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HIV infection leads to severe B cell dysfunction, which manifests as impaired humoral 
immune response to infection and vaccinations and is not completely reversed by 
otherwise effective antiretroviral therapy (ART). Despite its inability to correct HIV-
induced B cell dysfunction, ART has led to significantly increased lifespans in people 
living with HIV/AIDS. This has in turn led to escalating prevalence of non-AIDS com-
plications in aging HIV-infected individuals, including malignancies, cardiovascular 
disease, bone disease, and other end-organ damage. These complications, typically 
associated with aging, are a significant cause of morbidity and mortality and occur 
significantly earlier in HIV-infected individuals. Understanding the pathophysiology 
of these comorbidities and delineating clinical management strategies and potential 
cures is gaining in importance. Bone loss and osteoporosis, which lead to increase 
in fragility fracture prevalence, have in recent years emerged as important non-AIDS 
comorbidities in patients with chronic HIV infection. Interestingly, ART exacerbates 
bone loss, particularly within the first couple of years following initiation. The mech-
anisms underlying HIV-induced bone loss are multifactorial and complicated by the 
fact that HIV infection is linked to multiple risk factors for osteoporosis and fracture, 
but a very interesting role for B cells in HIV-induced bone loss has recently emerged. 
Although best known for their important antibody-producing capabilities, B  cells 
also produce two cytokines critical for bone metabolism: the key osteoclastogenic 
cytokine receptor activator of NF-κB ligand (RANKL) and its physiological inhibitor 
osteoprotegerin (OPG). Dysregulated B  cell production of OPG and RANKL was 
shown to be a major contributor to increased bone loss and fracture risk in animal 
models and HIV-infected humans. This review will summarize our current knowledge 
of the role of the OPG/RANK–RANKL pathway in B cells in health and disease, and 
the contribution of B cells to HIV-induced bone loss. Data from mouse studies indi-
cate that RANKL and OPG may also play a role in B cell function and the implications 
of these findings for human B cell biology, as well as therapeutic strategies targeting 
the OPG/RANK–RANKL pathway, will be discussed.
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FiGuRe 1 | B cells and the OPG/RANK-RANKL pathway at the intersection 
of the immune, skeletal, and vascular organ systems. B cells mediate 
biological processes in health and disease via the OPG/RANK–RANKL 
pathway in three major organ systems in humans: the immune, skeletal, and 
vascular systems. The extensive intertwining of the immune and skeletal 
systems has given rise to a whole new field of study called osteoimmunology; 
some major pathologies implicating B cells and the OPG/RANK–RANKL 
pathway are highlighted in red and include osteoporosis and periodontal 
disease in the skeletal system, cardiovascular disease (CVD) in the vascular 
system, and HIV/comorbidities (bone loss and CVD) in the immune system.
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iNTRODuCTiON

Rising incidences of bone loss in the form of low bone mineral 
density (BMD), osteopenia, and osteoporosis, and the resulting 
increased risk of fracture have over the past decade emerged 
as important non-AIDS comorbidities affecting HIV-infected 
individuals (1–6). Successful antiretroviral therapy (ART) over 
the past couple of decades has been instrumental in significantly 
extending the life expectancies of HIV-infected individuals 
to levels comparable to those of the general population (7). A 
significant proportion of people currently living with HIV in 
Europe and North America are over the age of 50 (8–10), and 
it is estimated that by 2030 as many as >70% of HIV-positive 
individuals will fall within this demographic. Similar to car-
diovascular, liver and chronic kidney disease, and other comor-
bidities, bone loss occurs earlier and at a higher prevalence in 
HIV-positive individuals than in the HIV negative population 
(1, 8, 11). This raises concerns of a potential impending epidemic 
of fragility fractures and other age-associated comorbidities in 
this population (8, 12).

The underlying mechanisms of HIV-associated bone loss 
are multifactorial, given that most of the traditional risk factors 
for bone loss including low body mass index (BMI), older age, 
tobacco use, metabolic diseases, alcohol, and substance abuse 
are more prevalent in the HIV-infected population (10, 13). 
HIV infection is now however clearly established as one of the 
independent risk factors for bone loss (11, 14, 15), driven by 
the prevalence of HIV-associated risk factors including chronic 
inflammation, co-infection with hepatitis B or C, and para-
doxically, ART (8, 10, 13). More recently, osteoimmunology has 
revealed the prominent role the immune system plays in bone 
metabolism (16) and consequently revealed that HIV-induced 
immune dysfunction is one of the most important contributors 
to bone loss.

Osteoimmunology, a term originally coined to describe 
studies involving the interface between the immune and skeletal 
systems (17), has been instrumental in our understanding of 
the numerous ways both organ systems are intertwined. It is 
now known that in various inflammatory pathological condi-
tions characterized by bone loss, including periodontal disease 
(PD) and rheumatoid arthritis (RA), both cellular and soluble 
immune effectors can contribute to bone loss (18, 19). T  cells 
are major contributors to bone loss in RA (20) and PD (21, 22) 
but their role in HIV-induced bone loss has not been elucidated. 
Emerging evidence now shows that B cells play an important role 
in bone biology in health and disease (23–25) and HIV-induced 
B cell dysfunction significantly contributes to HIV-induced bone 
loss (26).

Bone homeostasis, which is essential for maintaining skeletal 
integrity and strength, is regulated by a balance of bone forma-
tion by osteoblasts and resorption by osteoclasts and disruption 
of this balance results in bone disease (18, 27, 28). Osteoclasts 
are generated in a process known as osteoclastogenesis, which is 
driven by the key osteoclastogenic cytokine receptor activator of 
NF-κB ligand (RANKL). Osteoclasts originate from cells of the 
myeloid lineage, which in the presence of M-CSF and RANKL 
differentiate into receptor activator of NF-κB (RANK)-expressing 

pre-osteoclasts which proliferate and fuse to form giant multinu-
cleated osteoclasts capable of resorbing bone (15, 29).

Excessive osteoclast activity, as occurs in osteoporosis, results 
in loss of bone mass and increased susceptibility to fracture  
(12, 28). The effects of B and T  cells on bone are mediated by 
several key cytokine regulators of bone metabolism (11, 18), 
including the inflammatory cytokines tumor necrosis factor-α 
(TNF-α) and interferon-γ, which have been implicated in bone 
loss in RA, periodontitis, postmenopausal osteoporosis, and HIV 
(30). Most importantly, RANKL and OPG (18) play important 
roles in both organ systems and perfectly illustrate the intersec-
tion of bone biology and immunity. The OPG/RANK–RANKL 
pathway also mediates physiological processes in the vascular 
system, thus intersecting with the skeletal and immune system 
at this axis (Figure 1).

This review will summarize our current knowledge of the role 
of the OPG/RANK–RANKL pathway in B  cells in health and 
disease, and the contribution of B  cells to HIV-induced bone 
loss. Data from mouse studies indicate that RANKL and OPG 
may also play a role in B cell function and the implications of 
these findings for human B cell biology as well as therapeutic 
strategies targeting the OPG/RANK–RANKL pathway will be 
discussed.

THe OPG/RANK–RANKL PATHwAY  
AND B CeLLS iN HeALTH

B cells are inextricably linked to bone, from their development 
in the bone marrow to the homing of terminally differentiated 
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plasma cells back to the bone marrow (30, 31) and the bidirectional 
regulation of the skeletal system by B cells (23, 30, 32). Osteoblasts 
and bone marrow stromal cells regulate B lymphopoiesis through 
the production of IL-7, a critical cytokine for the differentiation 
of early-stage B cells in the bone marrow (33, 34). Another major 
interaction between the skeletal system and B  cells revolves 
around the OPG/RANK–RANKL pathway.

B Cells and Osteoprotegerin (OPG)
The identification and characterization of OPG as a humoral 
regulator of bone resorption 20 years ago (35, 36) represents a 
major turning point in our understanding of the physiology of 
bone homeostasis (37, 38). OPG, named for its ability to protect 
bone by inhibiting osteoclast differentiation and activity, is a 
tumor necrosis factor receptor (TNFR) superfamily member 
which lacks transmembrane-spanning sequences and is secreted 
as a soluble protein (35, 36). OPG is the natural circulating inhibi-
tor/decoy receptor of RANKL and can inhibit osteoclastogenesis 
by binding to RANKL, thus preventing bone resorption (35, 37). 
OPG mRNA is expressed by various tissues, including bone, 
brain, lung, heart, and kidney (35, 36). In the immune system, 
OPG is expressed in lymph nodes, B  cells, and dendritic cells 
(DCs) and ligation of CD40 upregulates its expression (39).

Osteoblasts and their precursors were previously considered 
to be the primary source of OPG in the bone marrow (40, 41) 
but B lineage cells are now known to account for over 60% of 
total bone marrow OPG production (25). B cell knockout (KO) 
mice were osteoporotic and deficient in bone marrow OPG, 
confirming the critical role of B cells in the preservation of bone 
homeostasis and attainment of peak bone mass (25).

Unlike its role in bone homeostasis, the role of OPG in 
B cell function is less well documented. OPG KO mice develop 
severe osteoporosis due to unchecked osteoclastogenesis and 
bone resorption (42, 43). Interestingly, OPG-deficient mice 
also accumulated transitional/immature B cells in their spleens, 
and generated impaired antibody (Ab) responses to a T  cell-
dependent (DNP-KLH) antigen (Ag) challenge, suggesting that 
OPG may regulate B cell maturation and development of efficient 
Ab responses (44).

B Cells and RANKL
The ligand for OPG is identical to a TNFR family member called 
TNF-related activation-induced cytokine or RANKL (37, 45). 
Human RANKL exists in two forms: a cellular, membrane-bound 
form and a soluble form, and both forms were shown to be 
biologically capable of promoting osteoclast formation (46, 47). 
RANKL is also expressed in a variety of tissues, including bone 
marrow and lymphoid tissues (36, 47, 48). RANKL is best known 
for its indispensable role in the complete differentiation of mature 
osteoclasts (36, 37, 47). Unlike OPG, resting B cells have not been 
conclusively shown to produce significant amounts of RANKL, 
but activated B cells are an important source (23), particularly in 
inflammatory disease states.

B Cells and RANK
The receptor for RANKL, RANK, was initially identified on DCs 
(48) and later discovered to be expressed on preosteoclastic cells 

(37, 46, 49, 50) and B cells (39, 51). The binding of RANKL to 
RANK stimulates osteoclastogenesis, resulting in bone-resorbing 
osteoclasts (47).

Lack of functional RANK in both humans and mice results 
in osteopetrosis due to the absence of osteoclasts (19, 49, 52). 
Mice deficient in RANK had defects in B cell development which 
resulted in reduced numbers of mature B cells in the periphery 
(49). Humans with mutations in RANK also had B cell defects 
including hypogammaglobulinemia and impaired Ag-specific Ab 
responses (52).

THe OPG/RANK–RANKL PATHwAY  
AND B CeLLS iN NON-Hiv DiSeASe

Osteoprotegerin, RANK, and RANKL are produced by a wide 
variety of cells and tissues in three major organ systems: the 
vascular, immune, and skeletal systems and are thus implicated 
in the pathogenesis of various diseases in these organs (15, 
38) (Figure  1). Although best known for its involvement in 
the pathogenesis of osteoporosis and other bone diseases such 
as Paget’s disease of bone (53–55) and PD (38, 56), the OPG/
RANK–RANKL pathway has also been implicated in other 
diseases including RA (14, 38, 57) and CVD (58–60).

Rheumatoid Arthritis
The bone and joint destruction that occurs in the autoimmune 
disorder RA results from increased RANKL-induced osteoclas-
tic bone resorption in the synovial joints (57, 61, 62). Several 
immune cells have been identified as the sources of RANKL in 
the arthritic synovium, including Th17 cells (63), macrophages, 
DCs (57), and activated B  cells (64). Targeted B  cell depletion 
therapy for RA using the anti-CD20 Ab rituximab suggests that 
B cells play a critical role in RA-associated joint damage (64–66). 
B cells were shown to contribute to RA pathogenesis through their 
Ag-presenting function, autoantibody production, and cytokine 
secretion (66, 67). A link between B cells and joint destruction in 
RA has been confirmed by studies demonstrating that Rituximab 
significantly reduces RANKL levels in the synovium (68, 69). 
This link has recently been confirmed by studies identifying 
pro-inflammatory B  cells as major sources of RANKL in RA  
(64, 66). These findings highlight the importance of Ab-independent 
(cytokine-producing) B cell functions in the pathogenesis of dis-
ease and make a case for the therapeutic potential of targeting the 
B cell OPG/RANK–RANKL pathway in RA and other diseases.

In contrast to RANKL, multiple studies have demonstrated 
that serum levels of OPG are elevated in RA, resulting in a 
decreased RANKL/OPG ratio (70, 71). Elevated OPG levels were 
independently associated with RA disease severity and CVD, and 
it has been suggested that OPG concentration could be used as a 
predictive marker for assessing RA-associated CVD risk (72, 73). 
Data on the role of B cell-produced OPG in the pathophysiology 
of RA are however lacking.

Cardiovascular Disease
A role for the OPG/RANK–RANKL pathway in the pathogenesis 
of vascular calcification and CVDs has been established for over 
a decade now. Both OPG and RANKL have been detected in 
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atherosclerotic plaques (74) and an increased RANKL/OPG ratio 
is associated with atherosclerosis (59). Transgenic expression of 
OPG in OPG KO mice prevented the development of arterial 
calcification but exogenous OPG administration did not reverse 
existing calcification, suggesting that similar to bone, OPG is a 
protective factor in the cardiovascular system (75, 76). Results in 
human studies however seem to conflict with the animal stud-
ies, with higher OPG levels consistently associated with CVD 
incidence (76, 77). The contribution of B cells to OPG/RANK–
RANKL-linked CVD has however not been clearly elucidated. 
Low-density lipoprotein (LDL) receptor KO mice (LDLR−/−) were 
B  cell deficient and developed atherosclerosis, suggesting that 
B  cells and/or antibodies are protective against atherosclerosis 
(78); it is conceivable that OPG produced by B cells mediates this 
protective effect.

Bone Diseases
Osteoporosis
Osteoporosis is characterized by loss of bone mass and mineral 
density resulting from an excess of bone resorption by osteo-
clasts relative to bone formation by osteoblasts (18, 27, 28). The 
role of the OPG/RANK–RANKL pathway in the pathogenesis 
of osteoporosis has been well documented and extensively 
reviewed (15, 37, 38, 62); the role of B cells is however still being 
elucidated.

Postmenopausal osteoporosis, the most common form of 
osteoporosis, arises from decreased estrogen levels (62) and was 
shown in both human patients and an animal model to be linked 
to increased RANKL expression by B cells (79). Mice subjected 
to ovariectomy, commonly used as an animal model of estrogen 
deficiency, have increased numbers of B  cells, suggesting that 
B cells may play a role in estrogen-deficiency osteoporosis (79–81). 
Data on the contribution of B cells to ovariectomy-induced bone 
loss is however conflicting. Some studies have demonstrated that 
ovariectomy-induced bone loss occurs independently of mature 
B cells (82) and others show that ovariectomy-induced bone loss 
is linked to RANKL expression on immature B cells (79). Given 
the fact that B cells are able to express RANKL at various stages 
in their differentiation, this raises the possibility that the contri-
bution of B lineage cells to estrogen-deficiency osteoporosis is 
dependent on the differentiation/maturation stage of the B cell. 
Beyond the differentiation stage however, the activation status of 
B cells seems to be a better indicator of their ability to produce 
bone-damaging RANKL (23). This is especially relevant in the 
context of inflammatory diseases like RA, PD, and HIV-induced 
bone loss.

Periodontal Disease
Periodontal diseases are inherited or acquired disorders affect-
ing the supporting structures of the teeth and affect as many as 
50–90% of the world’s population (83). The underlying microbial 
infections were traditionally the focus of majority of the research 
on the pathogenesis of PDs but in recent years the focus has 
shifted to the role of the host response/factors in pathogenesis 
(83, 84). Host immune/inflammatory responses are critical for 
pathogenesis and inflammation (84) and the term PD generally 

refers to inflammation-induced disorders, ranging from the 
mildest form (gingivitis) to the more invasive severe periodontitis 
(83). Unlike gingivitis which is completely reversible by effective 
regular oral hygiene, periodontitis extends deeper into the tissue 
and can result in the permanent loss of the supporting structures 
of the teeth and alveolar bone (83).

One of the microorganisms most commonly implicated in 
PD pathogenesis is Actinobacillus actinomycetemcomitans (Aa), 
which induces RANKL expression on a variety of cell types infil-
trating in PD lesions (84). While the RANKL levels in PD lesions 
are consistently elevated in most clinical studies, some studies 
found lower (22) or unchanged (24) OPG levels in lesions, which 
both resulted in higher RANKL/OPG ratios in periodontitis 
compared to healthy controls (22, 24, 84). Activated B and T cells 
were shown to be the primary source of RANKL in gingival tis-
sues from individuals with periodontitis (24, 85). B cell percent-
ages in chronic PD lesions were associated with disease severity, 
suggesting that B  cells promote PD (86) and interestingly, PD 
lesion-infiltrating B cells in humans were activated transitional 
CD5+ cells (86, 87). Using a rat model, it was also demonstrated 
that B cells contributed to osteoclast formation and periodontal 
bone loss by secreting RANKL following activation by Aa in a 
T cell-independent manner (85).

B CeLLS, THe OPG/RANK–RANKL 
PATHwAYS, AND Hiv-iNDuCeD BONe 
LOSS

With the availability of ever-improving treatment regimens, ART 
is enabling HIV-infected individuals to live longer than ever 
before, but life expectancies of patients remain lower than those 
of the general population (7, 12, 15, 16, 59). Over 33% of people 
currently living with HIV in Europe are >50 years of age and this 
percentage is expected to increase to >70% by 2030 (88); in the 
US, the same demographic is estimated to constitute up to 50% 
of the HIV-positive population (89). This increased longevity is 
however accompanied by earlier occurrence and higher preva-
lence of several non-AIDS end-organ comorbidities including 
cardiovascular and bone diseases (90–92), which in turn imposes 
significant disease burdens on the patients, healthcare systems, 
and society.

As discussed above, under inflammatory conditions, B  cells 
produce higher amounts of RANKL, leading to an increased 
RANKL/OPG ratio, which drives disease progression (26, 29)  
in inflammatory diseases such as RA. HIV infection is associ-
ated with persistent inflammation (93) and the success of 
B  cell-targeted/depleting therapies in reducing inflammation 
in autoimmune disorders such as RA suggest that B  cells may 
contribute to persistent inflammation (94, 95). Given the pivotal 
role this pathway plays in osteoclastogenesis and bone loss, its 
role in B cells and HIV is perfectly illustrated by its contribution 
to inflammation-driven HIV-induced bone loss.

A hallmark of chronic HIV infection is the altered distribu-
tion of subsets in the B cell compartment (93), notably the loss 
of resting memory B cells (26) and the expansion of exhausted/
tissue-like memory B  cells (26, 93, 96). Interestingly, OPG 
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FiGuRe 2 | Differential production of osteoprotegerin (OPG) and receptor-activator of NF-κB ligand (RANKL) by B cell subsets results in higher RANKL/OPG ratio, 
which contributes to HIV-induced osteoclastogenesis and bone loss. Osteoclasts are generated in a process known as osteoclastogenesis, which is driven by the 
key osteoclastogenic cytokine RANKL. Osteoclasts originate from cells of the myeloid lineage, which in the presence of M-CSF and RANKL differentiate into 
receptor-activator of NF-κB (RANK)-expressing pre-osteoclasts, which proliferate and fuse to form giant multinucleated osteoclasts capable of resorbing bone. HIV 
infection leads to the depletion of resting memory B cells and expansion of activated B cell subsets including activated memory and tissue-like memory B cells. 
Resting memory B cells produce the highest amounts of OPG and tissue-like memory B cells conversely the lowest amounts of OPG and the highest amounts of 
RANKL (26). HIV-induced B cell subset changes therefore translate into higher RANKL/OPG ratios, which contribute to increased osteoclastogenesis and bone loss 
in HIV-infected patients.
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expression was lowest in the HIV-expanded tissue-like memory 
B cell subset, which conversely showed higher RANKL expres-
sion (26) (Figure  2). This tissue-like memory B  cell subset 
was also previously shown to express the inhibitory receptor 
FcRL4 (96), which in RA defined a pro-inflammatory RANKL-
producing B cells subset (66). Taken together, this suggests that 
inflammation does drive B  cell subset RANKL expression in 
HIV infection.

Low BMD increases the risk of fragility fractures and is 
widely prevalent in HIV-infected individuals, with as many as 
67% presenting with osteopenia and ~15% with osteoporosis 
(91). Increased osteopenia and osteoporosis rates translate into 
significantly elevated fracture risk, and studies show that HIV-
infected individuals do indeed suffer more fragility fractures, at 
younger ages, than the general population (1). The ubiquitous 
presence of traditional risk factors for low BMD such as increased 
smoking and low BMI in most HIV-infected cohorts complicates 
efforts to understand and elucidate the mechanisms underlying 

HIV-induced bone loss (11, 26, 97). HIV infection in itself is now 
recognized as a risk factor for bone loss (97).

HIV transgenic rats almost perfectly mimic the clinical 
hallmarks of human HIV-induced bone disease, including pro-
found skeletal damage. Bone loss in this model was driven by 
increased B cell RANKL expression concurrent with decreased 
OPG expression, which in turn resulted in increased RANKL/
OPG ratio and thus osteoclastogenesis and bone loss (98). This 
mechanism of HIV-induced B  cell dysfunction-driven bone 
loss was later confirmed in a clinical study of untreated HIV-
infected individuals where it was demonstrated that increased 
B cell RANKL/OPG was indeed associated with increased bone 
resorption (26). This demonstrated for the first time that the 
OPG/RANK–RANKL pathway is indeed a key pathway utilized 
by B cells to effect skeletal damage in HIV infection. This dem-
onstrates clearly how HIV-induced B cell changes in the immune 
system translate directly into dysfunction and bone loss in the 
skeletal system (Figure 2).
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ReGuLATORY eFFeCTS OF THe OPG/
RANK–RANKL PATHwAY ON B CeLLS 
AND HuMORAL iMMuNe ReSPONSeS

Due to the expression of OPG, RANK, and RANKL on a wide 
variety of immune cell types, the pathway is thought to play an 
important role in immune cell biology. Despite the involvement 
of B cell-expressed OPG and RANKL in the normal function of 
the immune, skeletal, and vascular systems and in the pathogen-
esis of multiple diseases, the effect of these molecules on B cell 
physiology has not been extensively described.

Receptor-activator of NF-κB ligand plays an important role 
in the development of secondary lymphoid organs. RANK- and 
RANKL-deficient mice had poorly developed or completely 
lacked secondary lymphoid tissues including lymph nodes, 
Peyer’s patches, cryptopatches, and spleen (46, 49, 62).

The role of this pathway in B cell function has also been inves-
tigated in a few mouse studies. OPG-deficient mice accumulated 
transitional/immature B  cells in their spleens and generated 
impaired Ab responses to a T  cell-dependent (DNP-KLH) Ag 
challenge, suggesting that OPG may regulate B cell maturation 
and development of efficient Ab responses (44). Conversely, B cell 
development was impaired in RANKL-deficient mice, suggesting 
that OPG regulates B cell development.

In another study (99), OPG was used to treat mice induced to 
develop different types of cellular and humoral immune responses 
through: (1) infection with Mycobacterium bovis Bacillus 
Calmette and Guerin (BCG) followed by OPG-Fc treatment, (2) 
immunization with KLH in Freund’s adjuvant or by i.p. injection 
of a Pneumococcal Vaccine Polyvalent (Pneumovax®23, Merck) 
(3) immunization with Keyhole Limpet Hemocyanin (KLH) 
in vivo followed by OPG-Fc treatment, and (4) In a bid to induce 
contact hypersensitivity, mice were also sensitized with the hap-
ten oxazolone, followed by treatment with OPG-Fc. T and B cells 
were also exposed to OPG in vitro. OPG treatment did not affect 
cell-mediated responses including contact hypersensitivity but 
increased humoral immune responses to KLH and the pneumo-
coccal vaccine. In vitro, OPG modestly stimulated T cells but not 
the proliferation of B cells. These results demonstrated that OPG 
has modest regulatory effects on humoral immune responses to 
certain Ags. The potential impact of the OPG/RANK–RANKL on 
the generation of human humoral immune responses is not clear 
and definitely merits further study.

THeRAPeuTiC STRATeGieS TARGeTiNG 
THe OPG/RANK–RANKL PATHwAY

Although initially described in the context of bone disease, 
the OPG/RANK–RANKL pathway is now known to influence 
normal physiology and pathology in the immune, skeletal, and 
vascular systems. This opens up the potential for a lot of cross 
application of potential therapeutic strategies targeting this 
pathway.

One such strategy involves RANKL inhibition; E. coli-derived 
Fc-OPG showed great promise in phase I trials, causing rapid 
decline in bone turnover markers in postmenopausal women 
(100), also serving as a proof of concept that RANKL blockade 
could meaningfully impact bone turnover in humans (46). 
Perhaps the best known RANKL inhibitor in clinical use to date 
is denosumab, a fully human IgG2 Ab which binds RANKL with 
high affinity and unlike Fc-OPG does not bind to mouse and rat 
RANKL and TRAIL (46). In clinical use, denosumab effectively 
reduces fracture risk by reducing bone resorption and was shown 
to be superior to bisphosphonates in its ability to increase BMD in 
postmenopausal women (46). When used to treat cancer-induced 
bone disease, denosumab effectively reduced levels of bone 
turnover markers in patients with solid tumor (breast, prostate, 
and lung) metastases to bone and prolonged bone metastasis-
free survival and delayed the onset of first metastasis in certain 
prostate cancers (101). Denosumab was also well-tolerated and 
no significant changes in B cell numbers were noted (102, 103). 
The effect of denosumab on B cell function is not fully elucidated; 
in one study investigating its utility as a postmenopausal osteo-
porosis treatment (104), 2/412 women developed transient non-
neutralizing anti-denosumab antibodies, which did not adversely 
affect the skeleton but did appear to alter the effectiveness of the 
drug (104). Due to the wide pattern of expression of RANKL, 
including on lymphocytes, and in the vascular and skeletal 
systems, RANKL inhibition using denosumab could potentially 
increase susceptibility to infections and neoplasias (105), particu-
larly in immunocompromised patients. No significant alterations 
in inflammation and immunity have however been observed in 
preclinical and clinical studies of denosumab, although rare cases 
of severe skin infections of the lower extremities were reported 
(106). To date, no data are available on the use of denosumab in 
HIV infection and the effect of RANKL blockade on humoral 
immune responses in HIV-infected individuals remains to be 
elucidated.

CONCLuSiON

In summary, B  cells are intricately intertwined with the OPG/
RANK–RANKL pathway, plays important roles in the immune, 
skeletal, and vascular systems, and much remains to be discovered 
about the influence of this pathway on human humoral immune 
responses.
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