.3 45 4.2 3.3 4.9 4.1 2.6 1.8 12.1 6.7 2.2 1.5

14 days 31.4 22.3 72.5 59.3 6.7 5.3 7.4 6.1 3.4 2.5 16.8 10.1 3.2 2.3
28 days 49.2 35.4 109.5 88.9 9.7 7.7 11.8 10.1 4.4 3.1 27.9 15.6 4.0 2.9

All 37.0 22.8 85.1 58.2 7.7 5.1 8.8 6.0 3.7 2.5 20.6 10.9 3.3 2.3
1 AVG denotes the mean value of errors, and M represents the median value of errors.

The median value of the errors is also listed in Table 5. Since the median value is not
affected by outlier samples, it can better reflect the actual performance of the models. The
median value was higher than the mean value, which means that there were some outlier
experimental results in the dataset. Table 5 also shows that this practical model exhibited a
better accuracy at each stage of the carbonation process.

To further verify the effectiveness of this model, this paper collected an extra natural
carbonation dataset [49–52] to explore its accuracy. This dataset included 76 sets of data.
The natural carbonation time ranged from 28 to 9125 days, and the locations involved the
northern and southern regions as well as the central and western regions of China. It is
noted that the curing conditions of the concrete specimens used in natural carbonation tests
were not standard curing. Some of the specimens were placed in an indoor environment and
others were placed in an outdoor environment. Previous studies suggested the carbonation
depth should be multiplied by the coefficients of 2.81 and 1.50 for specimens in the indoor
and the outdoor environment, respectively. Table 6 shows the final results. The mean
absolute error was 1.56 mm; the practical model thus had a high accuracy.

Table 6. Natural carbonation dataset and predicted values [49–52].

RH (%) T
(◦C)

[CO2]
(%)

f
(MPa) a/c t

(days)
True Values

(mm)
Predicted Values

(mm)
Errors
(mm)

57 13 0.03 38.95 5.85 28 0 0.9 0.9
57 13 0.03 38.95 5.85 56 0 1.3 1.3
57 13 0.03 38.95 5.85 90 1.3 1.6 0.3
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Table 6. Cont.

RH (%) T
(◦C)

[CO2]
(%)

f
(MPa) a/c t

(days)
True Values

(mm)
Predicted Values

(mm)
Errors
(mm)

57 13 0.03 38.95 5.85 180 7.1 2.3 4.8
57 13 0.03 38.95 5.85 270 9.4 2.8 6.6
57 13 0.03 38.95 5.85 360 9.3 3.3 6.0
63 19 0.03 30.20 6.22 28 1.5 1.7 0.2
63 19 0.03 30.20 6.22 60 2.1 2.5 0.4
63 19 0.03 30.20 6.22 90 2.5 3.0 0.5
63 19 0.03 30.20 6.22 122 2.8 3.5 0.7
63 19 0.03 30.20 6.22 158 3.3 4.0 0.7
63 19 0.03 30.20 6.22 195 3.4 4.5 1.1
63 19 0.03 30.20 6.22 227 3.6 4.8 1.2
63 19 0.03 30.20 6.22 250 3.8 5.1 1.3
63 19 0.03 30.20 6.22 280 4.2 5.4 1.2
63 19 0.03 25.6 6.70 28 1.7 2.1 0.4
63 19 0.03 25.60 6.70 60 2.4 3.1 0.7
63 19 0.03 25.60 6.70 90 2.8 3.8 1.0
63 19 0.03 25.60 6.70 122 3.2 4.4 1.2
63 19 0.03 25.60 6.70 158 3.7 5.0 1.3
63 19 0.03 25.60 6.70 195 3.9 5.5 1.6
63 19 0.03 25.60 6.70 227 4.2 6.0 1.8
63 19 0.03 25.60 6.70 250 4.7 6.3 1.6
63 19 0.03 25.60 6.70 280 5.3 6.6 1.3
63 19 0.03 33.30 6.39 28 2.1 1.5 0.6
63 19 0.03 33.30 6.39 60 2.8 2.2 0.6
63 19 0.03 33.30 6.39 90 3.3 2.7 0.6
63 19 0.03 33.30 6.39 122 3.7 3.1 0.6
63 19 0.03 33.30 6.39 158 4.3 3.5 0.8
63 19 0.03 33.30 6.39 195 4.5 3.9 0.6
63 19 0.03 33.30 6.39 227 4.8 4.2 0.6
63 19 0.03 33.30 6.39 250 5.6 4.5 1.1
63 19 0.03 33.30 6.39 280 6.3 4.7 1.6
63 19 0.03 31.60 7.11 28 2.4 1.6 0.8
63 19 0.03 31.60 7.11 60 3.4 2.4 1.0
63 19 0.03 31.60 7.11 90 4.0 2.9 1.1
63 19 0.03 31.60 7.11 122 4.7 3.4 1.3
63 19 0.03 31.60 7.11 158 5.3 3.9 1.4
63 19 0.03 31.60 7.11 195 5.8 4.3 1.5
63 19 0.03 31.60 7.11 227 5.7 4.7 1.0
63 19 0.03 31.60 7.11 250 7.2 4.9 2.3
63 19 0.03 31.60 8.40 280 7.6 5.3 2.3
63 19 0.03 35.00 8.40 28 2.6 1.5 1.1
63 19 0.03 35.00 8.40 60 3.7 2.1 1.6
63 19 0.03 35.00 8.40 90 4.3 2.6 1.7
63 19 0.03 35.00 8.40 122 4.9 3.1 1.8
63 19 0.03 35.00 8.40 158 5.7 3.5 2.2
63 19 0.03 35.00 8.40 195 6.4 3.9 2.5
63 19 0.03 35.00 8.40 227 6.1 4.2 1.9
63 19 0.03 35.00 8.40 250 7.4 4.4 3.0
63 19 0.03 35.00 8.40 280 8.2 4.6 3.6
63 19 0.03 35.00 9.81 28 3.2 1.5 1.7
63 19 0.03 35.00 9.81 60 4.2 2.2 2.0
63 19 0.03 35.00 9.81 90 4.8 2.7 2.1
63 19 0.03 35.00 9.81 122 5.5 3.2 2.3
63 19 0.03 35.00 9.81 158 6.6 3.6 3.0
63 19 0.03 35.00 9.81 195 7.0 4.0 3.0
63 19 0.03 35.00 9.81 227 7.4 4.3 3.1
63 19 0.03 35.00 9.81 250 8.5 4.5 4.0
63 19 0.03 35.00 9.81 280 9.1 4.8 4.3
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Table 6. Cont.

RH (%) T
(◦C)

[CO2]
(%)

f
(MPa) a/c t

(days)
True Values

(mm)
Predicted Values

(mm)
Errors
(mm)

57 12.4 0.03 29.80 3.32 2190 5.0 5.7 0.7
57 12.4 0.03 29.80 3.32 9125 15.1 11.6 3.5
75 20 0.03 32.05 4.32 41 1.1 1.3 0.2
75 20 0.03 32.05 4.32 224 2.67 3.0 0.0
73 15 0.03 16.10 6.00 183 6.8 4.9 1.9
73 15 0.03 20.20 6.61 183 5.3 4.0 1.3
73 15 0.03 25.50 6.72 183 4.7 3.1 1.6
73 15 0.03 16.10 6.00 365 7.0 6.9 0.1
73 15 0.03 20.20 6.61 365 6.5 5.7 0.8
73 15 0.03 25.50 6.72 365 4.8 4.4 0.4
73 15 0.03 16.10 6.00 1095 12.1 12.0 0.1
73 15 0.03 20.20 6.61 1095 10.1 9.8 0.3
73 15 0.03 25.50 6.72 1095 9.7 7.6 2.1
73 15 0.03 16.10 6.00 1825 16.1 15.4 0.7
73 15 0.03 20.20 6.61 1825 14.4 12.6 1.8
73 15 0.03 25.50 6.72 1825 9.9 9.9 0.0

5. Conclusions

This study aimed to explore a way of evaluating and selecting the most effective factors
for developing concrete carbonation models and controlling the durability of concrete
through big data. Statistical analyses and ML techniques were used in this study. The
following conclusions can be drawn:

1. Single-parameter analysis showed that compressive strength had the highest correla-
tion with carbonation depth and that the aggregate–cement ratio can minimize the
uncertainties of carbonation depth. The method proposed in this study to evaluate
single factors and the effects of parameter groups was effective. The results showed
that the mean square error of ML models using the three selected parameters can
reach 14.04 mm2, which was lower than the values obtained with ML models using
six concrete mix design parameters (17.67 mm2) and close to the results from ML
models using all parameters (11.61 mm2). Because appropriate groups improved the
models’ performance and reduced their complexity, the mean square error of ML
models using five selected parameters was able to reach 11.01 mm2, which was even
lower than the values obtained with ML models using all parameters.

2. Several machine learning models were developed to predict concrete carbonation
depth. Through appropriate parameter selection, the models realized a high accu-
racy with a few parameters. For existing concrete structures, two concrete-related
parameters (concrete strength and aggregate–cement ratio) and environmental factors
were used to build a model via neural network methods. The results showed that the
mean error of this model was about 2.5 mm. Based on this model, an empirical model
was developed. The model was very simple and calculation-friendly. The results
showed that this practical model had a high accuracy on both accelerated and natural
carbonation datasets (mean absolute error = 1.56 mm).
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