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Abstract

Hedgehog (Hh) signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein
Smoothened (Smo), but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent
phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence
divergence between vertebrate and Drosophila Smo (dSmo) and the involvement of primary cilia in vertebrate Hh signaling.
Here we demonstrate that mammalian Smo (mSmo) is activated through multi-site phosphorylation of its carboxyl-terminal
tail by CK1a and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary
accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its
ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and
oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the
kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1a to initiate mSmo phosphorylation,
and phosphorylation further increases the binding of CK1a and GRK2 to mSmo, forming a positive feedback loop that
amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their
subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.
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Introduction

The Hh family of secreted proteins plays pivotal roles during

embryonic development and adult tissue homeostasis [1–3].

Aberrant Hh signaling contributes to numerous human disorders

including congenital diseases and cancers [4,5]. In a number of

developmental contexts, Hh functions as a morphogen that

specifies distinct cell fates in a concentration-dependent manner

[1,2]. For example, in vertebrate neural tube patterning, Shh

secreted by the notochord and floor pate forms a ventral to dorsal

concentration gradient that specifies distinct pools of neural

progenitor cells [6].

Hh exerts its biological function through a signaling cascade

that ultimately controls a balance between activator and repressor

forms of the Gli family of transcription factors [2]. In the absence

of Hh, Gli2 and Gli3 are processed into truncated repressor forms

(GliR). Hh signaling blocks Gli processing and converts full-length

Gli2/3 into activator forms (GliA). The reception system for the

Hh signal consists of a twelve-transmembrane protein Patched

(Ptc) as the Hh receptor and a seven-transmembrane protein

Smoothened (Smo) as the obligatory Hh signal transducer [2,3].

Ptc inhibits Smo substoichiometrically through a poorly defined

mechanism in the absence of Hh [7]. Binding of Hh to Ptc and the

Ihog/Cdo family of proteins alleviates Ptc inhibition of Smo [8–

14], leading to Smo activation and signal transduction. How Smo

is activated and how it transduces the Hh signal to regulate GliR

and GliA are still poorly understood.

In mammals, Hh signaling depends on the primary cilium, a

microtubule-based membrane protrusion found in almost all

mammalian cells [15]. Key components in the Hh pathway are

found in cilia and exhibit dynamic patterns depending on the Hh

signaling state. For example, in the absence of Hh, Ptc localizes to

cilia and prevents Smo from accumulating in the cilia; binding of

Hh to Ptc triggers reciprocal trafficking of Ptc and Smo, with Ptc

moving out of and Smo accumulating in the cilia [16,17]. Ciliary

accumulation of Smo correlates but is not sufficient for Hh

pathway activation [16–19]. Additional mechanisms, including

conformational change in Smo, are likely to be responsible for

Smo activation [20–22]. Indeed, fluorescence resonance energy

transfer (FRET) analysis indicates that both Drosophila and
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mammalian Smo proteins exist as constitutive dimers/oligomers,

but in the absence of Hh, Smo C-tails adopt a closed conformation

that prevents their association. Hh induces a conformational

switch in Smo, leading to dimerization/oligomerization of the C-

tails [22]. The mechanisms underlying mammalian Smo ciliary

accumulation, conformational change, and activation are largely

unknown.

In Drosophila, Hh and Ptc reciprocally control Smo cell surface

accumulation and conformation through regulating Smo phos-

phorylation [22–25]. In response to Hh, Smo is phosphorylated by

protein kinase A (PKA) and casein kinase 1 (CK1) at multiple sites

in its C-tail, and these phosphorylation events activate Smo by

promoting its cell surface accumulation and active conformation

[22,25–27]. However, vertebrate Smo C-tails diverge significantly

from that of Drosophila Smo and do not contain the PKA/CK1

phosphorylation clusters found in Drosophila Smo C-tail [22]. In

addition, a systematic mutagenesis study did not reveal any Ser/

Thr residues as essential for mammalian Smo activation [28].

These and other observations led to a proposal that mammalian

Smo and Drosophila Smo are regulated by fundamentally distinct

mechanisms [28,29].

Several studies suggested that G protein coupled receptor kinase

2 (GRK2) positively regulates Shh signaling [30–32]. Metabolic

labeling experiments revealed that GRK2 is required for the basal

phosphorylation of an exogenously expressed Smo [30]. However,

it is not clear whether GRK2 directly phosphorylates Smo and

how GRK2 activates Shh signaling. In addition, direct evidence

for Hh-induced mammalian Smo phosphorylation is lacking. A

recent kinome siRNA screen identified CK1a as a positive

regulator for Shh signaling, but its mechanism of action remains

unknown [33].

In this study, we investigate the activation mechanism of

mammalian Smo (henceforth referred to simply as Smo). We

demonstrate that Smo is activated via multiple phosphorylation

events mediated by CK1a and GRK2 that induce its ciliary

accumulation and active conformation. We provide evidence

that graded Shh signals induce increasing levels of Smo phosphor-

ylation that fine-tune Smo ciliary localization, conformation, and

activity. In addition, we provide evidence that Shh promotes Smo

phosphorylation by regulating the accessibility of Smo to its kinases.

Results

CK1a and GRK2 Promote Smo Phosphorylation and
Conformational Switch

A previous study revealed that CK1a siRNA blocked Shh

pathway activation in C3H10T1/2 cells [33]. To determine how

CK1a positively regulates Shh signaling, we tested whether CK1a
activates Smo. Coexpression of CK1a with Smo in NIH3T3 cells

activated a Gli-luciferase (Gli-luc) reporter gene, although the fold of

activation was less dramatic compared with Shh stimulation

(Figure 1A). In line with a previous finding [31], coexpression of

GRK2 with Smo also activated Gli-luc in NIH3T3 cells (Figure 1A).

Coexpression of CK1a and GRK2 with Smo had a slightly

stronger effect on Gli-luc expression than overexpression of each

kinase alone (Figure 1A). Overexpression of another GRK family

member (GRK5) with Smo activated the Gli-luc reporter gene

similarly to GRK2 (Figure 1A), indicating that overexpressed

GRK5 and GRK2 have a similar activity in the Shh pathway.

We also examined the effect of CK1a/GRK2 overexpression on

Gli-luc expression in the absence of exogenously expressed Smo.

Consistent with previous findings [31,33], overexpression of CK1a,

GRK2, or both only slightly increased the expression of Gli-luc

reporter gene (Figure S1G). Thus, CK1a/GRK2 overexpression

synergized with Smo overexpression to drive Shh pathway activation.

Our previous FRET analysis indicated that Shh induces a

conformational change in Smo from a closed to an open

conformation [22]. In the closed conformation, Smo exists as a

dimer/oligomer through an N-terminal interaction(s), which

results in high basal FRET between CFP and YFP fused to the

N-termini of two Smo molecules (FRETN); however, Smo C-tail

folds back and is in close proximity to the intracellular loops,

resulting in high intramolecular FRET between CFP inserted in

the second intracellular loop (L2) and YFP fused to the C-terminus

(FRETL2C) and low intermolecular FRET between CFP and YFP

fused to the C-termini of two Smo molecules (FRETC) (Figure 1B–

D) [22]. Shh induced a marked decrease in FRETL2C and a

concomitant increase in FRETC without affecting FRETN

(Figure 1B–D) [22], suggesting that Smo C-tails move away from

the intracellular loops and form dimers/oligomers. To determine

whether CK1a and GRK regulate Smo conformation, we carried

out FRET analysis using the Smo biosensors indicated in

Figure 1B–D. We found that overexpression of CK1a, GRK2,

or GRK5 resulted in a significant increase in FRETC (Figure 1B)

and a marked decrease in FRETL2C (Figure 1C). In contrast,

overexpression of these kinases did not cause a significant change

in FRETN (Figure 1D). These results suggest that excessive CK1a
and GRK2/5 kinase activities induce a conformational change in

Smo similar to that induced by Shh stimulation.

Having established that CK1a and GRK2 act upstream of Smo, we

then determined whether CK1a and GRK2 could promote Smo

phosphorylation using a Phos-tag gel that specifically retards

phosphorylated proteins [34]. We found that coexpression of CK1a,

GRK2, or both with a Myc-tagged Smo (Smo-Myc) resulted in a clear

mobility shift of Smo-Myc on Phos-tag PAGE that was abolished by

phosphatase treatment (Figure 1E, lanes 5–10), suggesting that CK1a
and GRK2 can promote Smo phosphorylation.

CK1a and GRK2 Are Required for Shh-Induced Smo
Phosphorylation

We next determined whether Shh normally induces Smo

phosphorylation and whether it does so through CK1a and

Author Summary

Hedgehog (Hh) signaling governs embryonic development
and adult homeostasis in species ranging from Drosophila
to human, and its malfunction has been implicated in a
wide range of human disorders. Hh signal is received by
the twelve-transmembrane receptor Patched and trans-
mitted intracellularly by the seven-transmembrane protein
Smoothened (Smo). How vertebrate Smo is activated in
order to transmit the Hh signal remains poorly understood.
Here we investigate the molecular mechanism of mam-
malian Smo (mSmo) activation and find it is similar to that
described for Drosophila Smo despite the marked
sequence divergence between them. We show that mSmo
is activated via phosphorylation at multiple sites by the
serine/threonine kinases CK1a and GRK2. We provide
evidence that Sonic hedgehog (Shh; the best studied of
the three mammalian pathway ligands) can regulate the
accessibility of mSmo to these kinases and that phosphor-
ylation promotes the ciliary accumulation of this trans-
membrane protein in its active conformation. Moreover,
increasing concentrations of Shh induce a progressive
increase in mSmo phosphorylation that fine-tunes mSmo
activity. Thus, our results provide novel insights into the
biochemical mechanism of vertebrate Hh signal transduc-
tion and reveal a conserved mode of Smo activation.

Mechanism of Smoothened Activation
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GRK2. Treating Smo-Myc transfected cells with a Shh-condi-

tioned medium but not a control medium induced a marked

mobility shift of Smo-Myc that was abolished by phosphatase

treatment (Figure 1E, lanes 3–4). Importantly, Shh-induced Smo-

Myc mobility shift was greatly reduced by treating cells with a

CK1 inhibitor CKI-7 [35] and/or a GRK inhibitor heparin [36]

(Figure 1F), suggesting that Shh induces Smo phosphorylation

through CK1 and GRK kinase activities.

To establish that CK1a and GRK2 are required for Shh-

induced Smo phosphorylation, we generated cell lines stably

expressing shRNA targeting CK1a, GRK2, or GRK5. Two

independent shRNA constructs that effectively and selectively

knocked down the targeted kinase were employed in our assay

(Figure S1A–B). In line with previous findings [31–33], CK1a or

GRK2 shRNA inhibited Shh pathway activity in the Gli-luc

reporter assay (Figure 1G, Figure S1C–D, H). In contrast, GRK5

shRNA did not alter Shh-induced Gli-luc expression (Figure 1G,

Figure S1E). Importantly, CK1a and/or GRK2 shRNA but not

GRK5 shRNA reduced Shh-induced mobility shift of Smo-Myc

(Figure 1H, Figure S1F), suggesting that CK1a and GRK2 are

required for Shh-induced Smo phosphorylation. We note that

Shh-induced Smo mobility shift was not completely abolished by

silencing CK1a and GRK2, likely due to an incomplete

elimination of these kinase activities by the RNAi approach

(Figure S1B). However, it is also possible that the residual Smo-

Myc phosphorylation in the presence of CK1a and GRK2 shRNA

could be due to the involvement of another kinase(s).

CK1 and GRK Phosphorylate Smo C-tail at Multiple Sites
To determine whether CK1 and GRK directly phosphorylate

Smo, we developed an in vitro kinase assay in which purified

GST-fusion proteins containing different regions of Smo C-tail

were incubated with a recombinant CK1 (CK1d from New

England Biolabs) or GRK (GRK5 from Cell Signaling Technol-

ogy) in the presence of c32-p-ATP. Two non-overlapping

fragments, amino acid (aa) 608–670 and aa 770–793, were

phosphorylated by both CK1 and GRK (Figure 2A, lanes 3, 5;

Figure 2B, lanes 3, 5), suggesting that they harbor CK1 and GRK

sites. GRK family kinases tend to phosphorylate S/T in an acidic

environment [37]. aa 608–670 contains three sequences (EP-

S615ADVS619S620A, QDVS642VT, and EIS666PELE) and aa 770–

793 contains one sequence (DADS791DF) that match GRK

consensus sites (Figure 2C). Indeed, mutating S615, S619 and S620

(SA1), S642 (SA2), or S666 (SA3) reduced and their combined

mutations (SA123) abolished phosphorylation of aa 608–670

(Figure 2B, lanes 8–12; Figure S2A and S2C, lanes 3–9), whereas

Figure 1. CK1a and GRK2 regulate Smo phosphorylation and conformation. (A) Gli-luciferase assay in NIH 3T3 cells transfected with Smo
and kinase expressing constructs and treated with or without Shh-conditioned medium. (B–D) FRET analysis in NIH 3T3 cells transfected with Smo-
CFPC/SmoYFPC (B), SmoCFPL2YFPC (C), or SmoCFPN/SmoYFPN (D) and treated with or without Shh-conditioned medium or cotransfected with
indicated kinase expressing constructs. Filled and open circles in the cartoons denote CFP and YFP, respectively. (E–F) Cell extracts were prepared
from NIH 3T3 cells transfected by indicated constructs and treated with or without indicated reagents, separated on SDS-PAGE gel containing 25 mM
Phos tag-conjugated acrylamide, followed by immunoblotting with an anti-Myc antibody. The inhibitors used are: CK1 inhibitor, CKI-7 (10 mM); GRK
inhibitor Heparin (HP, 1 mM). PP indicates l-phosphatase treatment. (G) Gli-luc assay in NIH 3T3 cells stably expressing shRNA targeting CK1a, GRK2,
or GRK5 and transfected with or without Smo and treated with or without Shh-conditioned medium. (H) Cell extracts were prepared from NIH 3T3
cells stably expressing shRNA targeting CK1a, GRK2, or GRK5 and transfected with Smo-Myc and treated with or without Shh-conditioned medium,
separated on the Phos tag-conjugated SDS-PAGE gel and immunoblotted with an anti-Myc antibody.
doi:10.1371/journal.pbio.1001083.g001

Mechanism of Smoothened Activation
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mutating S791 abolished phosphorylation of aa 770–793 by GRK

(Figure 2B, lane 14), suggesting that these Ser residues are GRK

sites.

CK1 phosphorylation sites conform to the consensus: D/E/S/

T(P)X1–3S/T [38]. Site-directed mutagenesis revealed that S615,

S619, and S620 mediated CK1 phosphorylation of aa 608–670

(Figure 2A, lanes 8–12; Figure S2A and Figure S2B, lanes 3–9),

whereas S774, S777, and S791 mediated CK1 phosphorylation of aa

770–793 (Figure 2A, lanes 14–16). aa 608–670SA1, which has

S615, S619, and S620 mutated to Ala but contains intact S642 and

S666, was not phosphorylated by CK1 (Figure 2A, lane 8),

suggesting that S642 and S666 are not CK1 sites. In addition, we

found that aa 581–612 was phosphorylated by CK1 but not by

GRK (Figure 2A, lane 18; unpublished data). This region contains

Figure 2. CK1 and GRK phosphorylate multiple sites in Smo C-tail. (A–B) In vitro kinase assay using a recombinant CK1d or GRK5 and purified
GST-fusion proteins carrying indicated Smo fragments. (C) A schematic drawing of a full-length Smo with the sequences of the six CK1/GRK
phosphorylation sites shown underneath (S0–S5) and color coded: blue for CK1 specific sites; red for GRK specific sites; green for sites phosphorylated
by both CK1 and GRK. Smo variants with the indicated substitutions are listed. Sequence alignment shows that the CK1/GRK phosphorylation sites
are highly conserved among Mouse (m), Human (h), Chick (g), and Zebrafish (z) Smo proteins. (D) Cell extracts were prepared from NIH 3T3 cells
transfected with Smo-Myc or SmoSA0–5-Myc and with or without cotransfection of the indicated kinase expressing constructs and treated with or
without Shh-conditioned medium. The extracts were separated on Phos tag-conjugated SDS-PGAE gel and immunoblotted with an anti-Myc
antibody. PP indicates l-phosphatase treatment. (E) Cell extracts were prepared from NIH 3T3 cells transfected with Smo-Myc and with or without
indicated kinase expressing constructs, followed by treating with or without Shh-conditioned medium or indicated kinase inhibitors. The extracts
were subjected to SDS-PAGE, followed by immunoblotting with the PS1 antibody. The membrane was stripped and probed with Myc antibody for
Smo-Myc. (F) Cell extracts prepared from shRNA lines targeting CK1a, GRK2, or GRK5 transfected by Smo-Myc and treated with or without Shh-
conditioned medium were analyzed as in (E). (G) NIH 3T3 cells were transiently transfected with Smo-Myc and treated without or with increasing
levels of ShhN peptides (1 nM, 2 nM, 5 nM). 8XGliBS-luc activities were normalized by control pRL-TK. Cell extracts were separated on Phos tag-
conjugated (top panel) or regular SDS-PAGE gel (bottom two panels), followed by immunoblotting with Myc or PS1 antibody. (H–I) Cell extracts from
NIH 3T3 cells transfected with the indicated constructs and treated with or without Shh-conditioned medium, CYC (cyclopamine; 10 mM), SAG
(200 nM), or 20-OHC (20a-hydroxycholesterol; 10 mM) were separated on SDS-PAGE gel and probed with PS1 antibodies. The membranes were
stripped and probed with Myc antibody to monitor Smo-Myc levels.
doi:10.1371/journal.pbio.1001083.g002
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a sequence matching CK1 consensus sites: ELS592FS594MHT597

VS599. Indeed, mutating S592, S594, T597, and S599 to Ala (aa 581–

612SA0) abolished CK1 phosphorylation of aa 581–612

(Figure 2A, lane 19).

For simplicity, we referred to S592, S594, T597, and S599

collectively as S0; S615, S619, and S620 as S1; S642 as S2; S666 as S3;

S774 and S777 as S4; and S791 as S5 (Figure 2C). Thus, S1 and S5

are phosphorylation sites for both CK1 and GRK, whereas S0/S4

and S2/S3 are selectively phosphorylated by CK1 and GRK,

respectively. Sequence alignment indicates that these phosphory-

lation sites are conserved among vertebrate Smo proteins

(Figure 2C).

To determine if the CK1/GRK sites identified in vitro mediate

Shh-induced Smo phosphorylation in vivo, we mutated S0–S5 to

Ala in Smo-Myc (SA0–5, Figure 2C). We found that the SA0–5

mutation abolished Shh, CK1a, or GRK2-induced Smo mobility

shift (Figure 2D, lanes 5–12). Furthermore, CK1a and GRK2

neither activated SA0–5 nor induced its conformational change

(Figure S2D–E).

To further characterize Smo phosphorylation in vivo, we

attempted to generate phospho-specific antibodies against phos-

phorylated CK1/GRK sites and succeeded in obtaining an

antibody (PS1) that specifically recognizes phosphorylated S1

(pS615, pS619, and pS620, Figure S2F). To monitor phosphorylation

at S1, NIH3T3 cells were transfected with Smo-Myc and

stimulated with or without Shh-conditioned medium. In the

absence of Shh, Smo-Myc exhibited a weak PS1 signal likely due

to basal phosphorylation (Figure 2E, lane 1). Shh induced a clear

increase in the intensity of the PS1 signal (Figure 2E, lane 3).

Coexpression of CK1a, GRK2, or both also increased the PS1

signal (Figure 2E, lanes 5, 7, and 9). On the other hand, Shh-

stimulated S1 phosphorylation was diminished by treating cells

with the CK1 and/or GRK2 kinase inhibitors (Figure 2E, lanes

11–13). Furthermore, CK1a or GRK2 shRNA reduced whereas

combined CK1a/GRK2 shRNA nearly abolished S1 phosphor-

ylation (Figure 2F, lanes 4, 6, and 8; Figure S2G). In contrast,

GRK5 shRNA did not affect S1 phosphorylation (Figure 2F, lane

10; Figure S2G), consistent with its lack of effect on Shh pathway

activity. These results demonstrate that Shh induces S1 phos-

phorylation by CK1a and GRK2.

Regulation of Smo Phosphorylation by Graded Shh
Signals, Oncogenic Mutations, and Small Molecules

Hh signaling strength depends on the level of Hh ligand [2]. To

determine if the level of Shh pathway activity correlates with the

level of Smo phosphorylation, NIH3T3 cells transfected with Smo-

Myc were treated with different levels of Shh, followed by mobility

shift assay on the phospho-tag gel or western blot with PS1. We

found that increasing levels of Shh induced a progressive increase

in the degree of Smo-Myc mobility shift (Figure 2G), suggesting

that Smo-Myc was phosphorylated at more sites in response to

higher levels of Shh. In addition, we found that increasing levels of

Shh resulted in a gradual increase in the PS1 signal (Figure 2G),

suggesting that the frequency of S1 phosphorylation increases with

increasing Shh concentration.

Several oncogenic mutations in human Smo have been

identified, including M1 and M2 [39]. The M2 mutation occurs

in the seventh transmembrane domain whose murine counterpart

is the A1 mutation [20,39]. Previous studies suggest that SmoA1

exhibits constitutive activity, accumulates at primary cilia, and

adopts an open conformation [16,20,22]. We found that SmoA1

exhibited slower mobility and elevated PS1 signal intensity

regardless of Shh treatment (Figure 2H, lanes 4–5; Figure S2H)

and that A1-induced PS1 signal and mobility shift were abolished

by the S1–5 mutation (A1SA1–5) (Figure 2H, lanes 7–8; Figure

S2H), suggesting that the oncogenic mutation mimics Shh

stimulation to induce Smo phosphorylation at CK1/GRK sites.

We also observed that M1 increased Smo phosphorylation (see

below).

Previous studies demonstrated that small molecules including

SAG and 20a-hydroxycholesterol (20-OHC) promote whereas

cyclopamine blocks Smo activation [20,21,40,41]. We found that

SAG and 20-OHC induced whereas cyclopamine blocked Smo

phosphorylation at CK1/GRK sites (Figure 2I), suggesting that

these small molecules regulate Shh signaling at the level of Smo

phosphorylation.

CK1/GRK Phosphorylation Sites Are Essential for Smo
Activation

To determine the functional significance of Smo phosphoryla-

tion, CK1/GRK sites were mutated to Ala individually or in

different combinations (referred to as SA mutation; Figure 2C),

and the effect of SA mutations on Smo activity was determined by

the Gli-luc reporter assay in smo2/2 MEFs. Mutating S0 (SA0) or

S1 (SA1) slightly reduced whereas their combined mutations (S01)

markedly inhibited Shh-induced Smo activity (Figure 3A). While

mutating S2 to S5 either individually (SA2, SA3, SA5) or in

combinations (SA23, SA45) had little if any effect on Smo

activation (Figure 3A), combined mutations of these sites with S1/

S0 (SA12, SA13, SA123, SA0–3, SA1–5, SA0–5) resulted in a

progressive decrease in Shh-induced Smo activity (Figure 3A).

Finally, simultaneously mutating all CK1/GRK sites (SA0–5)

completely abolished Shh-induced Smo activation. These results

suggest: 1) phosphorylation at CK1/GRK sites is essential for Smo

activation; 2) S0 and S1 are the major sites while S2 to S5 may

play a fine-tuning role; and 3) the level of Smo activity correlates

with its level of phosphorylation.

To determine whether phosphorylation renders constitutive

Smo activity, we converted individual or different combinations of

CK1/GRK sites to Asp (referred to as SD mutations) to mimic

different levels of phosphorylation (Figure 2C). SD mutations of

individual sites (SD0, SD1, SD2, SD3) or several combinations

(SD23, SD12, SD13) caused little if any increase in the basal

activity of Smo (Figure 3B); however, other combinations (SD01,

SD123, SD0–3, SD1–5, SD0–5) resulted in a clear elevation of

Smo basal activity and the level of basal activity correlates with the

number of altered sites (Figure 3B). Nevertheless, the constitutive

activities of SmoSD variants are lower compared with that of

SmoA1 (Figure 3B). Furthermore, the SD variants were further

stimulated by Shh, whereas SmoA1 was no longer regulated by

Shh (Figure 3B). Thus, phosphorylation at CK1/GRK sites

increases Smo activity in a dose dependent manner but does not

confer full activation.

To determine whether the oncogenic mutation activates Smo

through its phosphorylation, we mutated several CK1/GRK sites

to Ala in SmoA1. Mutating S2/3 (A1SA2, A1SA3, A1SA23) had

little if any effect on SmoA1 activity (Figure 3C). In contrast, S1

mutation (A1SA1) or combined mutations of S1 with other sites

(A1SA12, A1SA13, A1SA123, A1SA1–5) greatly reduced or

nearly abolished SmoA1 activity (Figure 3C), suggesting that S1

phosphorylation is critical for the oncogenic mutation to activate

Smo. Of note, the SA1 mutation had a more profound effect on

the activity of SmoA1 than that of wild type Smo in the presence

of Shh (compare SmoA1SA1 with SmoSA1+Shh). The reason for

this difference is unclear, but it is possible that the oncogenic

mutation may not fully mimic Shh stimulation so that SmoA1

relies on S1 phosphorylation for its activation more than wild type

Smo.

Mechanism of Smoothened Activation
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We also found that mutating SA0–5 abrogated SAG-induced

Smo activation, whereas SD0–5 exhibited resistance to cyclopa-

mine inhibition (Figure S2I), suggesting that SAG and cyclopa-

mine regulate Smo activity by influencing its phosphorylation.

Mutating CK1/GRK Sites Affects Smo Activity In Vivo
We next used chick neural tubes to determine the role of Smo

phosphorylation in Shh signaling in living organisms. CFP-tagged

constructs expressing wild type (WT) or mutant forms of Smo were

electroporated into one side of the neural tube, leaving the other

side as an internal control, followed by immunostaining to

visualize the expression of various Hh responsive genes. Electro-

poration of SmoWT or Smo variants that mimic low-level

phosphorylation (SD1, SD12) did not significantly alter the

expression of the marker genes (Figure 3D and Figure S3A);

however, electroporation of Smo variants that mimic high-level

phosphorylation (SD123, SD1–5, SD0–5) resulted in a dorsal

expansion of several ventral markers, including Nkx2.2, Olig2,

Nkx6.1, and Islet1 (Figure 3D and Figure S3D). Furthermore,

SD123 and SD0–5 but not SmoWT restored the expression of

ventral markers suppressed by a dominant form of Ptc, Ptc1Dloop2

(PtcD2), as well as prevented the derepression of the dorsal marker

Pax7 (Figure 3E) [42]. These results suggest that phosphorylation

at CK1/GRK sites increased the basal activity of Smo in the chick

neural tubes.

In line with tissue culture experiments, SmoA1 is more potent

than SmoSD variants in inducing ectopic expression of ventral

marker genes in chick neural tubes (Figure 3D, Figure S3B).

Mutating S1 (A1SA1) or combination of S1 with other sites to Ala

(A1SA12, A1SA13, A1SA123, A1SA1–5) diminished or complete-

Figure 3. Phosphorylation at multiple CK1 and GRK sites regulates Smo activity both in vitro and in vivo. (A–C) Gli-luc activity assays for
smo2/2 MEFs transfected with the indicated Smo expressing constructs together with the 8XGliBS-luc reporter gene and a control pRL-TK. The cells
were treated with or without Shh-conditioned medium 2 d after transfection. (D–E) HH st11–12 chick neural tubes were electroporated with the
indicated expression constructs and assayed by immunohistochemistry 48 h after transfection. (D) The expression of Pax7, Islet1/2, Olig2, and Nkx2.2
in anterior thoracic regions of embryos transfected with wild-type Smo (SmoWT), SmoSD123, SmoA1, or SmoA1SA1–5. Cells expressing the
constructs were identified by CFP (green). Arrows indicate the expanded expression of Islet1/2, Olig2, and Nkx2.2 and the reduction of Pax7
expression. SmoA1 exhibited potent constitutive activity, leading to the repression of Pax7 and induction of ectopic Islet1/2, Olig2, and Nkx2.2.
Mutating multiple CK1/GRK sites in SmoA1 (A1SA1–5) diminished its constitutive activity. SmoSD123 also exhibited constitutive activity, resulting in a
reduction of Pax7 expression and expansion of Islet1/2, Olig2, and Nkx2.2, albeit less dramatic than SmoA1. Note that there was also a subtle
expansion of Olig2 in some embryos transfected with SmoWT. (E) Embryos co-transfected at a ratio of 2:1 with Ptc1Dloop2 (PtcD2) and either Smo-WT,
SmoSD0–5, or SmoA1 and assayed for Pax7, Islet1/2, Olig2, and Nkx2.2 expression. Ptc1Dloop2 inhibits Shh signaling resulting in the repression of
Islet1/2, Olig2, and Nkx2.2, and a ventral expansion of Pax7. SmoSD123 and SmoSD0–5 but not SmoWT overcame the dominant inhibitory effect of
Ptc1Dloop2.
doi:10.1371/journal.pbio.1001083.g003
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ly abolished A1-mediated ectopic activation of ventral markers or

suppression of Pax7, whereas mutating S2 and 3 (A1S23) had little

if any effect on SmoA1 activity (Figure 3D, Figure S3B), suggesting

that phosphorylation at S1 is critical for the oncogenic mutation to

activate Smo in the chick neural tube.

Phosphorylation of Smo Promotes Its Ciliary
Accumulation

Shh induces ciliary accumulation of Smo that correlates with

pathway activation, but the underlying mechanism is poorly

understood [16,17]. We determined whether Shh promotes Smo

ciliary localization by inducing its phosphorylation at CK1/

GRK sites by examining ciliary localization of CFP-tagged wild

type or phosphorylation site mutant forms of Smo in MEF cells

treated with or without Shh-conditioned medium. As overex-

pression by transient transfection caused high basal ciliary

localization of Smo, we used retroviral infection to express low

levels of exogenous Smo. In these conditions, SmoWT was found

in less than 5% of cilia in the absence of Shh but accumulated in

,70% of cilia in response to Shh treatment (Figure 4A–B). We

found that SA mutations inhibited Shh-induced whereas SD

mutations promoted basal ciliary accumulation of Smo in a dose-

dependent manner (Figure 4A–B). In addition, constitutive

ciliary localization of SmoA1 was inhibited by the SA1–5

mutation (A1SA1–5, Figure 4A–B). Thus, phosphorylation at

CK1/GRK sites is both necessary and sufficient for the ciliary

localization of Smo.

A recent study suggested that b-arrestins mediate Smo ciliary

localization by binding to Smo and facilitating its interaction with

the kinesin-II motor [43]. We hypothesized that Shh-induced Smo

phosphorylation promotes its ciliary localization by recruiting b-

arrestins. To test this possibility, we transfected NIH 3T3 cells with

a YFP-tagged b-arrestin2 (b-arr2-YFP) together with Myc-tagged

wild type or mutant forms of Smo. As shown in Figure 4, both Shh

and the A1 mutation increased the amount of b-arr2 coimmuno-

precipitated with Smo (Figure 4C, lanes 2, 7). The SA mutations

nearly abolished Shh- or A1-stimulated interaction (Figure 4C,

lanes 4,10), whereas SD0–5 promoted Smo/b-arr2 interaction

(Figure 4C, lane 5).

We also confirmed that phosphorylation regulates Smo/b-arr2

association using FRET assay. We found that Shh and A1

increased the FRET between Smo-CFP and b-arr2-YFP, and this

increase was abolished by the SA0–5 mutation (Figure 4D).

Conversely, SD0–5 increased the basal FRET between Smo-CFP

and b-arr2-YFP. Thus, Shh-induced phosphorylation at CK1/

GRK sites increases the association between Smo and b-arr2,

which may account for the increased ciliary localization of Smo.

Phosphorylation Promotes an Open Conformation of
Smo

To determine whether phosphorylation at CK1/GRK sites

regulates Smo conformation, we mutated individual or combina-

tion of CK1/GRK sites to either Ala or Asp in C-terminally CFP/

YFP-tagged Smo and carried out FRET analysis in NIH3T3 cells.

Figure 4. Regulation of Smo ciliary localization by CKI/GRK-mediated phosphorylation. (A–B) Wild-type MEFs infected with retrovirus
encoding CFP-tagged wild-type Smo or indicated Smo variants and treated with or without Shh-conditioned medium were immunostained to show
the expression of Acetylated (Ac)-tubulin (Red) that labels the primary cilium, GFP (green) that labels the CFP-tagged Smo proteins, and DRAQ5 (blue)
that labels the nucleus (A). The insets show enlarged views of the selected regions with shifted overlays. Quantification of ciliary localization of
infected Smo variants as indicated by the percentage of GFP+ cilia is shown in (B). Over 100 ciliated cells were counted for each Smo construct. (C)
Shh promotes the interaction between Smo with b-arr2. NIH 3T3 cells were transfected with the indicated Myc-tagged Smo variants and YFP tagged
b-arr2. Cells lysates were subjected to western blot analysis with Myc and GFP antibodies or immunoprecipitated with the Myc antibody, followed by
western blot analysis with the GFP antibody. Asterisk indicates IgG heavy chain. (D) FRET analysis of NIH 3T3 cells transfected with indicated C-
terminally CFP-tagged Smo variants and C-terminally YFP-tagged b-arr2 and treated with or without Shh-conditioned medium.
doi:10.1371/journal.pbio.1001083.g004
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SA0 or SA1 slightly reduced Shh-induced FRETC, whereas

individual mutations at other sites (SA2, SA3, SA5) had no effect

(Figure 5A). S0 and S1 double mutation (S01) or combined

mutation of S0/1with other sites (SA12, SA13, SA123, SA1–5,

SA0–5) greatly reduced or nearly abolished Shh-induced FRETC

(Figure 5A). On the other hand, the SD mutations resulted in a

dose-dependent increase in the basal FRETC (Figure 5B). Overall,

the effects of SA or SD mutations on Shh-induced FRETC

correlated with their effects on Shh-induced Smo activation.

The SA mutations also diminished A1-induced FRETC

(Figure 5C). Furthermore, SA0–5 abolished SAG-induced

FRETC, whereas SD0–5 conferred high basal FRETC even in

the presence of cyclopamine (Figure 5D). Thus, phosphorylation at

CK1/GRK sites induced by Shh, A1, and SAG causes a

conformational switch in Smo C-tail, leading to its dimerization,

whereas cyclopamine locks Smo in the closed conformation by

blocking its phosphorylation.

Smo Phosphorylation at the Primary Cilium
To examine the spatial and temporal regulation of Smo

phosphorylation, we carried out immunohistochemistry experi-

ments using the PS1 antibody that recognizes phosphorylated S1.

Because PS1 failed to detect endogenous Smo, we generated

NIH3T3 cells stably expressing low levels of Smo-CFP

(NIH3T3Smo-CFP). NIH3T3Smo-CFP did not exhibit significant

basal ciliary localization of Smo-CFP or ciliary PS1 signal but

accumulated both signals in the cilia upon stimulation with Shh,

SAG, or 20-OHC (Figure 6A, Figure S4A). Cyclopamine induced

ciliary accumulation of Smo-CFP but not PS1 (Figure 6A, Figure

S4A). Furthermore, cyclopamine blocked Shh or 20-OHC but

not SAG-induced ciliary PS1 signals (Figure 6A; Figure S4A).

Thus, Shh, SAG, and 20-OHC induced ciliary accumulation of

phosphorylated Smo, whereas cyclopamine trapped unpho-

sphorylated Smo in the cilia. The difference in the sensitivity of

SAG and 20-OHC to cyclopamine could be due to different

mechanisms of action employed by these small molecules to

regulate Smo.

To examine the dynamics of Smo phosphorylation, we treated

NIH3T3SmoCFP cells with Shh-conditioned medium or SAG for

different periods of time (1, 2, 4, and 24 h). In line with a previous

report [17], both Shh and SAG induced a rapid ciliary

accumulation of Smo-CFP, and the percentage of Smo-CFP

positive cilia as well as the mean intensity of SmoCFP signal

increased over time (Figure 6B–D). Importantly, we observed a

similar kinetics for PS1 accumulation in the primary cilia

(Figure 6B–D). Furthermore, the ratio of PS1 versus Smo-CFP

signal intensity in primary cilia remained relatively constant over

time.

Figure 5. Shh, A1, SAG, and cyclopamine regulate Smo conformation through CK1/GRK-mediated phosphorylation. (A–C) FRET
analyses of NIH 3T3 cells transfected with C-terminally CFP/YFP-tagged wild type Smo or Smo variants with the indicated mutations and treated with
or without Shh-conditioned medium (mean 6 s.d., n$10). (D) FRET analysis in NIH 3T3 cells transfected with Smo-CFPC/YFPC, SmoSA0–5-CFPC/YFPC,
or SmoSD0–5-CFPC/YFPC, and treated without or with Shh-conditioned medium, 200 nM SAG, or a combination of Shh-conditioned medium and
10 mM cyclopamine (mean 6 s.d., n$10).
doi:10.1371/journal.pbio.1001083.g005
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We also monitored Smo phosphorylation in whole cells by

western blot using the PS1 and GFP antibodies. We found that the

ratio of PS1 versus Smo-CFP signal intensity was lower at early

time points and gradually increased over time (Figure 6E). Thus,

Smo phosphorylation exhibited faster kinetics in primary cilia than

in whole cells, implying that Smo could be preferentially

phosphorylated near or in the primary cilia in response to Shh

or SAG, leading to its rapid accumulation in the cilia.

Efficient Smo Phosphorylation Depends on the Kinesin-II
Ciliary Motor

To investigate whether primary cilia regulate Smo phosphor-

ylation, we disrupted the cilia using a dominant negative form of

Kif3b (DN-Kif3b), a subunit of the kinesin-II motor required for

cilia formation [44]. We found that DN-Kif3b diminished but did

not completely block Shh-induced PS1 signal associated with

either Smo-Myc or SmoA1-Myc (Figure 6F, lanes 3, 6), suggesting

that efficient phosphorylation at S1 depends on the kinesin-II

ciliary motor.

We also analyzed whether the primary cilium is required for

Shh-induced Smo conformational change by measuring FRETC

in the wild type or Kif3a2/2 MEFs transfected with wild type or

mutant forms of Smo-CFPC/YFPC. We found that Shh or A1-

induced FRETC was dramatically reduced in Kif3a2/2 MEFs

compared with WT MEFs (Figure S4B). In contrast, SmoSD0–5-

CFPC/YFPC exhibited high FRETC in both WT and Kif3a2/2

MEFs (Figure S4B). Thus, in the absence of primary cilia, Shh and

A1 failed to induce the active Smo conformation because of

compromised Smo phosphorylation, but an open conformation

can be restored by phospho-mimetic mutations.

Although SmoSD0–5 adopts an open conformation in Kif3a2/2

MEFs, it failed to induce any Gli-luc expression in the absence of

primary cilia (Figure S4C). In contrast, overexpression of Gli1 in

Kif3a2/2 MEFs activated the Gli-luc reporter. These observations

suggest that the primary cilium is not only required for Smo

activation but is also essential for signal transduction downstream of

activated Smo.

Shh Promotes Binding of CK1a and GRK2 to Smo
Finally, we investigated how Shh induces Smo phosphorylation

by testing the possibility that Shh promotes the accessibility of Smo

to its kinases. By immunoprecipitation assay, we found that Shh

markedly increased the association between Smo-Myc and

endogenous CK1a and GRK2 in NIH3T3 cells (Figure 7B, lanes

1–2; Figure 7C). In addition, Shh induced accumulation of CK1a
in primary cilia (Figure 7D). The binding of CK1a/GRK2 to

Figure 6. Smo phosphorylation at the primary cilium. (A) NIH 3T3 cells stably expressing Smo-CFP were either untreated (control) or treated
with Shh-conditioned medium (Shh), SAG (200 nM), 20-OHC (10 mM), CYC (10 mM), or a combination of Shh-conditioned medium and CYC (10 mM).
Cells were immunostained to show the expression of acetylated tubulin (red; primary cilium), GFP (green; Smo), and PS1 (phosphorylated Smo; blue).
Images in the insets are shifted overlays of the selected fields. (B–C) The percentage of Smo-CFP (GFP) or phosphorylated Smo (PS1) positive primary
cilia at different time after cells were treated with or without Shh or SAG (200 nM). Over 100 ciliated cells were counted for each time point, n = 3. (D)
NIH 3T3Smo-CFP cells were treated with 200 nM SAG for 1, 2, 4, or 24 h, followed by immunostaining to show the expression of acetylated tubulin
(red), GFP (green), and PS1 (blue). Representative images with shifted overlay were shown for each time point. Histograms underneath show the
relative intensities of PS1 or GFP fluorescence signals and their ratios (PS1/CFP) at each time point. The ratios are normalized to that of 24 h time
point, which is set at 100%. (E) NIH 3T3Smo-CFP cells were treated with Shh-conditioned medium for 0, 1, 2, 4, or 24 h. Cell extracts at each time point
were separated on SDS-PAGE and probed with the indicated antibodies. Histograms show the relative intensities of PS1 and GFP bands quantified by
the ImageJ software and their ratio (PS1/CFP) normalized to that at 24 h. (F) Cell extracts prepared from NIH 3T3 cells transfected with the indicated
constructs and treated with or without Shh-conditioned medium were subjected to western blot analysis with the indicated antibodies.
doi:10.1371/journal.pbio.1001083.g006
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Figure 7. Shh promotes CK1a/GRK2 binding to Smo. (A) Schematic drawings of full-length and truncated Smo with point mutations indicated
by the asterisks. Black boxes denote the transmembrane domains. L430A is located in the third intracellular loop; A1 in the seventh transmembrane
domain; M1, S570A, and I573A are located in the membrane proximal region of the Smo C-tail. (B–C, E–H) Coimmunoprecipitation assays to
determine the interaction between CK1a/GRK2 with different forms of Smo. NIH 3T3 cells were transfected with the indicated Myc-tagged or HA-
tagged Smo constructs, followed by immunoprecipitation and western blot analysis with indicated antibodies. Cell lysates were also directly
immunoblotted by the indicated antibodies. Histogram in (C) shows the quantification of (B) with CK1a binding normalized by the Smo input and
compared with lane 1. *p,0.05, **p,0.01, ***p,0.005. Western blots were quantified using the ImageJ software followed by Prism analysis, n = 3.
Quantifications of (G) and (H) are shown in Figure S5. (D) NIH 3T3 cells untreated (control) or treated with Shh-conditioned medium were
immunostained to show the expression of acetylated tubulin (red), CK1a (green), and DRAQ5 (blue). Images in the insets are shifted overlays of the
selected fields. (I) NIH 3T3 cells were transfected with the indicated Myc-tagged Smo constructs either alone or together with a Flag-tagged CK1a
construct and treated with or without Shh-conditioned medium, followed by immunoprecipitation and western blot analysis with the indicated
antibodies. Cell lysates were also directly immunoblotted by the indicated antibodies. (J) A model for how Smo phosphorylation is regulated by Shh.
See text for details.
doi:10.1371/journal.pbio.1001083.g007
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Smo-Myc is specific because we did not detect association between

Smo-Myc and endogenous CK1e or GRK5 under the same

condition (unpublished data).

To further explore the interactions between Smo and CK1a/

GRK2 and their regulation, we generated several N- or C-

terminally truncated forms of Smo (Figure 7A). As shown in

Figure 7E, CK1a and GRK2 coimmunoprecipitated with HA-

tagged Smo C-tail from aa 544 to aa 793 (SmoCT). Deletion of aa

544–565 from the Smo C-tail (SmoCT2) did not affect CK1a/

GRK2 binding; however, further deletion of aa 565–588

(SmoCT3) abolished CK1a binding but did not affect GRK2

binding, suggesting that the membrane proximal region of Smo C-

tail between aa 565 and 588 mediates CK1a binding, whereas the

distal region between aa 588 and 793 binds GRK2. Consistent

with this, we found that SmoDC588 but not SmoDC565 pulled

down CK1a and neither SmoDC565 nor SmoDC588 pulled down

GRK2 (Figure 7G, lanes 3–6). Thus, the CK1a binding pocket is

located N-terminal to the phosphorylation sites.

Interestingly, SmoDC588 exhibited increased basal binding to

CK1a (Figure 7G, compare lanes 1 and 5), suggesting that the

distal region of Smo C-tail inhibits CK1a binding in the absence of

Shh. We hypothesized that unphosphorylated Smo C-tail adopts a

closed conformation that could mask the membrane proximal

CK1a binding domain (Figure 7J). Indeed, the SA0–5 mutation,

which locked Smo C-tail in its closed conformation, diminished

Shh-stimulated CK1a binding, whereas the SD0–5 mutation,

which locked the Smo C-tail in its open conformation, increased

the basal CK1a binding (Figure 7B, lanes 3–6; Figure 7C).

However, the SA0–5 and SD0–5 mutations in the context of Smo

C-tail (SmoCT-SA and SmoCT-SD) did not significantly alter

CK1a binding (Figure 7F), unlike their effect in the context of full-

length Smo. Thus, instead of directly altering the CK1a binding

site, phosphorylation may regulate CK1a binding by influencing

the conformation of Smo C-tail and thus controlling the

accessibility of the CK1a binding pocket. In contrast, the SD0–5

mutation dramatically increased GRK2 binding in the context of

both SmoCT and full-length (Figure 7B and 7F), suggesting that

phosphorylation may increase the affinity of a GRK2 binding

site(s) in the Smo C-tail.

Although kinase binding to Smo is influenced by phosphory-

lation, we found that Shh still enhanced the binding of CK1a to

SmoSA0–5 and SmoSD0–5 (Figure 7B, lanes 3–6; Figure 7C).

Furthermore, CK1a binding to SmoDC588, which lacks all the

CK1/GRK phosphorylate sites, was also upregulated by Shh

(Figure 7G, compare lanes 5 and 6; Figure S5). These results

demonstrate that Shh can stimulate CK1a binding through a

phosphorylation-independent mechanism. In contrast, GRK2

binding to SmoSD0–5 or SmoSA0–5 was no longer regulated

by Shh (Figure 7B, lanes 3–6), suggesting that Shh promotes

GRK2 binding mainly through the phosphorylation-dependent

mechanism. Taken together, these data suggest that Shh may

regulate CK1a/GRK2 binding in two steps: 1) Shh stimulates

CK1a binding to Smo prior to its phosphorylation, which may

provide a mechanism to initiate Smo phosphorylation, and 2)

phosphorylation of Smo C-tail releases its inhibition on CK1a
binding and at the same time increases its binding affinity for

GRK2, leading to amplification of Smo phosphorylation

(Figure 7J).

Regulation of CK1a Binding and Smo Phosphorylation by
Gain- or Loss-of-Function Smo Mutations

To establish the relationship between kinase association and

Smo phosphorylation, we examined how gain- or loss-of-function

Smo mutations affect CK1a binding, including two oncogenic

mutations (A1 and M1) and three loss-of-function mutations in or

near the CK1a binding pocket identified by previous studies

(Figure 7A) [28,39]. We found that both A1 and M1 resulted in a

constitutive CK1a/GRK2 binding and Smo phosphorylation with

A1 being more potent than M1 (Figure 7H, lanes 3 and 5; Figure

S5). In addition, Shh further increased the binding of CK1a to

and phosphorylation of SmoM1 but not SmoA1 (Figure 7H, lanes

4 and 6; Figure S5). In contrast, the loss-of-function mutations

L430A and S570A blocked Shh-induced CK1a/GRK2 binding

and Smo phosphorylation (Figure 7H, lanes 7–10; Figure S5).

Another loss-of-function mutation, I573A, which mainly affected

Smo stability [28], slightly reduced Shh-stimulated CK1a binding

and Smo phosphorylation (Figure 7H, lanes 11–12; Figure S5).

If L430A and S570A affect Smo phosphorylation because they

interfere with the accessibility of Smo to its kinases, one would

expect that increasing the levels of Smo kinases might rescue the

phosphorylation defect. Indeed, cotransfection of CK1a with

SmoL430A or SmoS570A resulted in their efficient phosphoryla-

tion (Figure 7I).

Finally, we found that A1 mimicked Shh stimulation to

enhanced CK1a binding to SmoD588 (Figure 7G, compare lanes

7–8 with 5–6; Figure S5), whereas L430A blocked both the basal

and Shh-stimulated binding of CK1a to SmoD588 (Figure 7G,

lanes 11–12, Figure S5), suggesting that these mutations affect the

phosphorylation-independent mechanism that regulates CK1a
binding (Figure 7J). It is possible that the third intracellular loop

may also contribute to CK1a binding and this is disrupted by

L430A.

In contrast, the M1 and S570 mutations did not affect either the

basal or Shh-stimulated binding of CK1a to SmoD588 (Figure 7G,

lanes 9–10 and 13–14; Figure S5). Thus, M1 and S570 affect

CK1a binding only in the context of full-length Smo and may act

mainly by regulating the release of C-tail inhibition (Figure 7J).

Discussion

Smo is a central component of the Hh signal transduction

cascade and an important cancer drug target, but the molecular

mechanism by which Smo is activated has remained poorly

understood. In this study, we demonstrate that Smo is activated by

multi-site phosphorylation mediated by CK1a and GRK2, and

phosphorylation promotes both ciliary localization and active

conformation of Smo. We provide evidence that graded Shh

signals induce increasing levels of Smo phosphorylation that fine-

tune Smo activity. In addition, we demonstrate that oncogenic

mutations and small molecule Hh pathway modulators including

SAG, oxysterols, and cyclopamine regulate Smo through CK1a/

GRK2-mediated phosphorylation. We provide evidence that Shh

promotes Smo phosphorylation by regulating its accessibility to

CK1a/GRK2 and effective Smo phosphorylation depends on the

primary cilium. The CK1a/GRK2 sites we identified are

conserved among vertebrate Smo proteins; thus, the mechanism

we uncover here is likely to be conserved in other vertebrate

species.

CK1a and GRK2 Regulate Smo Through Multi-Site
Phosphorylation

It has been well established that Drosophila Smo is hyperpho-

sphorylated by multiple kinases in response to Hh stimulation

[22,23,25–27]; however, sequence divergence between Drosophila

and vertebrate Smo proteins makes it unclear whether vertebrate

Smo proteins are similarly phosphorylated in response to Hh.

Using the phospho-tag gel and a phospho-specific antibody, we

provide the first evidence that Shh induces hyperphosphorylation
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of Smo, which is mediated by CK1a and GRK2. Several lines of

evidence suggest that CK1a and GRK2 are bona fide Smo

kinases. First, our in vitro kinase assay with purified Smo

fragments and recombinant kinases demonstrated that both

CK1 and GRK phosphorylate multiple sites in Smo C-tail.

Second, mutating the CK1/GRK sites in the Smo C-tail abolished

Shh-stimulated Smo phosphorylation in vivo. Third, using a

phospho-specific antibody that recognized an overlapping CK1/

GRK site (S1), we demonstrated that Shh induced phosphoryla-

tion at this site through CK1a and GRK2.

We identified a total of six CK1a/GRK2 phosphorylation

regions, which we named S0 to S5. S0 and S1 contain multiple

phospho-acceptor Ser/Thr residues. Our functional study suggests

that S0 and S1 play a major role while other sites play a fine-

tuning role in Smo regulation. The employment of multi-site

phosphorylation may allow graded Hh morphogens to induce

different levels of Smo activity through differential phosphoryla-

tion. Indeed, we found that increasing levels of Shh induced a

progressive increase in the level of Smo phosphorylation.

Furthermore, increasing the number of SA mutations gradually

decreased the level of Shh-induced Smo activity, whereas

increasing the number of phospho-mimetic mutations progres-

sively increased the level of basal Smo activity.

Although phospho-mimetic mutations increase the basal activity

of Smo both in vitro and in vivo, they do not confer full activation

of Smo, which is in contrast to the A1/M2 oncogenic mutation.

One possibility is that the SD mutations may not fully mimic

phosphorylation and may even lock Smo in a less optimal

conformation for activation. However, we think this is unlikely

because the SmoSD variants can be further stimulated by Shh to

reach their full activity. In addition, phospho-mimetic mutations

did not affect SmoA1 activity (unpublished data). These

observations suggest that Shh and A1/M2 may stimulate an

additional mechanism(s) that acts in conjunction with CK1a/

GRK2-mediated phosphorylation to fully activate Smo. The

proposed paralleled mechanisms could be phosphorylation-

independent and/or could involve additional kinase(s). Further-

more, although our in vitro and in vivo assays suggest that

phosphorylation at S0–S5 is mediated by CK1a/GRK2, we

cannot rule out the possibility that some of these sites might also be

phosphorylated by other kinases.

Smo Phosphorylation, Conformational Switch, and Ciliary
Localization

A prevalent view regarding Smo activation is that Hh activates

Smo by inducing its ciliary localization [16,17]. However, this

view has been challenged by more recent studies showing that the

Smo inhibitor cyclopamine promotes instead of blocks ciliary

localization of Smo [18,19,45], suggesting that ciliary localization

of Smo is insufficient for its activation. Our previous and current

studies demonstrate that Shh induces a conformational switch in

Smo that is also induced by the A1 mutation and SAG but is

blocked by Smo inhibitors including cyclopamine [22,46,47],

suggesting that Hh-induced Smo conformational switch may

represent an additional step for Smo activation. How Smo

conformational switch and ciliary localization are regulated

remained unknown. Here we demonstrate that both events are

governed by CK1a/GRK2-mediated phosphorylation of Smo C-

tail. CK1a/GRK2 phosphorylation-deficient forms of Smo are

locked in a closed conformation and fail to accumulate in primary

cilia in response to Shh stimulation, whereas phospho-mimetic

forms adopt an open conformation and accumulate in the primary

cilia independent of Shh.

In the absence of Hh, Smo may move in and out of the primary

cilium with the exit rate far exceeding the entry rate, resulting in a

low steady state level of Smo in the primary cilium. However, Hh-

induced Smo phosphorylation and conformational change could

tilt the balance by increasing the entry rate and/or decreasing the

exit rate. In support of this model, we found that Hh-induced

phosphorylation promoted the binding of b-arr2 to Smo. A recent

study demonstrated that b-arrestins mediate the interaction

between Smo and the anterior-grade trafficking motor kinesin-II

[43]. Thus, Hh-induced phosphorylation may promote Smo

ciliary accumulation by facilitating its anterior grade trafficking

through recruiting b-arr2. It is also possible that phosphorylation

may impede the retrograde trafficking of Smo or may stabilize

Smo protein in the primary cilium.

Regulation of Smo Phosphorylation
Our data suggested that Shh stimulates Smo phosphorylation,

at least in part by regulating the accessibility of Smo to its kinases.

Our deletion analyses revealed that CK1a and GRK2 bind Smo

through the membrane proximal and distal regions of Smo C-tail,

respectively. We provided evidence that Smo C-tail in its closed

conformation inhibits CK1a binding likely by masking the

membrane proximal CK1a binding pocket through steric

hindrance, and this inhibition is released by phosphorylation that

promotes the open conformation of Smo C-tail. Furthermore, we

demonstrate that Shh stimulates the binding of CK1a to the

membrane proximal region of Smo C-tail through a mechanism

that parallels with the phosphorylation-dependent mechanism. We

propose a two-step mechanism for Shh-regulated kinase associa-

tion and Smo phosphorylation (Figure 7J). In the first step (referred

to as the initiation step), Shh stimulates CK1a binding to Smo

prior to its phosphorylation, likely by inducing a local conforma-

tional change near the membrane proximal region that either

optimizes the CK1a binding pocket or makes it more accessible to

CK1a. This step may contribute to the initiation of Smo

phosphorylation and is promoted by the A1 mutation but is

blocked by the L430A mutation. In the second step (referred to as

the amplification step), CK1a-initiated phosphorylation further

increases CK1a binding by promoting the open conformation of

Smo C-tail. Furthermore, phosphorylation of Smo C-tail increases

its binding affinity for GKR2. Increased binding of CK1a/GRK2

forms a feedback loop to further increase the level of Smo

phosphorylation.

There could be a basal association of CK1a/GRK2 with Smo

in quiescent cells, and Shh could induce a change in Smo that

makes the CK1/GRK sites more accessible to the bound kinases,

which may also contribute to the initiation of Smo phosphoryla-

tion. Finally, Smo phosphorylation is likely to be counteracted by a

phosphatase(s), which could be essential for keeping basal Smo

phosphorylation low. Therefore, Shh could regulate the activity or

accessibility of a Smo phosphatase(s) in addition to regulating the

Smo kinases.

Our time course study revealed that phosphorylation of Smo

occurred more rapidly in the primary cilia compared with the

whole cell (Figure 6). In addition, expression of a dominant

negative form of Kif3b, which blocks ciliogenesis, attenuated Shh-

or A1-induced Smo phosphorylation. These observations suggest

that Smo phosphorylation occurs more efficiently in the primary

cilia. Interestingly, we found that CK1a is accumulated in primary

cilia in response to Shh stimulation (Figure 7D). The increase in

the local concentration of CK1a may explain, at least in part, why

phosphorylation of Smo is more effective in the primary cilium. It

is also possible that Shh-mediated inhibition of Ptc is more

effective in the primary cilium.

Mechanism of Smoothened Activation
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Parallels Between Mammalian and Drosophila Smo
Activation

Despite the profound difference in the primary sequence

between Drosophila and vertebrate Smo, our study suggests that

their activation mechanisms are remarkably similar (Figure 8). In

both cases, Hh induces Smo phosphorylation at multiple sites

(although by distinct sets of kinases) that fine-tune Smo activity,

and phosphorylation activates Smo by inducing its active

conformation and regulating its subcellular localization (cell

surface accumulation for dSmo and ciliary accumulation for

mSmo). Hh-stimulated phosphorylation induces dSmo conforma-

tion change by antagonizing multiple Arg clusters in its C-tail [22].

As the inactive conformation of mSmo is also maintained by a long

stretch of basic cluster in its C-tail [22], multisite phosphorylation

may promote mSmo conformational change through a similar

mechanism. A recent study has demonstrated that GRK2

regulates dSmo by both kinase-dependent and kinase-independent

mechanisms [48]. The observation that Shh induces mSmo/

GRK2 complex formation raises an interesting possibility that

GRK2 may also function as a molecular scaffold to promote

mSmo activation.

Materials and Methods

Constructs
pGE-Smo-CFPC, pGE-Smo-YFPC, and pGE-Smo-CFPL2YFPC

have been described previously [22]. SmoSA and SmoSD

substitutions were generated by site-directed PCR mutagenesis.

To generate GST-Smo fusion constructs, DNA fragments

encoding Smo C-terminal regions with wild type or mutated

phosphorylation sites were amplified by PCR and inserted

between SalI and NotI sites of the pGEX-4T-3 vector. To construct

XZ201-Smo-CFP retrovirus, Smo-CFP variants were PCR out

and subcloned between HpaI and SalI sites in the MSCV retroviral

vector (XZ201, gift from Dr. Alec Zhang’s lab in UTSW). The

bovine source of kinase-expressing constructs used in the shRNA

rescue experiments were generated by PCR amplification and

cloned into pCDNA3.1(+) vector, the dominant negative form of

bovine GRK2 (bGRK2-K220R) was generated by site-directed

PCR mutagenesis strategy, and the pCS2(+)-CK1a and pCS2(+)-

DN-CK1a are gifts from John Graff’s Lab [49]. LMP/shRNA

against kinase: CK1a, GRK2, or GRK5 were constructed by

inserting indicated shRNA fragments into LMP vector (Open

Biosystems) containing a PGK-puromycin resistance-IRES-GFP

Figure 8. A unified mechanism for Smo activation in different species. Multi-site phosphorylation by distinct but overlapping sets of kinases
activates mSmo and dSmo by regulating their subcellular localization and conformation. See text for details.
doi:10.1371/journal.pbio.1001083.g008
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cassette. To generate HA-tagged wild type, SA0–5 or SD0–5

versions of Smo C-tail, wild type, or mutant DNA fragments were

amplified by PCR and inserted between NotI and XbaI sites in the

HA-pUAST vectors [50], and the HA-tagged constructs were

subcloned into pCDNA3.1(+) vector with EcoRI and XbaI sites. All

the constructs were sequence verified. DN-Kif3b constructs were

kindly provided by Dr. Pao-Tien Chuang [44].

In Vitro Kinase Assay
CK1/GRK in vitro kinase assay was performed according to

the manufacturer’s instruction (Upstate Biotechnologies, 14-714).

Briefly, GST-fusion proteins, 0.1 mM ATP containing 10 mCi of

c-32p-ATP and kinases: CK1d (New England Biolabs), GRK5

(Upstate Biotechnologies, 14-714), were mixed well and incubated

at 30uC for 1.5 h in reaction buffer (20 mM Tris-HCl, pH 8.0,

2 mM EDTA, 10 mM MgCl2, 1 mM DTT); the reactions were

stopped by adding 46SDS loading buffer and boiled at 100uC for

5 min; and the phosphorylation of GST-fusion proteins were

analyzed by autoradiography after SDS-PAGE.

Cell Cultures
Unless otherwise noted, all the mammalian cell lines were

cultured in DMEM, supplemented with 10% fetal bovine serum

(FBS), L-glutamine, 1 mM sodium pyruvate, and penicillin. NIH

3T3 cells were obtained from ATCC. smo2/2 and Kif3a2/2 mouse

embryonic fibroblasts were kindly provided by Dr. Pao-Tien

Chuang [44]. Wild type MEFs were derived from wild type mice

embryos at 9.5 dpc, embryos were dissected to pieces and

transferred to 10 cm dishes for adherence, regular DMEM

medium were slowly added, fibroblasts cells that migrated from

the embryos were collected by trypsinization after 3,5 d, and

expanded wild-type MEFs were aliquot and frozen for further use.

Reagents were used in the following concentrations unless

otherwise noted: Recombinant Mouse Sonic Hedgehog N-

terminus (ShhNp, R&D systems, Cat #464-SH), 293-Shh-

conditioned medium (1:6 v/v; [40]), SAG (200 nM), cyclopamine

(1 mM), CKI-7 (10 mM; Sigma), and Heparin (1 mM; Sigma). SAG

and cyclopamine are gifts from Dr. James Chen at Stanford

University. The kinase inhibitors were added into the medium the

night before collecting the samples, and for heparin treatment,

5 mg/ml Lipofectin (Invitrogen) were mixed together with the

medium to facilitate their entry into the cells.

Transfection, Immunoprecipitation, Western Blot,
Immunochemistry, and FRET

For protein expression, cells were transfected with FuGENE 6

transfection reagent (Roche) according to the manufacturer’s

instructions, harvested and lysed in RIPA buffer (50 mM Tris-Cl

at pH 7.9, 150 mM NaCl, 5 mM EDTA), 1% NP-40 supple-

mented with protease inhibitors (Roche), and lysates were frozen

and thaw 2,3 times. Immunoprecipitation experiments were

performed as previously described [51]. The Phos tag-conjugated

SDS-PAGE analysis was performed according to the standard

protocols [34]. Phos tag-conjugated acrylamide was purchased

from the NARD Institute in Japan. First and secondary antibodies

used in this study: mouse anti-Myc (1:5,000; Sigma), rabbit anti-

Myc (A-14; Santa Cruz Biotechnologies), mouse anti-HA

(1:10,000; Santa Cruz Biotechnologies), mouse anti-Flag

(1:10,000; Santa Cruz Biotechnologies), rabbit anti-CK1a (Santa

Cruz Biotechnologies), rabbit anti-GRK2 (Santa Cruz Biotech-

nologies), rabbit anti-GRK5 (Santa Cruz Biotechnologies), rabbit

phospho-specific antibodies against S1 (PS1, 1:50), monoclonal

anti-Acetylated tubulin (1:1,000; Sigam#T7451), Goat anti-mouse

IgG HRP (1:10,000), and Goat anti-rabbit IgG HRP (1:10,000).

PS1 antibody was generated by Genemed Synthesis Inc.,

phosphorylated peptide EP(pS)ADV(pSpS)AWAQHVTC was

injected into rabbit, the serum was affinity-purified by antigen,

and the flow-through from the affinity-purification was also kept as

control antibody S1 against non-phosphorylated peptide. For

immunofluorescence, cells were seeded on ploy-D Lysine coated

LAB-TEK chamber slides and were transfected with indicated

constructs, followed by treating with indicated reagents for

indicated time. Cells were washed 2 times with 1XPBS and fixed

with 4% PFA, permeabilized, stained, and mounted for observa-

tion with Zeiss LSM510 confocal microscope. FRET assays were

performed essentially as previously described [22]. Briefly, CFP

was exited at 458 nM wavelength and YFP at 514 nM

wavelength. CFP signals were collected once before photobleach-

ing (BP) and once after photobleaching (AP) of YFP. YFP was

photobleached with full power of the 514 nM laser line for

1,2 min at the top half of the cells, leaving the bottom half as an

internal control. The CFP signals from the bleached half (both

membrane and cytoplasmic signals) were used for FRET

calculating, and the efficiency of FRET was calculated with the

formula: FRET% = [(CFPAP 2 CFPBP)/CFPAP] 6100.

8XGliBS-Luciferase Assay
The day before transfection, different cell lines were seeded at a

density of 1,26105 cells/ml in 24-well plates, and cells were

transfected with 8XGliBS-luciferase and pRL-TK at 4:1 ratio, and

5% w/w of pGE-Smo constructs with Fugene 6 (Roche) according

to the manufacturer’s instructions. After 2 d of transfection, cells

were changed to low serum medium (DMEM supplemented with

0.5% calf serum) with or without Shh-conditioned medium

combined with additional treatments as indicated, and cells were

harvested and luciferase activities were determined using the Dual

Luciferase Reporter Assay System (Promega) and FLUOstar

OPTIMA (BMGLABTCH). Each sample was performed in

triplicate and the assays were repeated for at least 3 times.

Chick In Ovo Electroporation
All constructs were electroporated into the neural tube of HH

st11–12 chick embryos [52]. Embryos were harvested 48 h after

electroporation, fixed, and processed for immunohistochemistry as

previously described [53]. The following antibodies were used:

mouse Pax7, Nkx6.1, Nkx2.2 (from DSHB), rabbit Olig2

(Chemicon), rabbit Islet1/2 (a gift from Dr. T. Jessell), and GFP

(Biogenesis). Anterior thoracic levels were analyzed in all cases.

Retroviral Infection and shRNA
Stable NIH 3T3/shRNA cell lines against kinase CK1a,

GRK2, or GRK5 were generated by retroviral infection and

selected with 3 mg/ml of puromycin.

HEK 293T cells were transfected with XZ201 retrovirus vectors

encoding variant Smo cDNAs and pCL-Eco packaging vector,

and supernatants were collected 72 h post-transfection, filtered

through a 0.45 mM syringe filter, and added to 50,70% confluent

wild type MEFs with 8 mg/ml polybrene (Sigma) overnight.

Supporting Information

Figure S1 CK1a and GRK2 regulate Smo phosphorylation and

Shh signaling activity. (A) Diagrams showing the sequences of the

corresponding shRNAs targeting CK1a, GRK2, or GRK5. (B)

Knockdown efficiency by the indicated shRNAs. (Top) Cell extracts

were prepared from NIH3T3 cells with integrated LMP control

vector (CT) or vectors expressing shRNA against different regions of

Mechanism of Smoothened Activation
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CK1a, GRK2, or GRK5 and immunoblotted with CK1a, GRK2,

GRK5, and GAPDH antibodies. Representative western blots were

repeated 3 to 5 times. The intensity of each band was analyzed using

the ImageJ software. The numbers indicated percentage of

knockdown. (Bottom) Knockdown efficiency of individual stable

NIH 3T3/shRNA lines measured by real-time PCR. (C–E) Stable

NIH 3T3/shRNA lines were transfected with Smo and WT or

dominant-negative (DN) bovine CK1a (bCK1a) or GRK2

(bGRK2) together with the 8XGliBS-luc reporter and control pRL-

TK construct, and treated with or without Shh-conditioned

medium, followed by dual Luciferase assay. (F) Cell extracts from

stable NIH 3T3/shRNA cell lines or control NIH 3T3 cells

transfected with Smo-Myc and treated with or without Shh-

conditioned medium were separated on Phos tag-conjugated SDS-

PAGE gel and probed with Myc antibody. (G) Gli-luciferase assay in

NIH 3T3 cells in response to Shh stimulation or kinase

overexpression. (H) Gli-luciferase assay in control or CK1a/GRK2

shRNA expressing NIH 3T3 cells treated with or without Shh-

conditioned medium.

(TIF)

Figure S2 CK1 and GRK phosphorylate multiple sites in Smo.

(A–C) CK1 and GRK phosphorylate individual serine in the S1 site.

(A) A schematic drawing full-length Smo with the sequences for S1,

S2, and S3 indicated underneath. Amino acid substitutions for

individual constructs are indicated. (B–C) In vitro kinase assay using

recombinant CK1d (B) or GRK5 (C) and purified GST-Smo608–

670 fusion proteins with wild type (WT) sequence or indicated

substitutions. (D–E) CK1/GRK sites in Smo C-tail mediate Smo

activation by Shh, CKIa, GRK2, and GRK5. (D) Gli-luc assay in

NIH 3T3 cells transfected with Smo or SmoSA0–5 with or without

the indicated kinase expressing constructs and treated with or

without Shh-conditioned medium. (E) FRET analysis in NIH 3T3

cells transfected with Smo-CFPC/YFPC or SmoSA0–5-CFPC/YFPC

with or without the indicated kinase expressing constructs and

treated with or without Shh-conditioned medium (mean 6 s.d.,

n$10). (F) Evaluation of the specificity of the PS1 antibody. (Top) A

schematic drawing of full-length Smo with the antigen peptide

sequence for generating the PS1 antibody indicated. (Bottom)

Western blot analysis using the PS1 antibody or antibodies against

the non-phosphorylated peptide (S1). The PS1 antibody recognized

GST-Smo608–670 but not GST-Smo608–670SA phosphorylated

by GRK or CK1. In addition, the PS1 antibody did not recognize

the unphosphorylated GST-Smo608–670. Equal amounts of GST

fusion proteins were loaded as indicated by western blot with the S1

antibody. (G) Knockdown of CK1a or GRK2 affected Shh-induced

Smo phosphorylation. Cell extracts from indicated stable NIH 3T3/

shRNA lines transfected with Smo-Myc and treated with or without

Shh-conditioned medium were separated on SDS-PAGE gel and

immunoblotted with PS1 and Myc antibodies. Knockdown of CK1a
or GRK2 but not GRK5 reduced Shh-induced Smo phosphoryla-

tion at S1 site. (H–I) The effect of mutating CK1/GRK sites on A1-

induced Smo phosphorylation and Smo activity in response to Shh

and small molecules. (H) Cell extracts from NIH 3T3 cells

transfected with Smo-Myc, SmoA1-Myc, or SmoA1SA1–5-Myc

and treated with or without Shh-conditioned medium were

separated on Phos tag-conjugated SDS-PAGE gel and immuno-

blotted with a Myc antibody. Mutating multiple CK1/GRK sites

abolished Shh- or A1-induced mobility shift of the Myc-tagged Smo.

(I) Gli-luc assay in NIH 3T3 cells transfected with Smo, SmoSA0–5,

or SmoSD0–5 and treated with or without the indicated reagents.

The activity of SmoSA0–5 was no longer induced by Shh or SAG,

whereas SmoSD0–5 exhibited elevated basal activity and was more

resistant to cyclopamine (CYC) inhibition.

(TIF)

Figure S3 Mutating CK1/GRK sites affect Smo activity in chick

neural tube. (A) Activity of Smo SD variants in chick neural tube.

SmoWT, SmoSD1, SmoSD12, SmoSD123, SmoSD1–5, or

SmoSD0–5 were transfected by in ovo electroporation into the

thoracic region of HH st11–12 chick neural tube and the expression

patterns of the indicated markers analyzed 48 h later. In embryos

transfected with SmoSD123, SmoSD1–5, or SmoSD0–5, the

expression of Pax7 was repressed and expression of Isl1, Olig2,

and Nkx2.2 expanded dorsally (arrows). By contrast, the expression

patterns of the neural tube markers in SmoSD1 or SmoSD12

electroporated embryos were similar to those in embryos transfected

with SmoWT. (B) Mutating S1 affects SmoA1 activity in chick

neural tube. SmoA1 or SmoA1 with different combination of SA

mutations (A1SA1, A1SA12, A1SA13, A1SA23, and A1SA123)

were transfected by in ovo electroporation into the thoracic region

of the neural tube of HH st11–12 chick embryos and the expression

patterns of the indicated markers analyzed 48 h later. SmoA1

exhibited constitutive signaling activity, resulting in the dorsal

expansion of ventral markers, including Islet1, Nkx6.1, Olig2, and

Nkx2.2 and the repression of Pax7 (Brackets). Mutating S1 alone

(A1SA1) or in combination with other sites (A1SA12, A1SA13, or

A1SA123) markedly reduced the signaling activity of SmoA1 and

these constructs only induced mild ectopic expression of ventral

markers (arrows). By contrast, mutating S2 and S3 (A1SA23) did not

significantly affect SmoA1 activity.

(TIF)

Figure S4 Primary cilium and Smo phosphorylation. (A)

Quantification of Smo-CFP or PS1 positive cilia in NIH

3T3Smo-CFP treated with different reagents. NIH 3T3Smo-CFP cells

were either untreated or treated with Shh-conditioned medium

(Shh), SAG (200 nM), 20-OHC (10 mM), CYC (10 mM), or a

combination of Shh and CYC (10 mM), SAG (200 nM) and CYC

(10 mM), or 20-OHC (10 mM) and CYC (10 mM). The histogram

indicates the percentage of Smo-CFP or PS1 positive cilia. Over

100 ciliated cells were counted for each time point (n = 3). (B)

FRET analysis in wild type or Kif3a2/2 MEFs transfected with

Smo-CFPC/YFPC, SmoA1-CFPC/YFPC, or SmoSD0–5-CFPC/

YFPC and treated with or without Shh-conditioned medium

(mean 6 s.d., n$10). (C) Gli-luc assay in Kif3a2/2 MEFs

transfected with the indicated constructs and treated with or

without Shh-conditioned medium.

(TIF)

Figure S5 Quantification of CK1a binding to different forms of

Smo. Histograms for the western blot analyses shown in Figure 7G

and Figure 7H. The pull-downed CK1a signal intensity in each

lane was normalized by the pull-downed Smo signal intensity and

compared with lane 1. *p,0.05, **p,0.01, ***p,0.005. The

signal intensity for each band was quantified by ImageJ software

followed by Prism analysis, n = 3.

(TIF)
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